Applications & Pathways
Co-Combustion of Hydrogen with Diesel and Biodiesel (RME) in a Dual-Fuel Compression-Ignition Engine
Jun 2023
Publication
The utilization of hydrogen for reciprocating internal combustion engines remains a subject that necessitates thorough research and careful analysis. This paper presents a study on the co-combustion of hydrogen with diesel fuel and biodiesel (RME) in a compression-ignition piston engine operating at maximum load with a hydrogen content of up to 34%. The research employed engine indication and exhaust emissions measurement to assess the engine’s performance. Engine indication allowed for the determination of key combustion stages including ignition delay combustion time and the angle of 50% heat release. Furthermore important operational parameters such as indicated pressure thermal efficiency and specific energy consumption were determined. The evaluation of dual-fuel engine stability was conducted by analyzing variations in the coefficient of variation in indicated mean effective pressure. The increase in the proportion of hydrogen co-combusted with diesel fuel and biodiesel had a negligible impact on ignition delay and led to a reduction in combustion time. This effect was more pronounced when using biodiesel (RME). In terms of energy efficiency a 12% hydrogen content resulted in the highest efficiency for the dual-fuel engine. However greater efficiency gains were observed when the engine was powered by RME. It should be noted that the hydrogen-powered engine using RME exhibited slightly less stable operation as measured by the COVIMEP value. Regarding emissions hydrogen as a fuel in compression ignition engines demonstrated favorable outcomes for CO CO2 and soot emissions while NO and HC emissions increased.
Technology Pathways, Efficiency Gains and Price Implications of Decarbonising Residential Heat in the UK
Jun 2023
Publication
The UK government’s plans to decarbonise residential heating will mean major changes to the energy system whatever the specific technology pathway chosen driving a range of impacts on users and suppliers. We use an energy system model (UK TIMES) to identify the potential energy system impacts of alternative pathways to low or zero carbon heating. We find that the speed of transitioning can affect the network investment requirements the overall energy use and emissions generated while the primary heating fuel shift will determine which sectors and networks require most investment. Crucially we identify that retail price differences between heating fuels in the UK particularly gas and electricity could erode or eliminate bill savings from switching to more efficient heating systems.
Feasibility Assessment of Alternative Clean Power Systems onboard Passenger Short-Distance Ferry
Sep 2023
Publication
In order to promote low-carbon fuels such as hydrogen to decarbonize the maritime sector it is crucial to promote clean fuels and zero-emission propulsion systems in demonstrative projects and to showcase innovative technologies such as fuel cells in vessels operating in local public transport that could increase general audience acceptability thanks to their showcase potential. In this study a short sea journey ferry used in the port of Genova as a public transport vehicle is analyzed to evaluate a ”zero emission propulsion” retrofitting process. In the paper different types of solutions (batteries proton exchange membrane fuel cell (PEMFC) solid oxide fuel cell (SOFC)) and fuels (hydrogen ammonia natural gas and methanol) are investigated to identify the most feasible technology to be implemented onboard according to different aspects: ferry daily journey and scheduling available volumes and spaces propulsion power needs energy storage/fuel tank capacity needed economics etc. The paper presents a multi-aspect analysis that resulted in the identification of the hydrogen-powered PEMFC as the best clean power system to guarantee for this specific case study a suitable retrofitting of the vessel that could guarantee a zero-emission journey
Feasibility of Green Hydrogen-Based Synthetic Fuel as a Carbon Utilization Option: An Economic Analysis
Sep 2023
Publication
Singapore has committed to achieving net zero emissions by 2050 which requires the pursuit of multiple decarbonization pathways. CO2 utilization methods such as fuel production may provide a fast interim solution for carbon abatement. This paper evaluates the feasibility of green hydrogen-based synthetic fuel (synfuel) production as a method for utilizing captured CO2. We consider several scenarios: a baseline scenario with no changes local production of synfuel with hydrogen imports and overseas production of synfuel with CO2 exports. This paper aims to determine a CO2 price for synfuel production evaluate the economic viability of local versus overseas production and investigate the effect of different cost parameters on economic viability. Using the current literature we estimate the associated production and transport costs under each scenario. We introduce a CO2 utilization price (CUP) that estimates the price of utilizing captured CO2 to produce synfuel and an adjusted CO2 utilization price (CCUP) that takes into account the avoided emissions from crude oil-based fuel production. We find that overseas production is more economically viable compared to local production with the best case CCUP bounds giving a range of 142–148 $/tCO2 in 2050 if CO2 transport and fuel shipping costs are low. This is primarily due to the high cost of hydrogen feedstock especially the transport cost which can offset the combined costs of CO2 transport and fuel shipping. In general we find that any increase in the hydrogen feedstock cost can significantly affect the CCUP for local production. Sensitivity analysis reveals that hydrogen transport cost has a significant impact on the viability of local production and if this cost is reduced significantly local production can be cheaper than overseas production. The same is true if the economies of scale for local production is significantly better than overseas production. A significantly lower carbon capture cost can also the reduce the CCUP significantly.
