Applications & Pathways
Hybrid Electric Vehicle: Design and Control of a Hybrid System (Fuel Cell/Battery/Ultra-Capacitor) Supplied by Hydrogen
Apr 2019
Publication
Due to its high efficiency and reduced emissions new zero-emission hybrid electric vehicles have been selected as an attractive challenge for future transport applications. New zero -emission hybrid electric on the other hand has some major drawbacks from the complicated charging process. The hybrid electrical fuel cell system is introduced as the main source to intelligently control multi-source activities. An ultra-capacitor system is selected as the energy recovery assistance to monitor the fuel cell’s fast transient and peak power during critical periods. To regulate energy demand and supply an intelligent energy management system is proposed and tested through several constraints. The proposed approach system aims to act quickly against sudden circumstances related to hydrogen depletion in the prediction of the required fuel consumption basis. The proposed strategy tends to define the proper operating system according to energy demand and supply. The obtained results show that the designed system meets the targets set for the energy management unit by referring to an experimental velocity database.
Research Progress, Trends, and Current State of Development on PEMFC-New Insights from a Bibliometric Analysis and Characteristics of Two Decades of Research Output
Nov 2022
Publication
The consumption of hydrogen could increase by sixfold in 2050 compared to 2020 levels reaching about 530 Mt. Against this backdrop the proton exchange membrane fuel cell (PEMFC) has been a major research area in the field of energy engineering. Several reviews have been provided in the existing corpus of literature on PEMFC but questions related to their evolutionary nuances and research hotspots remain largely unanswered. To fill this gap the current review uses bibliometric analysis to analyze PEMFC articles indexed in the Scopus database that were published between 2000–2021. It has been revealed that the research field is growing at an annual average growth rate of 19.35% with publications from 2016 to 2012 alone making up 46% of the total articles available since 2000. As the two most energy-consuming economies in the world the contributions made towards the progress of PEMFC research have largely been from China and the US. From the research trend found in this investigation it is clear that the focus of the researchers in the field has largely been to improve the performance and efficiency of PEMFC and its components which is evident from dominating keywords or phrases such as ‘oxygen reduction reaction’ ‘electrocatalysis’ ‘proton exchange membrane’ ‘gas diffusion layer’ ‘water management’ ‘polybenzimidazole’ ‘durability’ and ‘bipolar plate’. We anticipate that the provision of the research themes that have emerged in the PEMFC field in the last two decades from the scientific mapping technique will guide existing and prospective researchers in the field going forward.
Sustainable Synthetic Carbon Based Fuels for Transport
Sep 2019
Publication
The report considers two types of sustainable synthetic fuels: electro fuels (efuels) and synthetic biofuels. Efuels are made by combining hydrogen (from for example the electrolysis of water) with carbon dioxide (from direct air capture or a point source). Synthetic biofuels can be made from biological material (for example waste from forestry) or from further processing biofuels (for example ethanol).<br/>Whilst synthetic fuels can be “dropped in” to existing engines they are currently more expensive than fossil fuels and in the case of efuels could be thought of as an inefficient use of renewable electricity. However where renewable electricity is cheap and plentiful the manufacture and export of bulk efuels might make economic sense.<br/>Key research challenges identified include improving the fundamental understanding of catalysis; the need to produce cheap low-carbon hydrogen at scale; and developing sources of competitively priced low carbon energy are key to the development of synthetic efuels and biofuels. The UK has the research skills and capacity to improve many of these process steps such as in catalysis and biotechnology and to provide a further area of UK leadership in low-carbon energy.
Electric Aircraft Fueled by Liquid Hydrogen and Liquefied Natural Gas
Jul 2021
Publication
The paper is a review of the opportunities and challenges of cryogenic power devices of electric aircraft and the ongoing research and development efforts of the government agencies and the industry. Liquid Hydrogen (LH2) and Liquefied Natural Gas (LNG) are compared to support high temperature superconducting (HTS) and normal metal devices respectively. The power devices were assumed to operate at the normal boiling point of the fuel used. The efficiencies of the electrical devices are estimated based on state-of-the-art technology. The mass flow rates and total fuel requirements for both the cryogenic fuels required to maintain the operating temperatures of the devices were simulated using thermal network models. A twin-aisle 300 passenger aircraft with a 5.5 h flight duration was used for the models. The results show that the required masses of LH2 and LNG are 744 kg and 13638 kg respectively for the cooling requirement. The corresponding volumes of LH2 and LNG required are 9760 and 30300 L respectively. In both cases the estimated mass of the fuel needed for the aircraft is more than what is needed to maintain the cryogenic environment of the power devices. It was concluded that an electric aircraft with LNG cooled normal metal devices is feasible. However an aircraft with HTS devices and cooled with LH2 is more attractive if the ongoing R&D efforts on HTS devices and LH2 infrastructure are successful. The emission reductions would be substantially higher with LH2 particularly when H2 is produced using renewable energy sources.
