Policy & Socio-Economics
Hydrogen is Essential for Sustainability
Nov 2018
Publication
Sustainable energy conversion requires zero emissions of greenhouse gases and criteria pollutants using primary energy sources that the earth naturally replenishes quickly like renewable resources. Solar and wind power conversion technologies have become cost effective recently but challenges remain to manage electrical grid dynamics and to meet end-use requirements for energy dense fuels and chemicals. Renewable hydrogen provides the best opportunity for a zero emissions fuel and is the best feedstock for production of zero emission liquid fuels and some chemical and heat end-uses. Renewable hydrogen can be made at very high efficiency using electrolysis systems that are dynamically operated to complement renewable wind and solar power dynamics. Hydrogen can be stored within the existing natural gas system to provide low cost massive storage capacity that (1) could be sufficient to enable a 100% zero emissions grid; (2) has sufficient energy density for end-uses including heavy duty transport; (3) is a building block for zero emissions fertilizer and chemicals; and (4) enables sustainable primary energy in all sectors of the economy.
Hydrogen Production in the Swedish Power Sector: Considering Operational Volatilities and Long-term Uncertainties
Nov 2020
Publication
With more renewables on the Swedish electricity market while decommissioning nuclear power plants electricity supply increasingly fluctuates and electricity prices are more volatile. There is hence a need for securing the electricity supply before energy storage solutions become widespread. Electricity price fluctuations moreover affect operating income of nuclear power plants due to their inherent operational inflexibility. Since the anticipated new applications of hydrogen in fuel cell vehicles and steel production producing hydrogen has become a potential source of income particularly when there is a surplus supply of electricity at low prices. The feasibility of investing in hydrogen production was investigated in a nuclear power plant applying Swedish energy policy as background. The analysis applies a system dynamics approach incorporating the stochastic feature of electricity supply and prices. The study revealed that hydrogen production brings alternative opportunities for large-scale electricity production facilities in Sweden. Factors such as hydrogen price will be influential and require in-depth investigation. This study provides guidelines for power sector policymakers and managers who plan to engage in hydrogen production for industrial applications. Although this study was focused upon nuclear power sources it can be extended to hydrogen production from renewable energy sources such as wind and solar.
Hydrogen Production, Storage and Transport for Renewable Energy and Chemicals: An Environmental Footprint Assessment
Dec 2022
Publication
Hydrogen applications range from an energy carrier to a feedstock producing bulk and other chemicals and as an essential reactant in various industrial applications. However the sustainability of hydrogen production storage and transport are neither unquestionable nor equal. Hydrogen is produced from natural gas biogas aluminium acid gas biomass electrolytic water splitting and others; a total of eleven sources were investigated in this work. The environmental impact of hydrogen production storage and transport is evaluated in terms of greenhouse gas and energy footprints acidification eutrophication human toxicity potential and eco-cost. Different electricity mixes and energy footprint accounting approaches supported by sensitivity analysis are conducted for a comprehensive overview. H2 produced from acid gas is identified as the production route with the highest eco-benefit (− 41188 €/t H2) while the biomass gasification method incurred the highest eco-cost (11259 €/t H2). The water electrolysis method shows a net positive energy footprint (60.32 GJ/t H2) suggesting that more energy is used than produced. Considering the operating footprint of storage and transportation gaseous hydrogen transported via a pipeline is a better alternative from an environmental point of view and with a lower energy footprint (38 %–85%) than the other options. Storage and transport (without construction) could have accounted for around 35.5% of the total GHG footprint of a hydrogen value chain (production storage transportation and losses) if liquefied and transported via road transport instead of a pipeline. The identified results propose which technologies are less burdensome to the environment.