Techno-economic Modelling of Zero-emission Marine Transport with Hydrogen Fuel and Superconducting Propulsion System: Case Study of a Passenger Ferry
Mar 2023
Publication
This paper proposes a techno-economic model for a high-speed hydrogen ferry. The model can describe the system properties i.e. energy demand weight and daily operating expenses of the ferry. A novel aspect is the consideration of superconductivity as a measure for cost saving in the setting where liquid hydrogen (LH2) can be both coolant and fuel. We survey different scenarios for a high-speed ferry that could carry 300 passengers. The results show that despite higher energy demand compressed hydrogen gas is more economical compared with LH2 for now; however constructing large-scale hydrogen liquefaction plants make it competitive in the future. Moreover compressed hydrogen gas is restricted to a shorter distance while LH2 makes longer distances possible and whenever LH2 is accessible using a superconducting propulsion system has a beneficial impact on both energy and cost savings. These effects strengthen if the operational time or the weight of the ferry increases.
Technology Roadmap for Hydrogen-fuelled Transportation in the UK
Apr 2023
Publication
Transportation is the sector responsible for the largest greenhouse gas emission in the UK. To mitigate its impact on the environment and move towards net-zero emissions by 2050 hydrogen-fuelled transportation has been explored through research and development as well as trials. This article presents an overview of relevant technologies and issues that challenge the supply use and marketability of hydrogen for transportation application in the UK covering on-road aviation maritime and rail transportation modes. The current development statutes of the different transportation modes were reviewed and compared highlighting similarities and differences in fuel cells internal combustion engines storage technologies supply chains and refuelling characteristics. In addition common and specific future research needs in the short to long term for the different transportation modes were suggested. The findings showed the potential of using hydrogen in all transportation modes although each sector faces different challenges and requires future improvements in performance and cost development of innovative designs refuelling stations standards and codes regulations and policies to support the advancement of the use of hydrogen.
Techno-Economic Assessment of Power-to-Liquids (PtL) Fuels Production and Global Trading Based on Hybrid PV-Wind Power Plants
Nov 2016
Publication
This paper introduces a value chain design for transportation fuels and a respective business case taking into account hybrid PV-Wind power plants electrolysis and hydrogen-to-liquids (H2tL) based on hourly resolved full load hours (FLh). The value chain is based on renewable electricity (RE) converted by power-to-liquids (PtL) facilities into synthetic fuels mainly diesel. Results show that the proposed RE-diesel value chains are competitive for crude oil prices within a minimum price range of about 79 - 135 USD/barrel (0.44 – 0.75 €/l of diesel production cost) depending on the chosen specific value chain and assumptions for cost of capital available oxygen sales and CO2 emission costs. A sensitivity analysis indicates that the RE-PtL value chain needs to be located at the best complementing solar and wind sites in the world combined with a de-risking strategy and a special focus on mid to long-term electrolyser and H2tL efficiency improvements. The substitution of fossil fuels by hybrid PV-Wind power plants could create a PV-wind market potential in the order of terawatts.
