Policy & Socio-Economics
Investment in Wind-based Hydrogen Production under Economic and Physical Uncertainties
Feb 2023
Publication
This paper evaluates the economic viability of a combined wind-based green-hydrogen facility from an investor’s viewpoint. The paper introduces a theoretical model and demonstrates it by example. The valuation model assumes that both the spot price of electricity and wind capacity factor evolve stochastically over time; these state variables can in principle be correlated. Besides it explicitly considers the possibility to use curtailed wind energy for producing hydrogen. The model derives the investment project’s net present value (NPV) as a function of hydrogen price and conversion capacity. Thus the NPV is computed for a given price and a range of capacities. The one that leads to the maximum NPV is the ‘optimal’ capacity (for the given price). Next the authors estimate the parameters underlying the two stochastic processes from Spanish hourly data. These numerical estimates allow simulate hourly paths of both variables over the facility’s expected useful lifetime (30 years). According to the results green hydrogen production starts becoming economically viable above 3 €/kg. Besides it takes a hydrogen price of 4.7 €/kg to reach an optimal conversion capacity half the capacity of the wind park. The authors develop sensitivity analyses with respect to wind capacity factor curtailment rate and discount rate.
Global Hydrogen and Synfuel Exchanges in an Emission-Free Energy System
Apr 2023
Publication
This study investigates the global allocation of hydrogen and synfuels in order to achieve the well below 2 ◦C preferably 1.5 ◦C target set in the Paris Agreement. For this purpose TIMES Integrated Assessment Model (TIAM) a global energy system model is used. In order to investigate global hydrogen and synfuel flows cost potential curves are aggregated and implemented into TIAM as well as demand technologies for the end use sectors. Furthermore hydrogen and synfuel trades are established using liquid hydrogen transport (LH2 ) and both new and existing technologies for synfuels are implemented. To represent a wide range of possible future events four different scenarios are considered with different characteristics of climate and security of supply policies. The results show that in the case of climate policy the renewable energies need tremendous expansion. The final energy consumption is shifting towards the direct use of electricity while certain demand technologies (e.g. aviation and international shipping) require hydrogen and synfuels for full decarbonization. Due to different security of supply policies the global allocation of hydrogen and synfuel production and exports is shifting while the 1.5 ◦C target remains feasible in the different climate policy scenarios. Considering climate policy Middle East Asia is the preferred region for hydrogen export. For synfuel production several regions are competitive including Middle East Asia Mexico Africa South America and Australia. In the case of security of supply policies Middle East Asia is sharing the export volume with Africa while only minor changes can be seen in the synfuel supply.
Chilean National Green Hydrogen Strategy
Nov 2020
Publication
Like hydrogen Chile is small by nature and accordingly contributes just 0.3% to global greenhouse gas emissions. However we too have an outsized role to play in turning the tide on rising emissions and pursuing a low carbon path to growth and development.<br/>What we lack in size we more than make up for in potential. In the desert in the North with the highest solar irradiance on the planet and in the Patagonia in the South with strong and consistent winds we have the renewable energy potential to install 70 times the electricity generation capacity we have today. This abundant renewable energy will enable us to become the cheapest producer of green hydrogen on Earth. Our National Green Hydrogen Strategy is aimed at turning this promise into reality.<br/>The Strategy is the result of collaborative work between industry academia civil society and the public sector and is an essential piece of our carbon neutrality plan and commitment to sustainable development. It will allow us to produce and export products that are created using zero carbon fuels distinguishing our exports as clean products for end users. It will also enable us to export our renewable energy to the world in the form of green liquid hydrogen green ammonia and clean synthetic fuels.<br/>Traditionally Chile lacked fossil fuels and was forced to import the energy it required. Now the coming of age of the tiniest atom will allow us to drive deep decarbonization in our own country and throughout the world. This Strategy is the first step for Chile in embracing this promise and fulfilling its new potential.