Simulation and Study of PEMFC System Directly Fueled by Ammonia Decomposition Gas
Mar 2022
Publication
Ammonia can be stored as a liquid under relatively easy conditions (Ambient temperature by applying 10 bar or Ambient pressure with the temperature of 239 K). At the same time liquid ammonia has a high hydrogen storage density and is therefore a particularly promising carrier for hydrogen storage. At the same time the current large-scale industrial synthesis of ammonia has long been mature and in the future it will be possible to achieve a zero-emission ammonia regeneration cycle system by replacing existing energy sources with renewable ones. Ammonia does not contain carbon and its use in fuel cells can avoid NOx production during energy release. high temperature solid oxide fuel cells can be directly fueled by ammonia and obtain good output characteristics but the challenges inherent in high temperature solid oxide fuel cells greatly limit the implementation of this option. Whereas PEMFC has gained initial commercial use however for PEMFC ammonia is a toxic gas so the general practice is to convert ammonia to pure hydrogen. Ammonia to hydrogen requires decomposition under high temperature and purification which increases the complexity of the fuel system. In contrast PEMFC that can use ammonia decomposition gas directly can simplify the fuel system and this option has already obtained preliminary experimental validation studies. The energy efficiency of the system obtained from the preliminary validation experiments is only 34–36% which is much lower than expected. Therefore this paper establishes a simulation model of PEMFC directly using ammonia decomposition gas as fuel to study the maximum efficiency of the system and the effect of the change of system parameters on the efficiency and the results show that the system efficiency can reach up to 45% under the condition of considering certain heat loss. Increasing the ammonia decomposition reaction temperature decreases the system efficiency but the effect is small and the system efficiency can reach 44% even at a temperature of 850°C. The results of the study can provide a reference for a more scientific and quantitative assessment of the potential value of direct ammonia decomposition gas-fueled PEMFC.
The Spatio-Temporal Evolution of China’s Hydrogen Fuel Cell Vehicle Innovation Network: Evidence From Patent Citation at Provincial Level
Oct 2021
Publication
Hydrogen fuel cell vehicle industry is in a rapid development stage. Studying the domestic spatial distribution of hydrogen fuel cell vehicle industry across a country especially the spatio-temporal evolution of the innovation level and position of each region in innovation network will help to understand the industry’s development trends and characteristics and avoid repeated construction. This article uses social network analysis and patent citation information of 2971 hydrogen fuel cell vehicle related invention patents owned by 218 micro-innovators across 25 provinces of China from 2001 to 2020 to construct China’s hydrogen fuel cell vehicle innovation network. Based on the dimensions of knowledge production knowledge consumption and network broker the network positions of sample provinces in three periods divided by four main national policies are classified. The main findings are as follows. 1) In China the total sales of hydrogen fuel cell vehicle and the development of supporting infrastructure are balanced and a series of national and local industrial development polices have been issued. 2) China’s hydrogen fuel cell vehicle innovation network density the proportion of universities and research institutes among the innovators and the active degree of the eastern provinces are all becoming higher. 3) The provinces in optimal network position are all from the eastern region. Shanghai and Liaoning are gradually replaced by Beijing and Jiangsu. 4) Sichuan in the western region is the only network broker based on knowledge consumption. 5) Although Zhejiang Tianjin Hebei Guangdong and Hubei are not yet in the optimal position they are outstanding knowledge producers. Specifically Guangdong is likely to climb to the optimal network position in the next period. The conclusions will help China’s provinces to formulate relevant development policies to optimize industry layout and enhance collaborative innovation in the hydrogen fuel cell vehicle industry.
