Applications & Pathways
Hydrogen Refueling Stations: A Review of the Technology Involved from Key Energy Consumption Processes to Related Energy Management Strategies
Sep 2024
Publication
Over the last few years hydrogen has emerged as a promising solution for problems related to energy sources and pollution concerns. The integration of hydrogen in the transport sector is one of the possible various applications and involves the implementation of hydrogen refueling stations (HRSs). A key obstacle for HRS deployment in addition to the need for well-developed technologies is the economic factor since these infrastructures require high capital investments costs and are largely dependent on annual operating costs. In this study we review hydrogen’s application as a fuel summarizing the principal systems involved in HRS from production to the final refueling stage. In addition we also analyze the main equipment involved in the production compression and storage processes of hydrogen. The current work also highlights the main refueling processes that impact energy consumption and the methodologies presented in the literature for energy management strategies in HRSs. With the aim of reducing energy costs due to processes that require high energy consumption most energy management strategies are based on the use of renewable energy sources in addition to the use of the power grid.
Hierarchical Model Predictive Control for Islanded and Grid-connected Microgrids with Wind Generation and Hydrogen Energy Storage Systems
Aug 2023
Publication
This paper presents a novel energy management strategy (EMS) to control a wind-hydrogen microgrid which includes a wind turbine paired with a hydrogen-based energy storage system (HESS) i.e. hydrogen production storage and re-electrification facilities and a local load. This complies with the mini-grid use case as per the IEA-HIA Task 24 Final Report where three different use cases and configurations of wind farms paired with HESS are proposed in order to promote the integration of wind energy into the grid. Hydrogen production surpluses by wind generation are stored and used to provide a demand-side management solution for energy supply to the local and contractual loads both in the grid-islanded and connected modes with corresponding different control objectives. The EMS is based on a hierarchical model predictive control (MPC) in which long-term and short-term operations are addressed. The long-term operations are managed by a high-level MPC in which power production by wind generation and load demand forecasts are considered in combination with day-ahead market participation. Accordingly the hydrogen production and re-electrification are scheduled so as to jointly track the load demand maximize the revenue through electricity market participation and minimize the HESS operating costs. Instead the management of the short-term operations is entrusted to a low-level MPC which compensates for any deviations of the actual conditions from the forecasts and refines the power production so as to address the real-time market participation and the short time-scale equipment dynamics and constraints. Both levels also take into account operation requirements and devices’ operating ranges through appropriate constraints. The mathematical modeling relies on the mixed-logic dynamic (MLD) framework so that the various logic states and corresponding continuous dynamics of the HESS are considered. This results in a mixed-integer linear program which is solved numerically. The effectiveness of the controller is analyzed by simulations which are carried out using wind forecasts and spot prices of a wind farm in center-south of Italy.
The Environmental Impacts of Future Global Sales of Hydrogen Fuel Cell Vehicles
Oct 2024
Publication
During the last decade developing more sustainable transportation modes has become a primary objective for car manufacturers and governments around the world to mitigate environmental issues such as climate change the continuous increase in greenhouse gas (GHG) emissions and energy depletion. The use of hydrogen fuel cell technology as a source of energy in electric vehicles is considered an emerging and promising technology that could contribute significantly to addressing these environmental issues. In this study the effects of Hydrogen Fuel Cell Battery Electric Vehicles (HFCBEVs) on global GHG emissions compared to other technologies such as BEVs were determined based on different relevant factors such as predicted sales for 2050 (the result of the developed prediction model) estimated daily traveling distance estimated future average global electricity emission factors future average Battery Electric Vehicle (BEV) emission factors future global hydrogen production emission factors and future average HFCBEV emission factors. As a result the annual GHG emissions produced by passenger cars that are expected to be sold in 2050 were determined by considering BEV sales in the first scenario and HFCBEV replacement in the second scenario. The results indicate that the environmental benefits of HFCBEVs are expected to increase over time compared to those of BEVs due to the eco-friendly methods that are expected to be used in hydrogen production in the future. For instance in 2021 HFCBEVs could produce more GHG emissions than BEVs by 54.9% per km of travel whereas in 2050 BEVs could produce more GHG emissions than HFCBEVs by 225% per km of travel.