Hydrogen Deep Ocean Link: A Global Sustainable Interconnected Energy Grid<br/><br/><br/>
Mar 2022
Publication
The world is undergoing a substantial energy transition with an increasing share of intermittent sources of energy on the grid which is increasing the challenges to operate the power grid reliably. An option that has been receiving much focus after the COVID pandemic is the development of a hydrogen economy. Challenges for a hydrogen economy are the high investment costs involved in compression storage and long-distance transportation. This paper analyses an innovative proposal for the creation of hydrogen ocean links. It intends to fill existing gaps in the creation of a hydrogen economy with the increase in flexibility and viability for hydrogen production consumption compression storage and transportation. The main concept behind the proposals presented in this paper consists of using the fact that the pressure in the deep sea is very high which allows a thin and cheap HDPE tank to store and transport large amounts of pressurized hydrogen in the deep sea. This is performed by replacing seawater with pressurized hydrogen and maintaining the pressure in the pipes similar to the outside pressure. Hydrogen Deep Ocean Link has the potential of increasing the interconnectivity of different regional energy grids into a global sustainable interconnected energy system.
Towards a 100% Hydrogen Domestic Gas Network: Regulatory and Commercial Barriers to the First Demonstrator Project in the United Kingdom
May 2022
Publication
In the debate on the decarbonisation of heat renewable electricity tends to play a much more dominant role than green gases despite the potential advantages of gas in terms of utilising existing transportation networks and end-use appliances. Informed comparisons are hampered by information asymmetry; the renewable electricity has seen a huge grid level deployment whereas low-carbon hydrogen or bio-methane have been limited to some small stand-alone trials. This paper explores the regulatory and commercial challenges of implementing the first UK neighbourhood level 100% low-carbon hydrogen demonstration project. We draw on existing literature and action research to identify the key practical barriers currently hindering the ability of strategically important actors to accelerate the substitution of natural gas with low carbon hydrogen in local gas networks. This paper adds much needed contextual depth to existing generic and theoretical understandings of low-carbon hydrogen for heat transition feasibility. The learnings from pilot projects about the exclusion of hydrogen calorific value from the Local Distribution Zone calorific value calculation Special Purpose Vehicle companies holding of liability and future costs to consumers need to be quickly transferred into resilient operational practice or gas repurposing projects will continue to be less desirable than electrification using existing regulations and with more rapid delivery
Developing Networks for the Future: Long-Term Development Plan 2019
Oct 2019
Publication
This report provides you with the information you need if you have plans to interact with or connect to our gas networks. Our vision is to set the standards that all of our customers love and others aspire to. This means that our long-term plans are shaped by our customers and stakeholders. This annual publication is an important opportunity to share our latest long-term plan and our strategic thinking and seek feedback so we can continue to adapt our activities going forward. We want to make it as easy and efficient as possible for you to interact with us.
Cadent Long Term Development Plan 2019
Cadent Long Term Development Plan 2019
Everything About Hydrogen Podcast: A New Hope for Hydrogen?
Apr 2020
Publication
On this weeks episode the team discuss the Hydrogen Council the global stakeholder forum that has been at the forefront of efforts to advance the role of hydrogen and fuel cell technologies globally. We are excited to have as our guests Pierre-Etienne Franc Vice President for the Hydrogen Energy World Business Unit at Air Liquide and Stephan Herbst General Manager at Toyota Motor Europe. On the show we discuss why Air Liquide and Toyota decided to engage with the Council its strategy vision and perspective on the role that hydrogen can play in the energy transition and how companies can work with policymakers to enable this process. All this and more on the show!
The podcast can be found on their website
The podcast can be found on their website
Beyond Traditional Energy Sector Coupling: Conserving and Efficient Use of Local Resources
Jun 2022
Publication
Decentralisation and sector coupling are becoming increasingly crucial for the decarbonisation of the energy system. Resources such as waste and water have high energy recovery potential and are required as inputs for various conversion technologies; however waste and water have not yet been considered in sector coupling approaches but only in separate examinations. In this work an open-source sector coupling optimisation model considering all of these resources and their utilisation is developed and applied in a test-bed in an Israeli city. Our investigations include an impact assessment of energy recovery and resource utilisation in the transition to a hydrogen economy with regard to the inclusion of greywater and consideration of emissions. Additionally sensitivity analyses are performed in order to assess the complexity level of energy recovery. The results demonstrate that waste and water energy recovery can provide high contributions to energy generation. Furthermore greywater use can be vital to cover the water demands in scarcity periods thus saving potable water and enabling the use of technology. Regarding the transition to hydrogen technologies resource energy recovery and management have an even higher effect than in the original setup. However without appropriate resource management a reduction in emissions cannot be achieved. Furthermore the sensitivity analyses indicate the existence of complex relationships between energy recovery technologies and other energy system operations.