International Competitiveness of Low-carbon Hydrogen Supply to the Northwest European Market
Oct 2022
Publication
This paper analyses which sources of low-carbon hydrogen for the Northwest European market are most competitive taking into account costs of local production conversion and transport. Production costs of electrolysis are strongly affected by local renewable electricity costs and capacity factors. Transport costs are the lowest by pipelines for distances under 10000 km with costs linearly increasing with distance. For larger distances transport as ammonia is more efficient with less relation to distance despite higher conversion costs. The most competitive low-carbon hydrogen supply to the Northwest European market appears to be local Steam Methane Reforming with Carbon Capture and Storage when international gas prices return back to historical levels. When gas prices however remain high then import from Morocco with electrolysis directly connected to offshore wind generation is found to be the most competitive source of low-carbon hydrogen. These conclusions are robust for various assumptions on costs and capacity factors.
Comparative Levelized Cost Analysis of Transmitting Renewable Solar Energy
Feb 2023
Publication
A bottom-up cost analysis for delivering utility-scale PV-generated electricity as hydrogen through pipelines and as electricity through power is undertaken. Techno-economic generation and demand data for California are used to calculate the levelized cost of transmitting (LCOT) energy and the levelized cost of electricity (LCOE) prior to distribution. High-voltage levels of 230 kV and 500 kV and 24-inch and 36-inch pipelines for 100 to 700 miles of transmission are considered. At 100 miles of transmission the cost of transmission between each medium is comparable. At longer distances the pipeline scenarios become increasingly cheaper at low utilization levels. The all-electric pathways utilizing battery energy storage systems can meet 95% of the load for as low as 356 USD/MWh whereas when meeting 100% of load with the hydrogen gas turbine and fuel cell pathways the costs are 278 and 322 USD/MWh respectively.
Boosting Hydrogen through a European Hydrogen Bank
Mar 2023
Publication
Hydrogen is indispensable to decarbonise European industry and reach the EU’s 2030 climate targets and 2050 climate neutrality. It is one of the key technologies of Europe’s Net Zero Industry Act. By scaling up its production we will reduce the use of fossil fuels in European industries and serve the needs of hard-to-electrify sectors.
Current Development Status, Policy Support and Promotion Path of China’s Green Hydrogen Industries under the Target of Carbon Emission Peaking and Carbon Neutrality
Jun 2023
Publication
The green hydrogen industry highly efficient and safe is endowed with flexible production and low carbon emissions. It is conducive to building a low-carbon efficient and clean energy structure optimizing the energy industry system and promoting the strategic transformation of energy development and enhancing energy security. In order to achieve carbon emission peaking by 2030 and neutrality by 2060 (dual carbon goals) China is vigorously promoting the green hydrogen industry. Based on an analysis of the green hydrogen industry policies of the U.S. the EU and Japan this paper explores supporting policies issued by Chinese central and local authorities and examines the inherent advantages of China’s green hydrogen industry. After investigating and analyzing the basis for the development of the green hydrogen industry in China we conclude that China has enormous potential including abundant renewable energy resources as well as commercialization experience with renewable energy robust infrastructure and technological innovation capacity demand for large-scale applications of green hydrogen in traditional industries etc. Despite this China’s green hydrogen industry is still in its early stage and has encountered bottlenecks in its development including a lack of clarity on the strategic role and position of the green hydrogen industry low competitiveness of green hydrogen production heavy reliance on imports of PEMs perfluorosulfonic acid resins (PFSR) and other core components the development dilemma of the industry chain lack of installed capacity for green hydrogen production and complicated administrative permission etc. This article therefore proposes that an appropriate development road-map and integrated administration supervision systems including safety supervision will systematically promote the green hydrogen industry. Enhancing the core technology and equipment of green hydrogen and improving the green hydrogen industry chain will be an adequate way to reduce dependence on foreign technologies lowering the price of green hydrogen products through the scale effect and thus expanding the scope of application of green hydrogen. Financial support mechanisms such as providing tax breaks and project subsidies will encourage enterprises to carry out innovative technological research on and invest in the green hydrogen industry.