Potentials of Green Hydrogen Production in P2G Systems Based on FPV Installations Deployed on Pit Lakes in Former Mining Sites by 2050 in Poland
Sep 2024
Publication
Green hydrogen production is expected to play a major role in the context of the shift towards sustainable energy stipulated in the Fit for 55 package. Green hydrogen and its derivatives have the capacity to act as effective energy storage vectors while fuel cell-powered vehicles will foster net-zero emission mobility. This study evaluates the potential of green hydrogen production in Power-to-Gas (P2G) systems operated in former mining sites where sand and gravel aggregate has been extracted from lakes and rivers under wet conditions (below the water table). The potential of hydrogen production was assessed for the selected administrative unit in Poland the West Pomerania province. Attention is given to the legal and organisational aspects of operating mining companies to identify the sites suitable for the installation of floating photovoltaic facilities by 2050. The method relies on the use of GIS tools which utilise geospatial data to identify potential sites for investments. Basing on the geospatial model and considering technical and organisational constraints the schedule was developed showing the potential availability of the site over time. Knowing the surface area of the water reservoir the installed power of the floating photovoltaic plant and the production capacity of the power generation facility and electrolysers the capacity of hydrogen production in the P2G system can be evaluated. It appears that by 2050 it should be feasible to produce green fuel in the P2G system to support a fleet of city buses for two of the largest urban agglomerations in the West Pomerania province. Simulations revealed that with a water coverage ratio increase and the planned growth of green hydrogen generation it should be feasible to produce fuel for net-zero emission urban mobility systems to power 200 buses by 2030 550 buses by 2040 and 900 buses by 2050 (for the bus models Maxi (40 seats) and Mega (60 seats)). The results of the research can significantly contribute to the development of projects focused on the production of green hydrogen in a decentralised system. The disclosure of potential and available locations over time can be compared with competitive solutions in terms of spatial planning environmental and societal impact and the economics of the undertaking.
Comparison of Battery Electric Vehicles and Fuel Cell Vehicles
Sep 2023
Publication
In the current context of the ban on fossil fuel vehicles (diesel and petrol) adopted by several European cities the question arises of the development of the infrastructure for the distribution of alternative energies namely hydrogen (for fuel cell electric vehicles) and electricity (for battery electric vehicles). First we compare the main advantages/constraints of the two alternative propulsion modes for the user. The main advantages of hydrogen vehicles are autonomy and fast recharging. The main advantages of battery-powered vehicles are the lower price and the wide availability of the electricity grid. We then review the existing studies on the deployment of new hydrogen distribution networks and compare the deployment costs of hydrogen and electricity distribution networks. Finally we conclude with some personal conclusions on the benefits of developing both modes and ideas for future studies on the subject.
Review of Hydrogen-Driven Power-to-X Technology and Application Status in China
Jul 2024
Publication
Given China’s ambition to realize carbon peak by 2030 and carbon neutralization by 2060 hydrogen is gradually becoming the pivotal energy source for the needs of energy structure optimization and energy system transformation. Thus hydrogen combined with renewable energy has received more and more attention. Nowadays power-to-hydrogen power-to-methanol and power-to-ammonia are regarded as the most promising three hydrogen-driven power-to-X technologies due to the many commercial or demonstration projects in China. In this paper these three hydrogen-driven power-to-X technologies and their application status in China are introduced and discussed. First a general introduction of hydrogen energy policies in China is summarized and then the basic principles technical characteristics trends and challenges of the three hydrogen-driven power-to-X technologies are reviewed. Finally several typical commercial or demonstration projects are selected and discussed in detail to illustrate the development of the power-to-X technologies in China.
Alternative Fuels in Sustainable Logistics—Applications, Challenges, and Solutions
Sep 2024
Publication
Logistics is becoming more cost competitive while customers and regulatory bodies pressure businesses to disclose their carbon footprints creating interest in alternative fuels as a decarbonization strategy. This paper provides a thematic review of the role of alternative fuels in sustainable air land and sea logistics their challenges and potential mitigations. Through an extensive literature survey we determined that biofuels synthetic kerosene natural gas ammonia alcohols hydrogen and electricity are the primary alternative fuels of interest in terms of environmental sustainability and techno-economic feasibility. In air logistics synthetic kerosene from hydrogenated esters and fatty acids is the most promising route due to its high technical maturity although it is limited by biomass sourcing. Electrical vehicles are favorable in road logistics due to cheaper green power and efficient vehicle designs although they are constrained by recharging infrastructure deployment. In sea logistics liquified natural gas is advantageous owing to its supply chain maturity but it is limited by methane slip control and storage requirements. Overall our examination indicates that alternative fuels will play a pivotal role in the logistics networks of the future.