Reducing the Cost of Low-carbon Hydrogen Production via Emerging Chemical Looping Process
Jan 2023
Publication
A thorough techno-economic analysis where inherent carbon capture is examined against state-of-the-art blue hydrogen production configurations for large (100000 Nm3 /h) and very large (333000 Nm3 /h) capacities. Advanced solvent-based technologies based on post-combustion capture and auto-thermal reformer combined with a gas heated reformer are simulated with process flowsheet software and compared with the emerging chemical looping process. A network of dynamically operated packed bed reactors has been designed and modelled using an in-house code and key parameters generating uncertainties in the results have been examined in a sensitivity analysis. The chemical looping reforming process presents a higher net reforming efficiency than the benchmark cases (8.2 % higher at large scale and 1.5 % higher at very large scale) ranged 75.4–75.7 % while the specific energy for CO2 avoidance is negative in the range of − 0.78 to − 0.85 MJ/kgCO2. In the carbon capture cases the chemical looping reforming in packed beds technology generated a levelised cost of hydrogen of 168.9 £/kNm3 H2 for the large scale and 159.1 £/kNm3 H2 for the very large scale with the values for the benchmark cases being higher at 196.4 and 166.6 £/kNm3 H2 respectively while the levelised cost of hydrogen values are 1 % higher in the benchmark cases where carbon emission price is accounted for. The carbon capture ratio is 99.9 % for the chemical looping reforming cases compared to 90–91 % for the benchmark ones thus providing a significant foreground for the scale-up and implementation of chemical looping reforming technologies for hydrogen production.
Modelling a Highly Decarbonised North Sea Energy System in 2050: a Multinational Approach
Dec 2021
Publication
The North Sea region located in the Northwest of Europe is expected to be a frontrunner in the European energy transition. This paper aims to analyse different optimal system configurations in order to meet net-zero emission targets in 2050. Overall the paper presents two main contributions: first we develop and introduce the IESA-NS model. The IESA-NS model is an optimization integrated energy system model written as a linear problem. The IESA-NS model optimizes the long-term investment planning and short-term operation of seven North Sea region countries (Belgium Denmark Germany the Netherlands Norway Sweden and the United Kingdom). The model can optimize multiple years simultaneously accounts for all the national GHG emissions and includes a thorough representation of all the sectors of the energy system. Second we run several decarbonisation scenarios with net-zero emission targets in 2050. Relevant parameters varied to produce the scenarios include biomass availability VRE potentials low social acceptance of onshore VRE ban of CCUS or mitigation targets in international transport and industry feedstock. Results show a large use of hydrogen when international transport emissions are considered in the targets (5.6 EJ to 7.3 EJ). Electrolysis is the preferred pathway for hydrogen production (up to 6.4 EJ) far ahead of natural gas reforming (up to 2.2 EJ). Allowing offshore interconnectors (e.g. meshed offshore grid between the Netherlands Germany and the United Kingdom) permits to integrate larger amounts of offshore wind (122 GW to 191 GW of additional capacity compared to reference scenarios) while substantially increasing the cross-border interconnection capacities (up to 120 GW). All the biomass available is used in the scenarios across multiple end uses including biofuel production (up to 3.5 EJ) high temperature heat (up to 2.5 EJ) feedstock for industry (up to 2 EJ) residential heat (up to 600 PJ) and power generation (up to 900 PJ). In general most of the results justify the development of multinational energy system models in which the spatial coverage lays between national and continental models.
Everything About Hydrogen Podcast: Moving at the Speed of Hydrogen
Nov 2020
Publication
We spend a lot of time on the show talking about the interesting use cases and potential applications of hydrogen technologies as a means to decarbonize high-emissions sectors and that is the point! However moving hydrogen around the world (e.g. to remote areas without the capacity to produce it locally) presents a number of complexities and challenges that are unique to hydrogen itself or for which there are no traditionally established technologies to do so. On this episode the EAH team has a fascinating chat with Dr. Daniel Teichmann CEO and founder of Hydrogenious to learn more about liquid organic hydrogen carriers (LOHCs) and how they can help companies overcome some of the major hurdles that moving hydrogen around the globe presents.