The Socio-technical Dynamics of Net-zero Industrial Megaprojects: Outside-in and Inside-out Analyses of the Humber Industrial Cluster
Feb 2023
Publication
Although energy-intensive industries are often seen as ‘hard-to-decarbonise’ net-zero megaprojects for industrial clusters promise to improve the technical and economic feasibility of hydrogen fuel switching and carbon capture and storage (CCS). Mobilising insights from the megaproject literature this paper analyses the dynamics of an ambitious first-of-kind net-zero megaproject in the Humber industrial cluster in the United Kingdom which includes CCS and hydrogen infrastructure systems industrial fuel switching CO2 capture green and blue hydrogen production and hydrogen storage. To analyse the dynamics of this emerging megaproject the article uses a socio-technical system lens to focus on developments in technology actors and institutions. Synthesising multiple megaproject literature insights the paper develops a comprehensive framework that addresses both aggregate (‘outside-in’) developments and the endogenous (‘inside-out’) experiences and activities regarding three specific challenges: technical system integration actor coordination and institutional alignment. Drawing on an original dataset involving expert interviews (N = 46) site visits (N = 7) and document analysis the ‘outside-in’ analysis finds that the Humber megaproject has progressed rapidly from outline visions to specific technical designs enacted by new coalitions and driven by strengthening policy targets and financial support schemes. The complementary ‘inside-out’ analysis however also finds 12 alignment challenges that can delay or derail materialisation of the plans. While policies are essential aggregate drivers institutional misalignments presently also prevent project-actors from finalising design and investment decisions. Our analysis also finds important tensions between the project's high-pace delivery focus (to meet government targets) and allowing sufficient time for pilot projects learning-by-doing and design iterations.
Industrial Status, Technological Progress, Challenges, and Prospects of Hydrogen Energy
Apr 2022
Publication
Under the requirements of China's strategic goal of "carbon peaking and carbon neutrality" as a renewable clean and efficient secondary energy source hydrogen benefits from abundant resources a wide variety of sources a high combustion calorific value clean and non-polluting various forms of utilization energy storage mediums and good security etc. It will become a realistic way to help energy transportation petrochemical and other fields to achieve deep decarbonization and will turn into an important replacement energy source for China to build a modern clean energy system. It is clear that accelerating the development of hydrogen energy has become a global consensus. In order to provide a theoretical support for the accelerated transformation of hydrogen-related industries and energy companies and provide a basis and reference for the construction of "Hydrogen Energy China" this paper describes main key technological progresses in the hydrogen industry chain such as hydrogen production storage transportation and application. The status and development trends of hydrogen industrialization are analyzed and then the challenges faced by the development of the hydrogen industry are discussed. At last the development and future of the hydrogen industry are prospected. The following conclusions are achieved. (1) Hydrogen technologies of our country will become mature and enter the road of industrialization. The whole industry chain system of the hydrogen industry is gradually being formed and will realize the leap-forward development from gray hydrogen blue hydrogen to green hydrogen. (2) The overall development of the entire hydrogen industry chain such as hydrogen production storage and transportation fuel cells hydrogen refueling stations and other scenarios should be accelerated. Besides in-depth integration and coordination with the oil and gas industry needs more attention which will rapidly promote the high-quality development of the hydrogen industry system. (3) The promotion and implementation of major projects such as "north-east hydrogen transmission" "west-east hydrogen transmission" "sea hydrogen landing" and utilization of infrastructures such as gas filling stations can give full play to the innate advantages of oil and gas companies in industrial chain nodes such as hydrogen production and refueling etc. which can help to achieve the application of "oil gas hydrogen and electricity" four-station joint construction form a nationwide hydrogen resource guarantee system and accelerate the planning and promotion of the "Hydrogen Energy China" strategy.