Analysis of a Distributed Green Hydrogen Infrastructure Designed to Support the Sustainable Mobility of a Heavy-duty Fleet
Aug 2023
Publication
Clean hydrogen is a key pillar for the net zero economy which can be deployed by consistent utilization on heavy-duty transport. This study investigates a distributed green hydrogen infrastructure (DHI) for heavy-duty transportation consisting of on-site hydrogen production storage compression and refueling systems in Italy. Two options for energy supply are analyzed: grid connection using green energy via Power Purchasing Agreements (PPAs) and direct connection to the photovoltaic field respectively. Radiation data are representative of the three main Italian areas namely South (Catania) Center (Roma) and North (Milano). The sensitivity analysis varies the PPA value between 50 V/MWh and 200 V/MWh and the water electrolysis capacity factor between 20% and 100%. The study finds that the LCOH ranges from 7.4 V/kgH2 to 67.8 V/kgH2 for the first option and 5.5 V/kgH2 to 27.5 V/kgH2 for the second option with Southern Italy having the lowest LCOH due to higher solar irradiation. The research shows that a DHI can offer economic and technical benefits for heavy-duty mobility. However the performance is highly influenced by external conditions such as hydrogen demand and electricity prices. This study provides valuable insights into designing and operating a DHI for heavy-duty mobility promoting a carbon-free society.
Multiphysics Performance Assessment of Hydrogen Fuelled Engines
Sep 2023
Publication
In the quest for decarbonisation alternative clean fuels for propulsion systems are sought. There is definite advantage in retaining the well-established principles of operation of combustion engines at the core of future developments with hydrogen as a fuel. Hydrogen is envisaged as a clean source of energy for propulsion of heavy and off-road vehicles as well as in marine and construction sectors. A source of concern is the unexplored effect of hydrogen combustion on dilution and degradation of engine lubricants and their additives and consequently upon tribology of engine contact conjunctions. These potential problems can adversely affect engine efficiency durability and operational integrity. Use of different fuels and their method of delivery produces distinctive combustion characteristics that can affect the energy losses associated with in-cylinder components and their durability. Therefore detailed predictive analysis should support the developments of such new generation of eco-friendly engines. Different fundamental physics underpin the various aspects of a pertinent detailed analysis. These include thermodynamics of combustion in-cylinder tribological interactions of contacting surfaces and blowby of generated gasses. This paper presents such an integrated multi-physics analysis of internal combustion engines with focus on hydrogen as the fuel. Such an in-depth and computationally efficient analysis has not hitherto been reported in the literature. The results show implications for lubricant degradation due to the use of hydrogen in the performance of in-cylinder components and the underlying physical principles.
Heat Integration of Liquid Hydrogen-Fueled Hybrid Electric Ship Propulsion System
Nov 2023
Publication
This study introduced the methodology for integrating ethylene glycol/water mixture (GW) systems which supply heat energy to the liquid hydrogen (LH2 ) fuel gas supply system (FGSS) and manage the temperature conditions of the battery system. All systems were designed and simulated based on the power demand of a 2 MW class platform supply vessel assumed as the target ship. The LH2 FGSS model is based on Aspen HYSYS V14 and the cell model that makes up the battery system is implemented based on a Thevenin model with four parameters. Through three different simulation cases the integrated GW system significantly reduced electric power consumption for the GW heater during ship operations achieving reductions of 1.38% (Case 1) 16.29% (Case 2) and 27.52% (Case 3). The energy-saving ratio showed decreases of 1.86% (Case 1) 21.01% (Case 2) and 33.80% (Case 3) in overall energy usage within the GW system. Furthermore an examination of the battery system’s thermal management in the integrated GW system demonstrated stable cell temperature control within ±3 K of the target temperature making this integration a viable solution for maintaining normal operating temperatures despite relatively higher fluctuations compared to an independent GW system.