Environmental Benefit and Investment Value of Hydrogen-Based Wind-Energy Storage System
Mar 2021
Publication
Alongside the rapid expansion of wind power installation in China wind curtailment is also mounting rapidly due to China’s energy endowment imbalance. The hydrogen-based wind-energy storage system becomes an alternative to solve the puzzle of wind power surplus. This article introduced China’s energy storage industry development and summarized the advantages of hydrogen-based wind-energy storage systems. From the perspective of resource conservation it estimated the environmental benefits of hydrogen-based wind-energy storages. This research also builds a valuation model based on the Real Options Theory to capture the distinctive flexible charging and discharging features of the hydrogen-based wind-energy storage systems. Based on the model simulation results including the investment value and operation decision of the hydrogen energy storage system with different electricity prices system parameters and different levels of subsidies are presented. The results show that the hydrogen storage system fed with the surplus wind power can annually save approximately 2.19–3.29 million tons of standard coal consumption. It will reduce 3.31–4.97 million tons of CO2 SO2 NOx and PM saving as much as 286.6–429.8 million yuan of environmental cost annually on average. The hydrogen-based wind-energy storage system’s value depends on the construction investment and operating costs and is also affected by the meanreverting nature and jumps or spikes in electricity prices. The market-oriented reform of China’s power sector is conducive to improve hydrogen-based wind-energy storage systems’ profitability. At present subsidies are still essential to reduce initial investment and attract enterprises to participate in hydrogen energy storage projects.
Hydrogen-Electric Coupling Coordinated Control Strategy of Multi-Station Integrated System Based on the Honeycomb Topology
Mar 2022
Publication
With the high-proportion accession of renewable energy and randomness of the load side in the new energy power system unbalanced feeder power and heavy overload of the transformer caused by massive access of highly uncertain source loads become more and more serious. In order to solve the aforementioned problems a honeycomb topology of the multi-station integrated system is proposed. The soft open point (SOP) is used as the key integrated equipment of the internal unit of a multi-station integrated system. The honeycomb grid structure is composed of flexible nodes and the multi-station integrated system is composed of multi-network flexible interconnection. Based on the characteristics of the regional resource endowment hydrogen energy flow is deeply coupled in parts of honeycomb grids. In order to improve the reliability and flexibility of the multi-station integrated unit the structure of the new multi-station integrated unit the power balance constraints on the unit and the switching process of SOP control mode are studied. At the same time the hydrogen electricity coupling structure and the coordinated control strategy of hydrogen electricity conversion are proposed to solve the problem of deep application of hydrogen energy. Finally the effectiveness of the proposed multi-station integrated system is verified by using three simulation models.
Contribution of Potential Clean Trucks in Carbon Peak Pathway of Road Freight Based on Scenario Analysis: A Case Study of China
Oct 2022
Publication
Reducing the carbon emissions from trucks is critical to achieving the carbon peak of road freight. Based on the prediction of truck population and well-to-wheel (WTW) emission analysis of traditional diesel trucks and potential clean trucks including natural gas battery-electric plug-in hybrid electric and hydrogen fuel cell the paper analyzed the total greenhouse gas (GHG) emissions of China's road freight under four scenarios including baseline policy facilitation (PF) technology breakthrough (TB) and PF-TB. The truck population from 2021 to 2035 is predicted based on regression analysis by selecting the data from 2002 to 2020 of the main variables such as the GDP scale road freight turnover road freight volume and the number of trucks. The study forecasts the truck population of different segments such as mini-duty trucks (MiDT) light-duty trucks (LDT) medium-duty trucks (MDT) and heavy-duty trucks (HDT). Relevant WTW emissions data are collected and adopted based on the popular truck in China's market PHEVs have better emission intensity especially in the HDT field which reduces by 51% compared with ICEVs. Results show that the scenario of TB and PF-TB can reach the carbon peak with 0.13% and 1.5% total GHG emissions reduction per year. In contrast the baseline and PF scenario fail the carbon peak due to only focusing on the number of clean trucks while lacking the restrictions on the GHG emission factors of energy and ignoring the improvement of trucks' energy efficiency and the total emissions increased by 29.76% and 16.69% respectively compared with 2020. As the insights adopting clean trucks has an important but limited effect which should coordinate with the transition to low carbon energy and the melioration of clean trucks to reach the carbon peak of road freight in China.