Optimal Operation Strategy of PV-Charging-Hydrogenation Composite Energy Station Considering Demand Response
Apr 2023
Publication
Traditional charging stations have a single function which usually does not consider the construction of energy storage facilities and it is difficult to promote the consumption of new energy. With the gradual increase in the number of new energy vehicles (NEVs) to give full play to the complementary advantages of source-load resources and provide safe efficient and economical energy supply services this paper proposes the optimal operation strategy of a PV-charging-hydrogenation composite energy station (CES) that considers demand response (DR). Firstly the operation mode of the CES is analyzed and the CES model including a photovoltaic power generation system fuel cell hydrogen production hydrogen storage hydrogenation and charging is established. The purpose is to provide energy supply services for electric vehicles (EVs) and hydrogen fuel cell vehicles (HFCVs) at the same time. Secondly according to the travel law of EVs and HFCVs the distribution of charging demand and hydrogenation demand at different periods of the day is simulated by the Monte Carlo method. On this basis the following two demand response models are established: charging load demand response based on the price elasticity matrix and interruptible load demand response based on incentives. Finally a multi-objective optimal operation model considering DR is proposed to minimize the comprehensive operating cost and load fluctuation of CES and the maximum–minimum method and analytic hierarchy process (AHP) are used to transform this into a linearly weighted single-objective function which is solved via an improved moth–flame optimization algorithm (IMFO). Through the simulation examples operation results in four different scenarios are obtained. Compared with a situation not considering DR the operation strategy proposed in this paper can reduce the comprehensive operation cost of CES by CNY 1051.5 and reduce the load fluctuation by 17.8% which verifies the effectiveness of the proposed model. In addition the impact of solar radiation and energy recharge demand changes on operations was also studied and the resulting data show that CES operations were more sensitive to energy recharge demand changes.
Scatter Search for Optimal Sizing of a Hybrid Renewable Energy System for Scheduling Green Hydrogen Production
Dec 2024
Publication
At present energy demands are mainly covered by the use of fossil fuels. The process of fossil fuel production increases pollution from oil extraction transport to processing centers treatment to obtain lighter fractions and delivery and use by the final consumers. Such polluting circumstances are aggravated in the case of accidents involving fossil fuels. They are also linked to speculative markets. As a result the trend is towards the decarbonization of lifestyles in advanced societies. The present paper addresses the problem of the optimal sizing of a hybrid renewable energy system for scheduling green hydrogen production. A local system fully powered by renewable energies is designed to obtain hydrogen from seawater. In order to monetize excess energy the grid connection of the system is considered under realistic energy market constraints designing an hourly purchasing strategy. This crucial problem which has not been taken into account in the literature is solved by the specific dispatch strategy designed. Several optimization methods have been used to solve this problem; however the scatter search method has not previously been employed. In this paper the problem is faced with a novel implementation of this method. The implementation is competitive in terms of performance when compared to on the one hand the genetic algorithm and differential evolution methods which are well-known state-of-the-art evolutionary algorithms and on the other hand the optimal foraging algorithm (OFA) a more recent algorithm. Furthermore scatter search outperformed all other methods in terms of computational cost. This is promising for real-world applications that require quick responses.
Decarbonization with Induced Technical Change: Exploring the Niche Potential of Hydrogen in Heavy Transportation
Jan 2024
Publication
Fuel cells and electric batteries are competing technologies for the energy transition in heavy transportation. We explore the conditions for the survival of a unique technology in the long term. Learning by doing suggests focusing on a single technology while differentiation and decreasing return to scale (cost convexity) favor diversification. Exogenous technical change also plays a role. The interaction between these factors is analyzed in a general model. It is proved that in absence of convexity and exogenous technical change only one technology is used for the whole transition. We then apply this framework to analyze the competition between fuel-cell electric buses (FCEBs) and battery electric buses (BEB) in the European bus sector. There are both learning by doing and exogenous technical change. The model is calibrated and solved. It is shown that the existence of a niche for FCEBs critically depends on the speed at which cost reductions are achieved. The speed depends both on the size of the niche and the rate of learning by doing for FCEBs. Public policies to decentralize the socially optimal trajectory in terms of taxes (carbon) and subsidies (learning by doing) are derived.