Emission Reduction and Cost-benefit Analysis of the Use of Ammonia and Green Hydrogen as Fuel for Marine Applications
Dec 2023
Publication
Increasingly stringent emission standards have led shippers and port operators to consider alternative energy sources which can reduce emissions while minimizing capital investment. It is essential to understand whether there is a certain economic investment gap for alternative energy. The present work mainly focuses on the simulation study of ships using ammonia and hydrogen fuels arriving at Guangzhou Port to investigate the emission advantages and cost-benefit analysis of ammonia and hydrogen as alternative fuels. By collecting actual data and fuel consumption emissions of ships arriving at Guangzhou Port the present study calculated the pollutant emissions and cost of ammonia and hydrogen fuels substitution. As expected it is shown that with the increase of NH3 in fuel mixed fuels will effectively reduce CO and CO2 emissions. Compared to conventional fuel the injection of NH3 increases the NOx emission. However the cost savings of ammonia fuel for CO2 SOx and PM10 reduction are higher than that for NOx. In terms of pollutants ammonia is less expensive than conventional fuels when applied to the Guangzhou Port. However the cost of fuel supply is still higher than conventional energy as ammonia has not yet formed a complete fuel supply and storage system for ships. On the other hand hydrogen is quite expensive to store and transport resulting in higher overall costs than ammonia and conventional fuels even if no pollutants are produced. At present conventional fuels still have advantage in terms of cost. With the promotion of ammonia fuel technology and application the cost of supply will be reduced. It is predicted that by 2035 ammonia will not only have emission reduction benefits but also will have a lower overall economic cost than conventional fuels. Hydrogen energy will need longer development and technological breakthroughs due to the limitation of storage conditions.
Greenhouse Gas Emissions Performance of Electric, Hydrogen and Fossil-Fuelled Freight Trucks with Uncertainty Estimates Using a Probabilistic Life-Cycle Assessment (pLCA)
Jan 2024
Publication
This research conducted a probabilistic life-cycle assessment (pLCA) into the greenhouse gas (GHG) emissions performance of nine combinations of truck size and powertrain technology for a recent past and a future (largely decarbonised) situation in Australia. This study finds that the relative and absolute life-cycle GHG emissions performance strongly depends on the vehicle class powertrain and year of assessment. Life-cycle emission factor distributions vary substantially in their magnitude range and shape. Diesel trucks had lower life-cycle GHG emissions in 2019 than electric trucks (battery hydrogen fuel cell) mainly due to the high carbon-emission intensity of the Australian electricity grid (mainly coal) and hydrogen production (mainly through steam–methane reforming). The picture is however very different for a more decarbonised situation where battery electric trucks in particular provide deep reductions (about 75–85%) in life-cycle GHG emissions. Fuel-cell electric (hydrogen) trucks also provide substantial reductions (about 50–70%) but not as deep as those for battery electric trucks. Moreover hydrogen trucks exhibit the largest uncertainty in emissions performance which reflects the uncertainty and general lack of information for this technology. They therefore carry an elevated risk of not achieving the expected emission reductions. Battery electric trucks show the smallest (absolute) uncertainty which suggests that these trucks are expected to deliver the deepest and most robust emission reductions. Operational emissions (on-road driving and vehicle maintenance combined) dominate life-cycle emissions for all vehicle classes. Vehicle manufacturing and upstream emissions make a relatively small contribution to life-cycle emissions from diesel trucks (
Comparative Analysis of Marine Alternative Fuels for Offshore Supply Vessels
Nov 2024
Publication
This paper provides an in-depth analysis of alternative fuels including liquefied natural gas (LNG) hydrogen ammonia and biofuels assessing their feasibility based on operational requirements availability safety concerns and the infrastructure needed for large-scale adoption. Moreover it examines hybrid and fully electric propulsion systems considering advancements in battery technology and the integration of renewable energy sources such as wind and solar power to further reduce SOV emissions. Key findings from this research indicate that LNG serves as a viable short- to medium-term solution for reducing GHG emissions in the SOV sector due to its relatively lower carbon content compared to MDO and HFO. This paper finally insists that while LNG presents an immediate opportunity for emission reduction in the SOV sector a combination of hydrogen ammonia and hybrid propulsion systems will be necessary to meet long-term decarbonisation goals. The findings underscore the importance of coordinated industry efforts technological innovation and supportive regulatory frameworks to overcome the technical economic and infrastructural challenges associated with decarbonising the maritime industry.
Batteries or Hydrogen or Both for Grid Electricity Storage Upon Full Electrification of 145 Countries with Wind-Water-Solar?
Jan 2024
Publication
Grids require electricity storage. Two emerging storage technologies are battery storage (BS) and green hydrogen storage (GHS) (hydrogen produced and compressed with clean-renewable electricity stored then returned to electricity with a fuel cell). An important question is whether GHS alone decreases system cost versus BS alone or BS+GHS. Here energy costs are modeled in 145 countries grouped into 24 regions. Existing conventional hydropower (CH) storage is used along with new BS and/or GHS. A method is developed to treat CH for both baseload and peaking power. In four regions only CH is needed. In five CH+BS is lowest cost. Otherwise CH+BS+GHS is lowest cost. CH+GHS is never lowest cost. A metric helps estimate whether combining GHS with BS reduces cost. In most regions merging (versus separating) grid and non-grid hydrogen infrastructure reduces cost. In sum worldwide grid stability may be possible with CH+BS or CH+BS+GHS. Results are subject to uncertainties.