Fuel Cell Hybrid Model for Predicting Hydrogen Inflow through Energy Demand
Nov 2019
Publication
Hydrogen-based energy storage and generation is an increasingly used technology especially in renewable systems because they are non-polluting devices. Fuel cells are complex nonlinear systems so a good model is required to establish efficient control strategies. This paper presents a hybrid model to predict the variation of H2 flow of a hydrogen fuel cell. This model combining clusters’ techniques to get multiple Artificial Neural Networks models whose results are merged by Polynomial Regression algorithms to obtain a more accurate estimate. The model proposed in this article use the power generated by the fuel cell the hydrogen inlet flow and the desired power variation to predict the necessary variation of the hydrogen flow that allows the stack to reach the desired working point. The proposed algorithm has been tested on a real proton exchange membrane fuel cell and the results show a great precision of the model so that it can be very useful to improve the efficiency of the fuel cell system.
The Interaction between Short- and Long-Term Energy Storage in an nZEB Office Building
Mar 2024
Publication
The establishment of near-autonomous micro-grids in commercial or public building complexes is gaining increasing popularity. Short-term storage capacity is provided by means of large battery installations or more often by the employees’ increasing use of electric vehicle batteries which are allowed to operate in bi-directional charging mode. In addition to the above short-term storage means a long-term storage medium is considered essential to the optimal operation of the building’s micro-grid. The most promising long-term energy storage carrier is hydrogen which is produced by standard electrolyzer units by exploiting the surplus electricity produced by photovoltaic installation due to the seasonal or weekly variation in a building’s electricity consumption. To this end a novel concept is studied in this paper. The details of the proposed concept are described in the context of a nearly Zero Energy Building (nZEB) and the associated micro-grid. The hydrogen produced is stored in a high-pressure tank to be used occasionally as fuel in an advanced technology hydrogen spark ignition engine which moves a synchronous generator. A size optimization study is carried out to determine the genset’s rating the electrolyzer units’ capacity and the tilt angle of the rooftop’s photovoltaic panels which minimize the building’s interaction with the external grid. The hydrogen-fueled genset engine is optimally sized to 40 kW (0.18 kW/kWp PV). The optimal tilt angle of the rooftop PV panels is 39◦ . The maximum capacity of the electrolyzer units is optimized to 72 kW (0.33 kWmax/kWp PV). The resulting system is tacitly assumed to integrate to an external hydrogen network to make up for the expected mismatches between hydrogen production and consumption. The significance of technology in addressing the current challenges in the field of energy storage and micro-grid optimization is discussed with an emphasis on its potential benefits. Moreover areas for further research are highlighted aiming to further advance sustainable energy solutions.
Life Cycle Assessment of Alternative Ship Fuels for Coastal Ferry Operating in Republic of Korea
Aug 2020
Publication
In this study the environmental impacts of various alternative ship fuels for a coastal ferry were assessed by the life cycle assessment (LCA) analysis. The comparative study was performed with marine gas oil (MGO) natural gas and hydrogen with various energy sources for a 12000 gross tonne (GT) coastal ferry operating in the Republic of Korea (ROK). Considering the energy imports of ROK i.e. MGO from Saudi Arabia and natural gas from Qatar these countries were chosen to provide the MGO and the natural gas for the LCA. The hydrogen is considered to be produced by steam methane reforming (SMR) from natural gas with hard coal nuclear energy renewable energy and electricity in the ROK model. The lifecycles of the fuels were analyzed in classifications of Well-toTank Tank-to-Wake and Well-to-Wake phases. The environmental impacts were provided in terms of global warming potential (GWP) acidification potential (AP) photochemical potential (POCP) eutrophication potential (EP) and particulate matter (PM). The results showed that MGO and natural gas cannot be used for ships to meet the International Maritime Organization’s (IMO) 2050 GHG regulation. Moreover it was pointed out that the energy sources in SMR are important contributing factors to emission levels. The paper concludes with suggestions for a hydrogen application plan for ships from small nearshore ships in order to truly achieve a ship with zero emissions based on the results of this study.
Hydrogen for the De-carbonization of the Resources and Energy Intensive Industries (REIIs)
Aug 2022
Publication
This study deals with the use of hydrogen for the de-carbonization of the Resources and Energy Intensive Industries (REIIs) and gives a specific insight of the situation of the steel-making industry. The growing use of hydrogen in our economy is synonym for an equal increase in electricity consumption. This results from the fact that the current most promising technologies of H2 production is water electrolysis. For this purpose the EU hydrogen strategy foresees a progressive ramp up of H2 production capacities. But bottlenecks (especially regarding energy needed for electrolysers) may occur. Capacities should reach 40 GW (around 10 Mt/y) by the end of 2030. The steel-making industry relies heavily on H2 to decarbonise its process (through direct iron ore reduction). Our study analyses the conditions under which this new process will be able to compete with both European and offshore existing carbonised assets (i.e. blast furnaces). It emphasises the need for integrated and consistent policies from carbon prices to the carbon border adjustment mechanism through carbon contracts for differences but also highlightsthat a better regulation of electricity prices should not be neglected.