OIES Podcast - Hydrogen Financing
Jan 2023
Publication
In this Podcast David Ledesma discusses with Stephen Craen Visiting Research Fellow OIES the challenges facing the financing of future hydrogen projects as it is expected that a substantial amount of capital will need to be invested in green hydrogen production to meet the 2050 net zero targets. Based around an ‘Archetype’ world scale hydrogen export project where 1 GW solar power is used to make green hydrogen which is converted to 250000 tpa green ammonia for export with a capital cost in the region of USD 2 billion the podcast discusses how ‘efficient financing’ can make an important contribution to minimising cost and making projects cost competitive. Stephen Craen argues that lenders and investors will look to precedents when assessing the nascent green hydrogen sector and the foremost will be LNG and offshore wind which both represent large-scale technically complex projects. Commercial structures of the green hydrogen business are expected to borrow concepts from offshore wind projects particularly in relation to price but also from LNG where this is relevant such as take-or-pay contracts. In this podcast we discuss the key issues that will need to be addressed to make a green hydrogen export project bankable concluding that commercial debt from either commercial banks or project bonds can help create competition.
The podcast can be found on their website.
The podcast can be found on their website.
Ireland National Hydrogen Strategy
Jul 2023
Publication
The National Hydrogen Strategy sets out the strategic vision on the role that hydrogen will play in Ireland’s energy system looking to its long-term role as a key component of a zero-carbon economy and the short-term actions that need to be delivered over the coming years to enable the development of the hydrogen sector in Ireland.<br/>The Strategy is being developed for three primary reasons:<br/>1. Decarbonising our economy providing a solution to hard to decarbonise sectors where electrification is not feasible or cost-effective<br/>2. Enhancing our energy security through the development of an indigenous zero carbon renewable fuel which can act as an alternative to the 77% of our energy system which today relies on fossil fuel imports<br/>3. Developing industrial opportunities through the potential development of export markets for renewable hydrogen and other areas such as Sustainable Aviation Fuels<br/>The Strategy considers the needs of the entire hydrogen value chain including production end-uses transportation and storage safety regulation markets innovation and skills.<br/>It also sets out that Ireland will focus its efforts on the scale up and production of renewable ""green"" hydrogen as it supports both our decarbonisation needs and energy security needs given our vast indigenous renewable resources. Renewable hydrogen is a renewable and zero-carbon fuel that can play a key role in the ""difficult-to-decarbonise"" sectors of our economy where other solutions such as direct electrification are not feasible or cost effective.<br/>In the coming years renewable hydrogen is envisioned to play an important role as a zero-emission source of dispatchable flexible electricity as a long duration store of renewable energy in decarbonising industrial processes and as a transport fuel in sectors such as heavy goods transport maritime and aviation. The Strategy will provide clarity for stakeholders on how we expect the hydrogen economy to develop and scale up over the coming decades across the entire value chain.
Assessment of a Fully Renewable System for the Total Decarbonization of the Economy with Full Demand Coverage on Islands Connected to a Central Grid: The Balearic Case in 2040
Jul 2023
Publication
The transition to clean electricity generation is a crucial focus for achieving the current objectives of economy decarbonization. The Balearic Archipelago faces significant environmental economic and social challenges in shifting from a predominantly fossil fuel-based economy to one based on renewable sources. This study proposes implementing a renewable energy mix and decarbonizing the economy of the Balearic Islands by 2040. The proposed system involves an entirely renewable generation system with interconnections between the four Balearic islands and the Spanish mainland grid via a 650 MW submarine cable. This flexible electrical exchange can cover approximately 35% of the peak demand of 1900 MW. The scenario comprises a 6 GWp solar photovoltaic system a wind system of under 1.2 GWp and a 600 MW biomass system as generation sub-systems. A vanadium redox flow battery sub-system with a storage capacity of approximately 21 GWh and 2.5 GWp power is available to ensure system manageability. This system’s levelized electricity cost (LCOE) is around 13.75 cEUR/kWh. The design also incorporates hydrogen as an alternative for difficult-to-electrify uses achieving effective decarbonization of all final energy uses. A production of slightly over 5 × 104 tH2 per year is required with 1.7 GW of electrolyzer power using excess electricity and water resources. The system enables a significant level of economy decarbonization although it requires substantial investments in both generation sources and storage.
