Policy & Socio-Economics
Energy Sustainability: A Pragmatic Approach and Illustrations
Mar 2009
Publication
Many factors to be appropriately addressed in moving towards energy sustainability are examined. These include harnessing sustainable energy sources utilizing sustainable energy carriers increasing efficiency reducing environmental impact and improving socioeconomic acceptability. The latter factor includes community involvement and social acceptability economic affordability and equity lifestyles land use and aesthetics. Numerous illustrations demonstrate measures consistent with the approach put forward and options for energy sustainability and the broader objective of sustainability. Energy sustainability is of great importance to overall sustainability given the pervasiveness of energy use its importance in economic development and living standards and its impact on the environment.
Hydrogen Europe Podcast: The Commision's Support to the Hydrogen Ecosystem
Jul 2022
Publication
In this episode titled "The Commission's support to the hydrogen ecosystem" our CEO Jorgo Chatzimarkakis discusses with Rosalinde van der Vlies Clean Planet Director DG RTD - European Commission. Starting off on how Rosalinde joined the Commission the two speakers discuss the Commission's support in developing a hydrogen ecosystem also in light of its participation in the Clean Hydrogen Partnership and the implications arising from the REPowerEU.
Feasibility Analysis of Green Hydrogen Production from Wind
May 2023
Publication
Renewable hydrogen production has an important role in global decarbonization. However when coupled with intermittent and variable sources such as wind or PV electrolyzers are subjected to part-load and dynamic operation. This can lead to low utilization factors and faster degradation of the electrolyzers and affect the specific hydrogen cost. The design and sizing of such electrolysis systems are fundamental to minimize costs. In this study several configurations of an electrolysis system producing green hydrogen from a 39 MWwind farm are compared. The effects of both the size of the plant and the number of separated groups into which it is divided are investigated. Dividing the plant into two separated groups resulted to be enough to increase hydrogen production; a further increase in the number of groups didn't produce significant differences. The most profitable configurations resulted that with one or two groups depending on the hydrogen selling price.
Hydrogen Europe Podcast: Wind and Hydrogen - Delivering REPower EU
Jun 2022
Publication
In this episode of Hydrogen Europe's podcast "Hydrogen the first element" our CEO Jorgo Chatzimarkakis discusses with Wind Europe's CEO Giles Dickson. Starting off on how Giles joined Wind Europe the two CEOs discuss the responsibilities their industries have in the new energy strategy set in the REPowerEU as well as the fruitful synergies between hydrogen and wind.
Transition to a Hydrogen-Based Economy: Possibilities and Challenges
Nov 2022
Publication
Across the globe energy production and usage cause the greatest greenhouse gas (GHG) emissions which are the key driver of climate change. Therefore countries around the world are aggressively striving to convert to a clean energy regime by altering the ways and means of energy production. Hydrogen is a frontrunner in the race to net-zero carbon because it can be produced using a diversity of feedstocks has versatile use cases and can help ensure energy security. While most current hydrogen production is highly carbon-intensive advances in carbon capture renewable energy generation and electrolysis technologies could help drive the production of low-carbon hydrogen. However significant challenges such as the high cost of production a relatively small market size and inadequate infrastructure need to be addressed before the transition to a hydrogen-based economy can be made. This review presents the state of hydrogen demand challenges in scaling up low-carbon hydrogen possible solutions for a speedy transition and a potential course of action for nations.
Renewable Energy Potentials and Roadmap in Brazil, Austria, and Germany
Mar 2024
Publication
The emerging energy transition is particularly described as a move towards a cleaner lower-carbon system. In the context of the global shift towards sustainable energy sources this paper reviews the potential and roadmap for hydrogen energy as a crucial component of the clean energy landscape. The primary objective is to present a comprehensive literature overview illuminating key themes trends and research gaps in the scientific discourse concerning hydrogen production and energy policy. This review focuses particularly on specified geographic contexts with an emphasis on understanding the unique energy policies related to renewable energy in Brazil Austria and Germany. Given their distinct social systems and developmental stages this paper aims to delineate the nuanced approaches these countries adopt in their pursuit of renewable energy and the integration of hydrogen within their energy frameworks. Brazil exhibits vast renewable energy potential particularly in wind and solar energy sectors positioning itself for substantial growth in the coming years. Germany showcases a regulatory framework that promotes innovation and technological expansion reflecting its highly developed social system and commitment to transitioning away from fossil fuels. Austria demonstrates dedication to decarbonization particularly through the exploration of biomethane for residential heating and cooling.