Potential Global Warming Impact of 1 kW Polymer Electrolyte Membrane Fuel Cell System for Residential Buildings on Operation Phase
Mar 2023
Publication
This study established global warming potential(GWP) emission factors through a life cycle assessment on the operation phases of two different 1 kW polymer electrolyte membrane fuel cell (PEMFC) systems for residential buildings (NG-PEMFC fed with hydrogen from natural gas reforming; WE-PEMFC fed with hydrogen from photovoltaics-powered water electrolyzer). Their effectiveness was also compared with conventional power grid systems in Korea specifically in the area of greenhouse gas emissions. The operation phases of the NG-PEMFC and the WE-PEMFC were divided into burner reformer and stack and into water electrolysis and stack respectively. The functional unit of each fuel cell system was defined as 1 kWh of electricity production. In the case of NG-PEMFC the GWP was 3.72E-01 kg-CO2eq/kWh the embodied carbon emissions due to using city gas during the life cycle process was about 20.87 % the carbon emission ratio according to the reformer's combustion burner was 6.07 % and the direct carbon emission ratio of the air emissions from the reformer was 73.06 % indicating that the carbon emission from the reformer contributed over 80 % of the total GWP. As for the WE-PEMFC the GWP was 1.76E-01 kg-CO2eq/kWh and the embodied carbon emissions from photovoltaic power generation during the life cycle process contributed over 99 % of the total GWP.
Low-Carbon Economic Dispatch of Integrated Energy Systems in Industrial Parks Considering Comprehensive Demand Response and Multi-Hydrogen Supply
Mar 2024
Publication
To address the increasing hydrogen demand and carbon emissions of industrial parks this paper proposes an integrated energy system dispatch strategy considering multi-hydrogen supply and comprehensive demand response. This model adopts power-to-gas technology to produce green hydrogen replacing a portion of gray hydrogen and incorporates a carbon capture system to effectively reduce the overall carbon emissions of the industrial park. Meanwhile incentive-based and price-based demand response strategies are implemented to optimize the load curve. A scheduling model is established targeting the minimization of procurement operation carbon emission and wind curtailment costs. The case study of a northern industrial park in China demonstrates that the joint supply of green and gray hydrogen reduces carbon emissions by 40.98% and costs by 17.93% compared to solely using gray hydrogen. The proposed approach successfully coordinates the economic and environmental performance of the integrated energy system. This study provides an effective scheduling strategy for industrial parks to accommodate high shares of renewables while meeting hydrogen needs and carbon reduction targets.
Hybrid PEM Fuel Cell Power Plants Fuelled by Hydrogen for Improving Sustainability in Shipping: State of the Art and Review on Active Projects
Feb 2023
Publication
The interest in hybrid polymer electrolyte membrane fuel cells (PEMFC) fuelled by hydrogen in shipping has seen an unprecedented growth in the last years as it could allow zero-emission navigation. However technical safety and regulatory barriers in PEMFC ship design and operation are hampering the use of such systems on a large scale. While several studies analyse these aspects a comprehensive and up-to-date overview on hydrogen PEMFCs for shipping is missing. Starting from the survey of past/ongoing projects on FCs in shipping this paper presents an extensive review on maritime hydrogen PEMFCs outlining the state of the art and future trends for hydrogen storage and bunkering powertrain and regulations. In addition to the need for a clear regulatory framework future studies should investigate the development of an efficient fuel supply chain and bunkering facilities ashore. As for the onboard power system health-conscious energy management low-temperature heat recovery and advancements in fuel processing have emerged as hot research topics.