Literature Review on Life Cycle Assessment of Transportation Alternative Fuels
Aug 2023
Publication
Environmental concerns such as global warming and human health damage are intensifying and the transportation sector significantly contributes to carbon and harmful emissions. This review examines the life cycle assessment (LCA) of alternative fuels (AF) evaluating current research on fuel types LCA framework development life cycle inventory (LCI) and impact selection. The objectives of this paper are: (1) to compare various AF LCA frameworks and develop a comprehensive framework for the transportation sector; (2) to identify emission hotspots of different AFs through simulations and real-world cases; (3) to review AF LCA research; (4) to extract valuable information for potential future research directions. The analysis reveals that all stages except for hydrogen use have an environmental impact. LCA boundaries and LCIs vary considerably depending on the raw materials production processes and products involved leading to different emission hotspots. Due to knowledge or data limitations some stages remain uncalculated in the current study emphasizing the need for further refinement of the AF LCI. Future research should also explore the various impacts of widespread adoption of alternative fuels in transportation encompassing social economic and environmental aspects. Lastly the review provides structured recommendations for future research directions.
Comparative Study of Electric and Hydrogen Mobility Infrastructures for Sustainable Public Transport: A PyPSA Optimization for a Remote Island Context
Jul 2024
Publication
Decarbonizing road transportation is vital for addressing climate change given that the sector currently contributes to 16% of global GHG emissions. This paper presents a comparative analysis of electric and hydrogen mobility infrastructures in a remote context i.e. an off-grid island. The assessment includes resource assessment and sizing of renewable energy power plants to facilitate on-site self-production. We introduce a comprehensive methodology for sizing the overall infrastructure and carry out a set of techno-economic simulations to optimize both energy performance and cost-effectiveness. The levelized cost of driving at the hydrogen refueling station is 0.40 e/km i.e. 20% lower than the electric charging station. However when considering the total annualized cost the battery-electric scenario (110 ke/year) is more favorable compared to the hydrogen scenario (170 ke/year). To facilitate informed decision-making we employ a multi-criteria decision-making analysis to navigate through the techno-economic findings. When considering a combination of economic and environmental criteria the hydrogen mobility infrastructure emerges as the preferred solution. However when energy efficiency is taken into account electric mobility proves to be more advantageous.
Toward Green Steel: Modelling and Environmental Economic Analysis of Iron Direct Reduction with Different Reducing Gases
Sep 2023
Publication
The objective of the paper is to simulate the whole steelmaking process cycle based on Direct Reduced Iron and Electric Arc Furnace technologies by modeling for the first time the reduction furnace based on kinetic approach to be used as a basis for the environmental and techno-economic plant analysis by adopting different reducing gases. In addition the impact of carbon capture section is discussed. A complete profitability analysis has been conducted for the first time adopting a Monte Carlo simulation approach.<br/>In detail the use of syngas from methane reforming syngas and hydrogen from gasification of municipal solid waste and green hydrogen from water electrolysis are analyzed. The results show that the Direct Reduced Iron process with methane can reduce CO2 emissions by more than half compared to the blast furnace based-cycle and with the adoption of carbon capture greenhouse gas emissions can be reduced by an additional 40%. The use of carbon capture by amine scrubbing has a limited economic disadvantage compared to the scenario without it becoming profitable once carbon tax is included in the analysis. However it is with the use of green hydrogen from electrolyzer that greenhouse gas emissions can be cut down almost completely. To have an environmental benefit compared with the methane-based Direct Reduced Iron process the green hydrogen plant must operate for at least 5136 h per year (64.2% of the plant's annual operating hours) on renewable energy.<br/>In addition the use of syngas and separated hydrogen from municipal solid waste gasification is evaluated demonstrating its possible use with no negative effects on the quality of produced steel. The results show that hydrogen use from waste gasification is more economic with respect to green hydrogen from electrolysis but from the environmental viewpoint the latter results the best alternative. Comparing the use of hydrogen and syngas from waste gasification it can be stated that the use of the former reducing gas results preferable from both the economic and environmental viewpoint.