What Can Accelerate Technological Convergence of Hydrogen Energy: A Regional Perspective
Jun 2023
Publication
Focusing on technological innovation and convergence is crucial for utilizing hydrogen energy an emerging infrastructure area. This research paper analyzes the extent of technological capabilities in a region that could accelerate the occurrence of technological convergence in the fields related to hydrogen energy through the use of triadic patents their citation information and their regional information. The results of the Bayesian spatial model indicate that the active exchange of diverse original technologies could facilitate technological convergence in the region. On the other hand it is difficult to achieve regional convergence with regard to radical technology. The findings could shed light on the establishment of an R&D strategy for hydrogen technologies. This study could contribute to the dissemination and utilization of hydrogen technologies for sustainable industrial development.
Economic Feasibility of Green Hydrogen in Providing Flexibility to Medium-voltage Distribution Grids in the Presence of Local-heat Systems
Nov 2022
Publication
The recent strong increase in the penetration of renewable energy sources (RESs) in medium-voltage distribution grids (MVDNs) has raised the need for congestion management in such grids as they were not designed for this new condition. This paper examines to what extent producing green hydrogen through electrolyzers can profitably contribute to congestion alleviation in MVDNs in the presence of high amounts of RES as well as flexible consumers of electricity and a local heat system. To address this issue an incentive-based method for improving flexibility in MVDNs is used which is based on a single-leader–multiple-followers game formulated by bi-level mathematical programming. At the upper level the distribution system operator who is the leader of this game determines dynamic prices as incentives at each node based on the levels of generation and load. Next at the lower level providers of flexibility including producers using electrolyzers price-responsive power consumers heat consumers as well as heat producers respond to these incentives by reshaping their output and consumption patterns. The model is applied to a region in the North of The Netherlands. The obtained results demonstrate that converting power to hydrogen can be an economically efficient way to reduce congestion in MVDNs when there is a high amount of RES. However the economic value of electrolyzers as providers of flexibility to MVDNs decreases when more other options for flexibility provision exist.
Potential of Producing Green Hydrogen in Jordan
Nov 2022
Publication
Green hydrogen is becoming an increasingly important energy supply source worldwide. The great potential for the use of hydrogen as a sustainable energy source makes it an attractive energy carrier. In this paper we discuss the potential of producing green hydrogen in Jordan. Aqaba located in the south of Jordan was selected to study the potential for producing green hydrogen due to its proximity to a water source (i.e. the Red Sea). Two models were created for two electrolyzer types using MATLAB. The investigated electrolyzers were alkaline water (ALK) and polymeric electrolyte membrane (PEM) electrolyzers. The first model was used to compare the required capacity of the PV solar system using ALK and PEM from 2022 to 2025 depending on the learning curves for the development of these technologies. In addition this model was used to predict the total investment costs for the investigated electrolyzers. Then a techno-economic model was constructed to predict the feasibility of using this technology by comparing the use of a PV system and grid electricity as sources for the production of hydrogen. The net present value (NPV) and levelized cost of hydrogen (LCOH) were used as indicators for both models. The environmental effect according to the reduction of CO2 emissions was also taken into account. The annual production of hydrogen was 70.956 million kg. The rate of hydrogen production was 19.3 kg/s and 1783 kg/s for ALK and PEM electrolyzers respectively. The LCOH was 4.42 USD/kg and 3.13 USD/kg when applying electricity from the grid and generated by the PV system respectively. The payback period to cover the capital cost of the PV system was 11 years of the project life with a NPV of USD 441.95 million. Moreover CO2 emissions can be reduced by 3042 tons/year by using the PV as a generation source instead of fossil fuels to generate electricity. The annual savings with respect to the reduction of CO2 emissions was USD 120135.
Everything About Hydrogen Podcast: Manufacturing the Components of a Hydrogen Economy
Dec 2022
Publication
On today’s episode Alicia Chris and Patrick are chatting with Vonjy Rakajoba UK Managing Director at Robert Bosch. The Bosch Group is a leading global supplier of technology and services and employs roughly 402600 associates worldwide. Its operations are divided into four business sectors: Mobility Solutions Industrial Technology Consumer Goods and Energy and Building Technology. Bosch believes that hydrogen has a bright future as an energy carrier and is making considerable upfront investments in this area. From 2021 to 2024 the company plans to invest around 600 million euros in mobile fuel-cell applications and a further 400 million euros in stationary ones for the generation of electricity and heat. Vonjy is here with us to discuss more about what Bosch’s expansion into the hydrogen energy sector will look like and how the company expects the market to grow moving forward.
The podcast can be found on their website.
The podcast can be found on their website.