The podcast can be found on their website
The podcast can be found on their website
Future Electricity Series Part 2 - Power from Renewables
Sep 2013
Publication
The independent cross-party report highlights a ‘sensible middle ground’ in the renewables debate and calls for more effort in building cross-party consensus. It finds that the UK has only just begun to harness low carbon renewable resources bigger than North Sea oil and gas and argues that the Government could do more to narrow the scope of debate about the technology mix beyond 2020. It argues that it should work with industry and academia first to establish ‘low regrets’ levels of technology deployment and second to ensure that policies are in place to incentivise investments such as supply chain investment needed to deliver these low regrets actions.
This approach would help provide the longer term clarity that could secure supply chain investments giving the UK a head-start in the global race. The report finds that these investments could be missed delayed or more expensive if there is insufficient confidence about long term demand for key technologies such as offshore wind. Work by Government to help incentivise these investments would increase the likelihood that technology cost reductions are achieved and help mitigate against high costs if new nuclear or carbon capture and storage development fail or are delayed.
On affordability the report finds that there are ‘hidden’ benefits that the UK could see from investing more in renewables through electricity bills between now and 2020. These include: avoiding bill increases driven by fossil fuels; making electricity bills more predictable; and providing an economic boost. The extra money paid to support renewables and other low carbon generation such as nuclear power could be more than offset by energy efficiency savings although Government needs to do more to show how these savings will arise.
On sustainability the report tackles myths about the carbon emitted in manufacturing renewable technologies or in backing up varying technologies such as wind solar wave and tidal. It finds that even when considering these factors renewables are still amongst the most low carbon options. The report also looks at the sustainability of electricity from biomass. Bioenergy overall could provide up to ten per cent of energy and reduce the cost of cutting carbon by £44 billion per year in 2050. The Government’s new biomass policies are a pragmatic response to concerns about the sustainability of biomass power which balances protecting the environment building public confidence and enabling the sector to grow.
On security of supply the inquiry argues that debate should focus on the whole electricity system and that individual technologies should be considered in the context of how they add to or reduce system risks. Considered like this renewables reduce some risks such as fuel supply risks which caused concern last winter and add to others such as system balancing risks. System balancing risks from varying renewables (wind solar wave and tidal technologies) are manageable using a number of existing and developing technologies.
The independent report chaired by former Energy Minister Charles Hendry MP and Shadow Energy Minister Baroness Worthington was compiled between May and September 2013 and was sponsored by Siemens and DONG Energy. It is part of a year-long independent and cross party inquiry into the UK power sector the Future Electricity Series sponsored by the Institution of Gas Engineers and Managers.
Link to Launch Video
This approach would help provide the longer term clarity that could secure supply chain investments giving the UK a head-start in the global race. The report finds that these investments could be missed delayed or more expensive if there is insufficient confidence about long term demand for key technologies such as offshore wind. Work by Government to help incentivise these investments would increase the likelihood that technology cost reductions are achieved and help mitigate against high costs if new nuclear or carbon capture and storage development fail or are delayed.
On affordability the report finds that there are ‘hidden’ benefits that the UK could see from investing more in renewables through electricity bills between now and 2020. These include: avoiding bill increases driven by fossil fuels; making electricity bills more predictable; and providing an economic boost. The extra money paid to support renewables and other low carbon generation such as nuclear power could be more than offset by energy efficiency savings although Government needs to do more to show how these savings will arise.
On sustainability the report tackles myths about the carbon emitted in manufacturing renewable technologies or in backing up varying technologies such as wind solar wave and tidal. It finds that even when considering these factors renewables are still amongst the most low carbon options. The report also looks at the sustainability of electricity from biomass. Bioenergy overall could provide up to ten per cent of energy and reduce the cost of cutting carbon by £44 billion per year in 2050. The Government’s new biomass policies are a pragmatic response to concerns about the sustainability of biomass power which balances protecting the environment building public confidence and enabling the sector to grow.
On security of supply the inquiry argues that debate should focus on the whole electricity system and that individual technologies should be considered in the context of how they add to or reduce system risks. Considered like this renewables reduce some risks such as fuel supply risks which caused concern last winter and add to others such as system balancing risks. System balancing risks from varying renewables (wind solar wave and tidal technologies) are manageable using a number of existing and developing technologies.