Opportunities and Challenges of Hydrogen Ports: An Empirical Study in Australia and Japan
Jul 2024
Publication
This paper investigated the opportunities and challenges of integrating ports into hydrogen (H2 ) supply chains in the context of Australia and Japan because they are leading countries in the field and are potential leaders in the upcoming large-scale H2 trade. Qualitative interviews were conducted in the two countries to identify opportunities for H2 ports necessary infrastructure and facilities key factors for operations and challenges associated with the ports’ development followed by an online survey investigating the readiness levels of H2 export and import ports. The findings reveal that there are significant opportunities for both countries’ H2 ports and their respective regions which encompass business transition processes and decarbonisation. However the ports face challenges in areas including infrastructure training standards and social licence and the sufficiency and readiness levels of port infrastructure and other critical factors are low. Recommendations were proposed to address the challenges and barriers encountered by H2 ports. To optimise logistics operations within H2 ports and facilitate effective integration of H2 applications this paper developed a user-oriented working process framework to provide guidance to ports seeking to engage in the H2 economy. Its findings and recommendations contribute to filling the existing knowledge gap pertaining to H2 ports.
Explainable Prognostics-optimization of Hydrogen Carrier Biogas Engines in an Integrated Energy System using a Hybrid Game-theoretic Approach with XGBoost and Statistical Methods
Jul 2025
Publication
Biogas is a renewable fuel source that helps the circular economy by turning organic waste into energy. This study tackles existing research gaps by exploring the use of biogas as a hydrogen carrier in dual-fuel engine systems. It additionally employs explainable machine learning techniques for predictive modelling and interpretive analysis. The dual-fuel engine was powered with biogas as main fuel while biodiesel-diesel blend was used as pilot fuel. The engine was tested at different Compression Ratios (CR) and Brake Powers (BP). The generated data from testing was used to develop the mathematical models and parametric optimization of engine performance and emissions using Response Surface Methodology (RSM). Desirability-based optimization identified optimal results: a Peak Cylinder Pressure (Pmax) of 54.97 bar and a brake thermal efficiency (BTE) of 24.35 % achieved at a CR of 18.3 and a BP of 3.3 kW. The predictive machine learning approach Extreme Gradient Boosting (XGBoost) was employed to develop predictive models. XGBoost precisely forecasted engine performance and emissions with Coefficient of Determination (R2 ) values (up to 0.9960) and minimal Mean Absolute Percentage Error (MAPE) values (1.47–4.89 %) for all parameters. SHapley Additive exPlanations (SHAP) based analysis identified BP as the predominant feature with a normalized importance score reaching up to 0.9 surpassing that of CR. These findings underscore the potential of biogas as a viable sustainable fuel and highlight the role of explainable prediction–optimization frameworks can play in achieving optimal engine performance and emission control.
Thermal Design of a System for Mobile Powersupply
Sep 2023
Publication
Ever more stringent emission regulations for vehicles encourage increasing numbers of battery electric vehicles on the roads. A drawback of storing electric energy in a battery is the comparable low energy density low driving range and the higher propensity to deplete the energy storage before reaching the destination especially at low ambient temperatures. When the battery is depleted stranded vehicles can either be towed or recharged with a mobile recharging station. Several technologies of mobile recharging stations already exist however most of them use fossil fuels to recharge battery electric vehicles. The proposed novel zero emission solution for mobile charging is a combined high voltage battery and hydrogen fuel cell charging station. Due to the thermal characteristics of the fuel cell and high voltage battery (which allow only comparable low coolant temperatures) the thermal design for this specific application (available heat exchanger area zero vehicle speed air flow direction) becomes challenging and is addressed in this work. Experimental methods were used to obtain reliable thermal and electric power measurement data of a 30 kW fuel cell system which is used in the Mobile Hydrogen Powersupply. Subsequently simulation methods were applied for the thermal design and optimisation of the coolant circuits and heat exchangers. It is shown that an battery electric vehicle charging power of 22 kW requires a heat exchanger area of 1 m2 of which 60 % is used by the fuel cell heat exchanger and the remainder by the battery heat exchanger to achieve steady state operation at the highest possible ambient temperature of 436 °C. Furthermore the simulation showed that when the charging power of 22 kW is solely provided by the high voltage battery the highest possible ambient temperature is 42 °C. When the charging power is decreased operation up to the maximum ambient temperatures of 45 °C can be achieved. The results of maximum charging power and limiting ambient temperature give insights for further system improvements which are: sizing of fuel cell or battery trailer design and heat exchanger area operation strategy of the system (power split between high voltage battery and fuel cell) as well as possible dynamic operation scenarios.
No more items...