Spatiotemporal Analysis of Hydrogen Requirement to Minimize Seasonal Variability in Future Solar and Wind Energy in South Korea
Nov 2022
Publication
Renewable energy supply is essential for carbon neutrality; however technologies aiming to optimally utilize renewable energy sources remain insufficient. Seasonal variability in renewable energy is a key issue which many studies have attempted to overcome through operating systems and energy storage. Currently hydrogen is the only technology that can solve this seasonal storage problem. In this study the amount of hydrogen required to circumvent the seasonal variability in renewable energy supply in Korea was quantified. Spatiotemporal analysis was conducted using renewable energy resource maps and power loads. It was predicted that 50% of the total power demand in the future will be met using solar and wind power and a scenario was established based on the solar-to-wind ratio. It was found that the required hydrogen production differed by approximately four-times depending on the scenarios highlighting the importance of supplying renewable energy at an appropriate ratio. Spatially wind power was observed to be unsuitable for the physical transport of hydrogen because it has a high potential at mountain peaks and islands. The results of this study are expected to aid future hydrogen research and solve renewable energy variability problems.
Achieving Net Zero Emissions in Italy by 2050: Challenges and Opportunities
Dec 2021
Publication
This paper contributes to the climate policy discussion by focusing on the challenges and opportunities of reaching net zero emissions by 2050 in Italy. To support Italian energy planning we developed energy roadmaps towards national climate neutrality consistent with the Paris Agreement objectives and the IPCC goal of limiting the increase in global surface temperature to 1.5 ◦C. Starting from the Italian framework these scenarios identify the correlations among the main pillars for the change of the energy paradigm towards net emissions by 2050. The energy scenarios were developed using TIMES-RSE a partial equilibrium and technology-rich optimization model of the entire Italian energy system. Subsequently an in-depth analysis was developed with the sMTISIM a long-term simulator of power system and electricity markets. The results show that to achieve climate neutrality by 2050 the Italian energy system will have to experience profound transformations on multiple and strongly related dimensions. A predominantly renewable-based energy mix (at least 80–90% by 2050) is essential to decarbonize most of the final energy consumption. However the strong increase of non-programmable renewable sources requires particular attention to new flexibility resources needed for the power system such as Power-to-X. The green fuels produced from renewables via Power-to-X will be a vital energy source for those sectors where electrification faces technical and economic barriers. The paper’s findings also confirm that the European “energy efficiency first” principle represents the very first step on the road to climate neutrality.
Identifying Informed Beliefs about Hydrogen Technologies Across the Energy Supply Chain
Apr 2023
Publication
Developing a thriving hydrogen industry will depend on public and community support. Past research mainly focusing on the acceptance of hydrogen fuelling stations and cars suggests that people generally support hydrogen energy technology (HET). Few studies have however considered how people think about other components of the hydrogen supply chain (i.e. technologies required to make store transport and use hydrogen). Moreover there has been limited research investigating how people interpret and develop beliefs about HET after being presented with technical information. This paper attempts to address these research gaps by presenting the findings from four face-to-face focus group discussions conducted in Australia. The findings suggest that people have differing views about HET which depends on the type of technology and these views influence levels of support. The study also revealed concerns about a range of other factors that have yet to be considered in hydrogen acceptance research (e.g. perceived water use efficiency and indirect benefits). The findings highlight the value of qualitative research for identifying salient beliefs that shape attitudes towards HET and provide recommendations for future research and how to effectively communicate with the public and communities about an emerging hydrogen industry.
Low-cost Hydrogen in the Future European Electricity System – Enabled by Flexibility in Time and Space
Nov 2022
Publication
The present study investigates four factors that govern the ability to supply hydrogen at a low cost in Europe: the scale of the hydrogen demand; the possibility to invest in large-scale hydrogen storage; process flexibility in hydrogen-consuming industries; and the geographical areas in which hydrogen demand arises. The influence of the hydrogen demand on the future European zero-emission electricity system is investigated by applying the cost-minimising electricity system investment model eNODE to hydrogen demand levels in the range of 0–2500 TWhH2. It is found that the majority of the future European hydrogen demand can be cost-effectively satisfied with VRE assuming that the expansion of wind and solar power is not hindered by a lack of social acceptance at a cost of around 60–70 EUR/MWhH2 (2.0–2.3 EUR/kgH2). The cost of hydrogen in Europe can be reduced by around 10 EUR/MWhH2 if the hydrogen consumption is positioned strategically in regions with good conditions for wind and solar power and a low electricity demand. The cost savings potential that can be obtained from full temporal flexibility of hydrogen consumption is 3-fold higher than that linked to strategic localisation of the hydrogen consumption. The cost of hydrogen per kg increases and the value of flexibility diminishes as the size of the hydrogen demand increases relative to the traditional demand for electricity and the available VRE resources. Low-cost hydrogen is thus achieved by implementing efficiency and flexibility measures for hydrogen consumers as well as increasing acceptance of VRE.