Assessing Techno-economic Feasibility of Cogeneration and Power to Hydrogen Plants: A Novel Dynamic Simulation Model
Aug 2023
Publication
Green hydrogen technologies are crucial for decarbonization purposes while cogeneration offers efficient heat and power generation. Integrating green hydrogen and cogeneration brings numerous benefits optimizing energy utilization reducing emissions and supporting the transition to a sustainable future. While there are numerous studies examining the integration of combined heat and power with Power to Gas certain aspects still requires a more detailed analysis especially for internal combustion engines fuelled by natural gas due to their widespread adoption as one of the primary technologies in use. Therefore this paper presents a comprehensive numerical 0-D dynamic simulation model implemented within the TRNSYS environment considering internal combustion engines fuelled by natural gas. Specifically the study focuses on capturing CO2 from exhaust gases and producing green hydrogen from electrolysis. Based on these considerations two configurations are proposed: the first involves the methanation reaction while the second entails the production of a hydromethane mixture. The aim is to evaluate the technical and economic feasibility of these configurations and compare their performance within the Power to Gas framework. Self-sufficiency from the national electricity grid has been almost achieved for the two configurations considering an industrial case. The production of hydromethane allows smaller photovoltaic plant (81 kWp) compared to the production of synthetic methane (670 kWp) where a high quantity of hydrogen is required especially if all the carbon dioxide captured is used in the methanation process. Encouraging economic results with payback times below ten years have been obtained with the use of hydromethane. Moreover hydromethane shows potential residential applications with small required photovoltaic sizes.
The Possibility of Powering a Light Aircraft by Releasing the Energy Stored in Hydrogen within a Fuel Cell Stack
Jun 2024
Publication
In this work we examine the possibility of converting a light propeller-driven aircraft powered by a spark-ignition reciprocating piston and internal combustion engine running on AVGAS into one powered by an electric motor driven by a proton exchange membrane fuel cell stack running on hydrogen. Our studies suggest that storing hydrogen cryogenically is a better option than storing hydrogen under pressure. In comparison to cryogenic tanks high-pressure tanks are extremely heavy and unacceptable for light aircraft. We show that the modified aircraft (including batteries) is no heavier than the original and that the layout of the major components results in lower movement of the aircraft center-of-gravity as the aircraft consumes hydrogen. However we acknowledge that our fuel cell aircraft cannot store the same amount of energy as the original running on AVGAS. Therefore despite the fact that the fuel cell stack is markedly more efficient than an internal combustion engine there is a reduction in the range of the fuel cell aircraft. One of our most important findings is that the quantity of energy that we need to dissipate to the surroundings via heat transfer is significantly greater from a fuel cell stack than from an internal combustion engine. This is particularly the case when we attempt to run the fuel cell stack at high current densities. To control this problem our strategy during the cruise phase is to run the fuel cell stack at its maximum efficiency where the current density is low. We size the fuel cell stack to produce at least enough power for cruise and when we require excess power we add the energy stored in batteries to make up the difference.
Renewable Hydrogen in Industrial Production: A Bibliometric Analysis of Current and Future Applications
Dec 2024
Publication
Renewable hydrogen is widely considered a key technology to achieve net zero emissions in industrial production processes. This paper presents a structured bibliometric analysis examining current and future applications of hydrogen as feedstock and fuel across industries quantifying demand for different industrial processes and identifying greenhouse gas emissions reduction potential against the context of current fossil-based practices. The findings highlight significant focus on hydrogen as feedstock for steel ammonia and methanol production and its use in high-to medium-temperature processes and a general emphasis on techno-economic and technological evaluations of hydrogen applications across industries. However gaps exist in research on hydrogen use in sectors like cement glass waste pulp and paper ceramics and aluminum. Additionally the analysis reveals limited attention in the identified literature to hydrogen supply chain efficiencies including conversion and transportation losses as well as geopolitical and raw material challenges. The analysis underscores the need for comprehensive and transparent data to align hydrogen use with decarbonization goals optimize resource allocation and inform policy and investment decisions for strategic deployment of renewable hydrogen.