Insights into Decision-making for Offshore Green Hydrogen Infrastructure Developments
Apr 2023
Publication
Green hydrogen is a key element that has the potential to play a critical role in the global pursuit of a resilient and sustainable future. However like other energy production methods hydrogen comes with challenges including high costs and safety concerns across its entire value chain. To overcome these low-cost productions are required along with a promised market. Offshore renewables have an enormous potential to facilitate green hydrogen production on a large scale. Their plummeting cost technological advances and rising cost of carbon pave a pathway where green hydrogen can be cost-competitive against fossil-fuel-based hydrogen. Offshore industries including oil and gas aquaculture and shipping are looking for cleaner energy solutions to decarbonize their systems/operations and can serve as a substantial market. Offshore industrial nexus moreover can assist the production storage and transmission of green hydrogen through infrastructure sharing and logistical support. The development of offshore green hydrogen production facilities is in its infancy and requires a deeper insight into the key elements that govern decision-making during their life-cycle. This includes the parameters that reflect the performance of hydrogen technology with technical socio-political financial and environmental considerations. Therefore this study provides critical insight into the influential factors discovered through a comprehensive analysis that governs the development of an offshore green hydrogen system. Insights are also fed into the requirements for modelling and analysis of these factors considering the synergy of hydrogen production with the offshore industries coastal hydrogen hub and onshore energy demand. The results of this critical review will assist the researchers and developers in establishing and executing an effective framework for offshore site selection in largely uncertain and hazardous ocean environments. Overall the study will facilitate the stakeholders and researchers in developing decision-making tools to ensure sustainable and safe offshore green hydrogen facilities.
Technoeconomic Analysis for Green Hydrogen in Terms of Production, Compression, Transportation and Storage Considering the Australian Perspective
Jul 2023
Publication
This current article discusses the technoeconomics (TE) of hydrogen generation transportation compression and storage in the Australian context. The TE analysis is important and a prerequisite for investment decisions. This study selected the Australian context due to its huge potential in green hydrogen but the modelling is applicable to other parts of the world adjusting the price of electricity and other utilities. The hydrogen generation using the most mature alkaline electrolysis (AEL) technique was selected in the current study. The results show that increasing temperature from 50 to 90 ◦C and decreasing pressure from 13 to 5 bar help improve electrolyser performance though pressure has a minor effect. The selected range for performance parameters was based on the fundamental behaviour of water electrolysers supported with literature. The levelised cost of hydrogen (LCH2 ) was calculated for generation compression transportation and storage. However the majority of the LCH2 was for generation which was calculated based on CAPEX OPEX capital recovery factor hydrogen production rate and capacity factor. The LCH2 in 2023 was calculated to be 9.6 USD/kgH2 using a base-case solar electricity price of 65–38 USD/MWh. This LCH2 is expected to decrease to 6.5 and 3.4 USD/kgH2 by 2030 and 2040 respectively. The current LCH2 using wind energy was calculated to be 1.9 USD/kgH2 lower than that of solar-based electricity. The LCH2 using standalone wind electricity was calculated to be USD 5.3 and USD 2.9 in 2030 and 2040 respectively. The LCH2 predicted using a solar and wind mix (SWM) was estimated to be USD 3.2 compared to USD 9.6 and USD 7.7 using standalone solar and wind. The LCH2 under the best case was predicted to be USD 3.9 and USD 2.1 compared to USD 6.5 and USD 3.4 under base-case solar PV in 2030 and 2040 respectively. The best case SWM offers 33% lower LCH2 in 2023 which leads to 37% 39% and 42% lower LCH2 in 2030 2040 and 2050 respectively. The current results are overpredicted especially compared with CSIRO Australia due to the higher assumption of the renewable electricity price. Currently over two-thirds of the cost for the LCH2 is due to the price of electricity (i.e. wind and solar). Modelling suggests an overall reduction in the capital cost of AEL plants by about 50% in the 2030s. Due to the lower capacity factor (effective energy generation over maximum output) of renewable energy especially for solar plants a combined wind- and solar-based electrolysis plant was recommended which can increase the capacity factor by at least 33%. Results also suggest that besides generation at least an additional 1.5 USD/kgH2 for compression transportation and storage is required.