Impacts of Green Energy Expansion and Gas Import Reduction on South Korea’s Economic Growth: A System Dynamics Approach
Jun 2023
Publication
South Korea ranking ninth among the largest energy consumers and seventh in carbon dioxide emissions from 2016 to 2021 faces challenges in energy security and climate change mitigation. The primary challenge lies in transitioning from fossil fuel dependency to a more sustainable and diversified energy portfolio while meeting the growing energy demand for continued economic growth. This necessitates fostering innovation and investment in the green energy sector. This study examines the potential impact of green energy expansion (through integrating renewable energy and hydrogen production) and gas import reduction on South Korea’s economic growth using a system dynamics approach. The findings indicate that increasing investment in green energy can result in significant growth rates ranging from 7% to 35% between 2025 and 2040. Under the expansion renewable energy scenario (A) suggests steady but sustainable economic growth in the long term while the gas import reduction scenario (B) displays a potential for rapid economic growth in the short term with possible instability in the long term. The total production in Scenario B is USD 2.7 trillion in 2025 and will increase to USD 4.8 trillion by 2040. Scenario C which combines the effects of both Scenarios A and B results in consistently high economic growth rates over time and a substantial increase in total production by 2035–2040 from 20% to 46%. These findings are critical for policymakers in South Korea as they strive for sustainable economic growth and transition to renewable energy.
The Impact of the Energy Crisis on the UK's Net Zero Transition
Mar 2023
Publication
Recent drastic increases in natural gas prices have brought into sharp focus the inherent tensions between net zero transitions energy security and affordability. We investigate the impact of different fuel prices on the energy system transition explicitly accounting for the increasingly coupled power and heating sectors and also incorporate the emerging hydrogen sector. The aim is to identify low-regret decisions and optimal energy system transitions for different fuel prices. We observe that the evolution of the heating sector is highly sensitive to the gas price whereas the composition of the power sector is not qualitatively impacted by gas prices. We also observe that bioenergy plays an important role in the energy system transition and the balance between gas price and biomass prices determines the optimal technology portfolios. The future evolution of the prices of these two resources is highly uncertain and future energy systems must be resilient to these uncertainties.
A Hybrid Perspective on Energy Transition Pathways: Is Hydrogen the Key for Norway?
Jun 2021
Publication
Hydrogen may play a significant part in sustainable energy transition. This paper discusses the sociotechnical interactions that are driving and hindering development of hydrogen value chains in Norway. The study is based on a combination of qualitative and quantitative methods. A multi-level perspective (MLP) is deployed to discuss how exogenous trends and uncertainties interact with processes and strategies in the national energy system and how this influences the transition potential associated with Norwegian hydrogen production. We explore different transition pathways towards a low-emission society in 2050 and find that Norwegian hydrogen production and its deployment for decarbonization of maritime and heavy-duty transport decarbonisation of industry and flexibility services may play a crucial role. Currently the development is at a branching point where national coordination is crucial to unlock the potential. The hybrid approach provides new knowledge on underlying system dynamics and contributes to the discourse on pathways in transition studies.
The Green Hydrogen Revolution
Jul 2023
Publication
Green hydrogen is considered the most suitable choice for the future energy market both as energy storage media energy vector and fuel for transportation industry and other applications. In the last twenty years increasing efforts have been dedicated to green hydrogen technologies development but still today a number of issues are claimed in justifying the delay in its large scale application and the star vation of its market. Moreover some new questions seem ready to be put on the table for justifying the delay in green hydrogen technologies applications. In this paper a critical analysis of recent literature and institutional reports is carried out with the aim of understanding what is the real state of the play. In particular peculiar advantages and shortcomings of different green hydrogen technologies (biomass pyrolysis and gasification water electrolysis etc.) have been analysed and compared with a focus on the electrolysis process as the most promising method for large scale and distributed generation of hydrogen. Some geopolitical and economic aspects associated with the transition to a green hydrogen economy - including the feared exacerbation of the water crisis - have been widely examined and discussed with the purpose of identifying approaches and solutions to accelerate the mentioned transition.
Hydrogen Net Zero Investment Roadmap: Leading the Way to Net Zero
Apr 2023
Publication
This net zero investment roadmap summarises government’s hydrogen policies and available investment opportunities.
Hydrogen Micro-Systems: Households’ Preferences and Economic Futility
Mar 2024
Publication
This study examines the potential market for residential hydrogen systems in light of the trends towards digitalisation and environmental awareness. Based on a survey of 350 participants the results indicate that although energy experts are sceptical about the benefits of residential hydrogen systems due to their high costs households are highly interested in this technology. The sample shows a willingness to invest in hydrogen applications with some households willing to pay an average of 24% more. An economic assessment compared the cost of a residential hydrogen system with conventional domestic energy systems revealing significant additional costs for potential buyers interested in hydrogen applications.
No more items...