Low-Carbon Strategic Planning of Integrated Energy Systems
Mar 2022
Publication
With the rapid promotion of renewable energy technologies and the trend to a low-carbon society the positive impacts of an integrated energy system that realizes various forms of energy-utilizing improvement and carbon reduction have fully emerged. Hydrogen with a decarbonized characteristic being integrated into the integrated energy system has become a viable option to offset the intermittency of renewables and decline the fossil fuel usage. An optimal planning model of a wind–photovoltaic–hydrogen storage-integrated energy system with the objective of total economic and environmental cost minimization by considering various energy technology investments is proposed. Case studies are developed to compare the economic and environmental benefits of different energy investment scenarios especially hydrogen applications. The cost–benefit analysis was carried out to prove that hydrogen investment is not a cost-competitive option but can alleviate the burden of carbon emissions somehow. Finally sensitivity analysis of key parameters of sale capacity carbon tax and renewable penetration level was performed to indicate the rational investment for a wind–photovoltaic–hydrogen storage-integrated energy system.
Multi-port Coordination: Unlocking Flexibility and Hydrogen Opportunities in Green Energy Networks
Mar 2024
Publication
Seaports are responsible for consuming a large amount of energy and producing a sizeable amount of environmental emissions. However optimal coordination and cooperation present an opportunity to transform this challenge into an opportunity by enabling flexibility in their generation and load units. This paper introduces a coordination framework for exploiting flexibility across multiple ports. The proposed method fosters cooperation between ports in achieving lower environmental emissions while leveraging flexibility to increase their revenue. This platform allows ports to participate in providing flexibility for the energy grid through the introduction of a green port-to-grid concept while optimising their cooperation. Furthermore the proximity to offshore wind farms is considered an opportunity for the ports to investigate their role in harnessing green hydrogen. The proposed method explores the hydrogen storage capability of ports as an opportunity for increasing the techno-economic benefits particularly through coupling them with offshore wind farms. Compared to existing literature the proposed method enjoys a comprehensive logistics-electric model for the ports a novel coordination framework for multi-port flexibility and the potentials of hydrogen storage for the ports. These unique features position this paper a valuable reference for research and industry by demonstrating realistic cooperation among ports in the energy network. The simulation results confirm the effectiveness of the proposed port flexibility coordination from both environmental and economic perspectives.
Fundamentals, Materials, and Machine Learning of Polymer Electrolyte Membrane Fuel Cell Technology
Jun 2020
Publication
Polymer electrolyte membrane (PEM) fuel cells are electrochemical devices that directly convert the chemical energy stored in fuel into electrical energy with a practical conversion efficiency as high as 65%. In the past years significant progress has been made in PEM fuel cell commercialization. By 2019 there were over 19000 fuel cell electric vehicles (FCEV) and 340 hydrogen refueling stations (HRF) in the U.S. (~8000 and 44 respectively) Japan (~3600 and 112 respectively) South Korea (~5000 and 34 respectively) Europe (~2500 and 140 respectively) and China (~110 and 12 respectively). Japan South Korea and China plan to build approximately 3000 HRF stations by 2030. In 2019 Hyundai Nexo and Toyota Mirai accounted for approximately 63% and 32% of the total sales with a driving range of 380 and 312 miles and a mile per gallon (MPGe) of 65 and 67 respectively. Fundamentals of PEM fuel cells play a crucial role in the technological advancement to improve fuel cell performance/durability and reduce cost. Several key aspects for fuel cell design operational control and material development such as durability electrocatalyst materials water and thermal management dynamic operation and cold start are briefly explained in this work. Machine learning and artificial intelligence (AI) have received increasing attention in material/energy development. This review also discusses their applications and potential in the development of fundamental knowledge and correlations material selection and improvement cell design and optimization system control power management and monitoring of operation health for PEM fuel cells along with main physics in PEM fuel cells for physics-informed machine learning. The objective of this review is three fold: (1) to present the most recent status of PEM fuel cell applications in the portable stationary and transportation sectors; (2) to describe the important fundamentals for the further advancement of fuel cell technology in terms of design and control optimization cost reduction and durability improvement; and (3) to explain machine learning physics-informed deep learning and AI methods and describe their significant potentials in PEM fuel cell research and development (R&D).
Ammonia as a Suitable for Fuel Cells
Aug 2014
Publication
Ammonia an important basic chemical is produced at a scale of 150 million tons per year. Half of hydrogen produced in chemical industry is used for ammonia production. Ammonia containing 17.5 wt% hydrogen is an ideal carbon-free fuel for fuel cells. Compared to hydrogen ammonia has many advantages. In this mini-review the suitability of ammonia as fuel for fuel cells the development of different types of fuel cells using ammonia as the fuel and the potential applications of ammonia fuel cells are briefly reviewed.
No more items...