Vision for a European Metrology Network for Energy Gases
Mar 2022
Publication
As Europe moves towards decarbonising its energy infrastructure new measurement needs will arise that require collaborative efforts between European National Metrology Institutes and Designated Institutes to tackle. Such measurement needs include flow metering of hydrogen or hydrogen enriched natural gas in the gas grid for billing quality assurance of hydrogen at refuelling stations and equations of state for carbon dioxide in carbon capture and storage facilities. The European metrology network for energy gases for the first time provides a platform where metrology institutes can work together to develop a harmonised strategy prioritise new challenges and share expertise and capabilities to support the European energy gas industry to meet stringent EU targets for climate change and emissions reductions
China's Hydrogen Development: A Tale of Three Cities
Mar 2023
Publication
China is the world’s largest producer and consumer of hydrogen. The country has adopted a domestic strategy that targets significant growth in hydrogen consumption and production. Given the importance of hydrogen in the low-carbon energy transition it is critical to understand China’s hydrogen policies and their implementation as well as the extent to which these contribute to the country’s low-carbon goals.<br/>Existing research has focused on understanding policies and regulations in China and their implications for the country’s hydrogen prospects. This study aims to improve our understanding of central-government initiatives and look at how China’s hydrogen policies are implemented at the local level. The paper examines the three cities of Zhangjiakou (in China’s renewable-rich Hebei province) Datong (in the country’s coal-heartland of Shanxi province) and Chengdu which is rich in hydropower and natural gas. To be sure the three cities analysed in this paper do not cover all regional plans and initiatives but they offer a useful window into local hydrogen policy implementation. They also illustrate the major challenges facing green hydrogen as it moves beyond the narrow highly subsidized field of fuel cell vehicles (FCVs). Indeed costs as well as water land availability and technology continue to be constraints.<br/>The hydrogen policies and road maps reviewed in this paper offer numerous targets—often setting quantitative goals for FCVs hydrogen refuelling stations hydrogen supply chain revenue and new hydrogen technology companies—aligning with the view that hydrogen development is currently more of an industrial policy than a decarbonisation strategy. Indeed hydrogen’s potential to decarbonise sectors such as manufacturing and chemicals is of secondary importance if mentioned at all. But as the cities analysed here view hydrogen as part of their industrial programmes economic development and climate strategies support is likely to remain significant even as the specific incentive schemes will likely evolve.<br/>Given this local hydrogen development model rising demand for hydrogen in China could ultimately increase rather than decrease CO₂ emissions from fossil fuels in the short run. At the same time even though the central government’s hydrogen targets (as laid out in its 2022 policy documents) seem relatively conservative Chinese cities’ appetite for new sources of growth and the ability to fund various business models are worth watching.