The Economic Impact and Carbon Footprint Dependence of Energy Management Strategies in Hydrogen-Based Microgrids
Sep 2023
Publication
This paper presents an economic impact analysis and carbon footprint study of a hydrogenbased microgrid. The economic impact is evaluated with respect to investment costs operation and maintenance (O&M) costs as well as savings taking into account two different energy management strategies (EMSs): a hydrogen-based priority strategy and a battery-based priority strategy. The research was carried out in a real microgrid located at the University of Huelva in southwestern Spain. The results (which can be extrapolated to microgrids with a similar architecture) show that although both strategies have the same initial investment costs (EUR 52339.78) at the end of the microgrid lifespan the hydrogen-based strategy requires higher replacement costs (EUR 74177.4 vs. 17537.88) and operation and maintenance costs (EUR 35254.03 vs. 34877.08) however it provides better annual savings (EUR 36753.05 vs. 36282.58) and a lower carbon footprint (98.15% vs. 95.73% CO2 savings) than the battery-based strategy. Furthermore in a scenario where CO2 emission prices are increasing the hydrogen-based strategy will bring even higher annual cost savings in the coming years.
Energy and Greenhouse Gases Life Cycle Assessment of Electric and Hydrogen Buses: A Real-world Case Study in Bolzano Italy
May 2023
Publication
The transportation sector plays an important role in the current effort towards the control of global warming. Against this backdrop electrification is currently attracting attention as the life cycle environmental performance of different powertrain technologies is critically assessed. In this study a life cycle analysis of the public transportation buses was performed. The scope of the analysis is to compare the energy and global warming performances of the different powertrain technologies in the city fleet: diesel full electric and hydrogen buses. Real world monitored data were used in the analysis for the energy consumptions of the buses and to produce hydrogen in Bolzano. Compared to the traditional diesel buses the electric vehicles showed a 43% reduction of the non-renewable primary energy demand and a 33% of the global warming potential even in the worst consequential scenario considered. The switch to hydrogen buses leads to very different environmental figures: from very positive if it contributes to a further penetration of renewable electricity to hardly any difference if hydrogen from steam-methane reforming is used to clearly negative ones (approximately doubling the impacts) if a predominantly fossil electricity mix is used in the electrolysis.
The Use of Hydrogen as Alternative Fuel for Ship Propulsion: A Case Study of Full and Partial Retrofitting of Roll-on/Roll-off Vessels for Short Distance Routes
Oct 2023
Publication
Roll-on/Roll-Off (Ro-Ro) vessels including those without and with passenger accommodation Roll-on/roll-off passenger (Ro-Pax) can be totally or partially retrofitted to reduce the greenhouse gas (GHG) emissions in maritime transport not only during hoteling operation at the dock but also during service. This study is based on data of the vessel routes connecting the Port of Piombino to the Elba Island in Italy. Three retrofitting scenarios have been considered: replacement of the main and auxiliary engines with fuel cells (FC) (full retrofitting) replacement of the auxiliary engines with FCs (partial retrofitting) and replacement of the auxiliary engines with FCs and hoteling only with auxiliary engines for one specific vessel. The amount of hydrogen the filling time and the energy needed for production compression and pre-cooling of hydrogen have been calculated for the different scenarios.