Optimal Operation and Market Integration of a Hybrid Farm with Green Hydrogen and Energy Storage: A Stochastic Approach Considering Wind and Electricity Price Uncertainties
Mar 2024
Publication
In recent years growing interest has emerged in investigating the integration of energy storage and green hydrogen production systems with renewable energy generators. These integrated systems address uncertainties related to renewable resource availability and electricity prices mitigating profit loss caused by forecasting errors. This paper focuses on the operation of a hybrid farm (HF) combining an alkaline electrolyzer (AEL) and a battery energy storage system (BESS) with a wind turbine to form a comprehensive HF. The HF operates in both hydrogen and day-ahead electricity markets. A linear mathematical model is proposed to optimize energy management considering electrolyzer operation at partial loads and accounting for degradation costs while maintaining a straightforward formulation for power system optimization. Day-ahead market scheduling and real-time operation are formulated as a progressive mixed-integer linear program (MILP) extended to address uncertainties in wind speed and electricity prices through a two-stage stochastic optimization model. A bootstrap sampling strategy is introduced to enhance the stochastic model’s performance using the same sampled data. Results demonstrate how the strategies outperform traditional Monte Carlo and deterministic approaches in handling uncertainties increasing profits up to 4% per year. Additionally a simulation framework has been developed for validating this approach and conducting different case studies.
A Techno-economic Analysis of Cross-regional Renewable Hydrogen Supply Routes in China
Jun 2023
Publication
The cross-regional renewable hydrogen supply is significant for China to resolve the uneven distribution of renewable energy and decarbonize the transportation sector. Yet the economic comparison of various hydrogen supply routes remains obscure. This paper conducts a techno-economic analysis on six hydrogen supply routes for hydrogen refueling stations including gas-hydrogen tube-trailer gas-hydrogen pipeline liquid-hydrogen truck natural gas pipeline MeOH truck and NH3 truck. Furthermore the impacts of three critical factors are examined including electrolyzer selection transportation distance and electricity price. The results indicate that with a transport distance of 2000 km the natural gas pipeline route offers the lowest cost while the gas-hydrogen tube-trailer route is not economically feasible. The gas-hydrogen pipeline route shows outstanding cost competitiveness between 200 and 2000 km while it is greatly influenced by the utilization rate. The liquid-hydrogen truck route demonstrates great potential with the electricity price decreasing. This study may provide guidance for the development of the cross-regional renewable hydrogen supply for hydrogen refueling stations in China.
Green Hydrogen Futures: Tensions of Energy and Justice Within Sociotechnical Imaginaries
May 2024
Publication
As a reformist approach to low-carbon transitions green hydrogen is often promoted as an easy replacement for fossil fuels. This substitution narrative makes this technology compelling as it offers to reduce emissions while continuing the contemporary energy system. Using ‘sociotechnical imaginaries’ this paper explores the underlying political processes on what appears to be a mostly technical vision of green hydrogen. Analysis through expert interviews in Aotearoa New Zealand revealed two contrasting energy visions one emphasizing the technical role of green hydrogen in New Zealand's transition—the green hydrogen imaginary and the other which advocated for a future motivated by social change—the alternative energy imaginary. Comparing the tensions through a lens of hydrogen justice exposed the assumptions and exclusions present in the emerging green hydrogen imaginary. This paper argues that the technocratic business as usual approach of green hydrogen depoliticizes the social nature of energy and thus risks perpetuating inequalities and harms present in the current energy system. However these critiques also suggest that there is hope for green hydrogen to be reimagined in more ethical and just ways.
The Potential Role of a Hydrogen Network in Europe
Jul 2023
Publication
Europe’s electricity transmission expansion suffers many delays despite its significance for integrating renewable electricity. A hydrogen network reusing the existing gas network could not only help to supply the demand for low-emission fuels but could also balance variations in wind and solar energies across the continent and thus avoid power grid expansion. Our investigation varies the allowed expansion of electricity and hydrogen grids in net-zero CO2 scenarios for a sector-coupled European energy system capturing transmission bottlenecks renewable supply and demand variability and pipeline retrofitting and geological storage potentials. We find that a hydrogen network connecting regions with low-cost and abundant renewable potentials to demand centers electrofuel production and cavern storage sites reduces system costs by up to 26 bnV/a (3.4%). Although expanding both networks together can achieve the largest cost reductions by 9.9% the expansion of neither is essential for a net-zero system as long as higher costs can be accepted and flexibility options allow managing transmission bottlenecks.
No more items...