The Role of Electricity-based Hydrogen in the Emerging Power-to-X Economy
Aug 2023
Publication
As energy system research into high shares of renewables has developed so have the perspectives of the fundamental nature of a highly renewable economy. Early energy system transition research suggested that current fossil fuel energy systems would transition to a ‘Hydrogen Economy’ whereas more recent insights suggest that a ‘Power-to-X Economy’ may be a more appropriate term as renewable electricity will become both the most important primary and final energy carrier through various Power-to-X conversion routes across the energy system. This paper provides a detailed overview on research insights of recent years on the core elements of the Power-to-X Economy and the role of hydrogen based on latest research results. These results suggest that by 2050 upwards of 61737 TWhLHV of hydrogen will be required to fully defossilise the global energy-industry system. Hydrogen therefore emerges as a central intermediate energy carrier and its relevance is driven by significant cost reductions in renewable electricity especially of solar photovoltaics and wind power. Efficiency and cost drivers position direct electrification as the primary solution for defossilisation of the global energy-industry system; however electron-to-molecule routes are essential for the large subset of remaining energy-related demands including chemical production marine and aviation fuels and steelmaking.
Design and Optimization of a Type-C Tank for Liquid Hydrogen Marine Transport
May 2023
Publication
As one of the most promising renewable energy sources hydrogen has the excellent environmental benefit of producing zero emissions. A key technical challenge in using hydrogen across sectors is placed on its storage technology. The storage temperature of liquid hydrogen (20 K or 253 C) is close to absolute zero so the storage materials and the insulation layers are subjected to extremely stringent requirements against the cryogenic behaviour of the medium. In this context this research proposed to design a large liquid hydrogen type-C tank with AISI (American Iron and Steel Institution) type 316 L stainless steel as the metal barrier using Vapor-Cooled Shield (VCS) and Rigid Polyurethane Foams (RPF) as the insulation layer. A parametric study on the design of the insulation layer was carried out by establishing a thermodynamic model. The effects of VCS location on heat ingress to the liquid hydrogen transport tank and insulation temperature distribution were investigated and the optimal location of the VCS in the insulation was identified. Research outcomes finally suggest two optimal design schemes: (1) when the thickness of the insulation layer is determined Self-evaporation Vapor-Cooled Shield (SVCS) and Forcedevaporation Vapor-Cooled Shield (FVCS) can reduce heat transfer by 47.84% and 85.86% respectively; (2) when the liquid hydrogen evaporation capacity is determined SVCS and FVCS can reduce the thickness of the insulation layer by 50% and 67.93% respectively.
A Web-based Decision Support System (DSS) for Hydrogen Refueling Station Location and Supply Chain Optimisation
Jun 2023
Publication
This study presents a novel web-based decision support system (DSS) that optimizes the locations of hydrogen refueling stations (HRSs) and hydrogen supply chains (HSCs). The system is developed with a design science approach that identifies key design requirements and features through interviews and literature reviews. Based on the findings a system architecture and data model were designed incorporating scenario management optimization model visualization and data management components. The DSS provides a two-stage solution model that links demand to HRSs and production facilities to HRSs. A prototype is demonstrated with a plan for 2025 and 2030 in the Republic of Korea where 450 to 660 stations were deployed nationwide and linked to production facilities. User evaluation confirmed the effectiveness of the DSS in solving optimization problems and its potential to assist the government and municipalities in planning hydrogen infrastructure.
Inter-Zone Optimal Scheduling of Rural Wind–Biomass-Hydrogen Integrated Energy System
Aug 2023
Publication
To solve the problems of low utilization of biomass and uncertainty and intermittency of wind power (WP) in rural winter an interval optimization model of a rural integrated energy system with biogas fermentation and electrolytic hydrogen production is constructed in this paper. Firstly a biogas fermentation kinetic model and a biogas hydrogen blending model are developed. Secondly the interval number is used to describe the uncertainty of WP and an interval optimization scheduling model is developed to minimize daily operating cost. Finally a rural integrated energy system in Northeast China is taken as an example and a sensitivity analysis of electricity price gas production and biomass price is conducted. The simulation results show that the proposed strategy can significantly reduce the wind abandonment rate and improve the economy by 3.8–22.3% compared with conventional energy storage under optimal dispatch.
No more items...