The independent report chaired by former Energy Minister Charles Hendry MP and Shadow Energy Minister Baroness Worthington was compiled between May and September 2013 and was sponsored by Siemens and DONG Energy. It is part of a year-long independent and cross party inquiry into the UK power sector the Future Electricity Series sponsored by the Institution of Gas Engineers and Managers.
Link to Launch Video
Model Supported Business Case Scenario Analysis for Decentral Hydrogen Conversion, Storage and Consumption within Energy Hubs
Mar 2022
Publication
Recently smart energy hubs with hydrogen conversion and storage have received increased attention in the Netherlands. The hydrogen is to be used for vehicle filling stations industrial processes and heating. The scientific problem addressed in this paper is the proper sizing of capacities for renewable energy generation hydrogen conversion and storage in relation to a feasible business case for the energy hub while achieving security of supply. Scenario analysis is often used during the early stages of the energy planning process and for this an easy-to-use analysis model is required. This paper investigates available modelling approaches and develops an algorithmic modelling method which is worked out in Microsoft Excel and offers ease of use for scenario analysis purposes. The model is applied to case study which leads to important insights such as the expected price of hydrogen and the proper sizing of electrolyser and hydrogen storage for that case. The model is made available open-source. Future work is proposed in the direction of application of the model for other project cases and comparison of results with other available modelling tools.
Hydrogen Supply Chains for Mobility—Environmental and Economic Assessment
May 2018
Publication
Hydrogen mobility is one option for reducing local emissions avoiding greenhouse gas (GHG) emissions and moving away from a mainly oil-based transport system towards a diversification of energy sources. As hydrogen production can be based on a broad variety of technologies already existing or under development a comprehensive assessment of the different supply chains is necessary regarding not only costs but also diverse environmental impacts. Therefore in this paper a broad variety of hydrogen production technologies using different energy sources renewable and fossil are exemplarily assessed with the help of a Life Cycle Assessment and a cost assessment for Germany. As environmental impacts along with the impact category Climate change five more advanced impact categories are assessed. The results show that from an environmental point of view PEM and alkaline electrolysis are characterized by the lowest results in five out of six impact categories. Supply chains using fossil fuels in contrast have the lowest supply costs; this is true e.g. for steam methane reforming. Solar powered hydrogen production shows low impacts during hydrogen production but high impacts for transport and distribution to Germany. There is no single supply chain that is the most promising for every aspect assessed here. Either costs have to be lowered further or supply chains with selected environmental impacts have to be modified.
State-of-the-art Expansion Planning of Integrated Power, Natural Gas, and Hydrogen Systems
Apr 2022
Publication
Renewable hydrogen is considered key in the transition towards a carbon-neutral future. This is due to its spatio-temporal storage and sector coupling potential which has seen it referred to as energy vector. However many unresolved issues remain regarding hydrogen's large-scale deployment e.g. least-cost production optimal facility siting and overall implications on power and energy systems. Expansion planning provides an option to study these issues in the holistic context of energy systems. To this end this article presents a comprehensive review on state-of-the-art expansion planning models that consider integrated power natural gas and hydrogen systems. We cluster the existing literature in terms of modelling themes and scope study the applied systematic modelling characteristics and conduct an in-depth analysis of the technical model features regarding hydrogen technologies and natural gas infrastructure. Finally we identify and discuss research gaps in the existing literature.
Potential and Economic Analysis of Solar-to-Hydrogen Production in the Sultanate of Oman
Aug 2021
Publication
Hydrogen production using renewable power is becoming an essential pillar for future sustainable energy sector development worldwide. The Sultanate of Oman is presently integrating renewable power generations with a large share of solar photovoltaic (PV) systems. The possibility of using the solar potential of the Sultanate can increase energy security and contribute to the development of the sustainable energy sector not only for the country but also for the international community. This study presents the hydrogen production potential using solar resources available in the Sultanate. About 15 locations throughout the Sultanate are considered to assess the hydrogen production opportunity using a solar PV system. A rank of merit order of the locations for producing hydrogen is identified. It reveals that Thumrait and Marmul are the most suitable locations whereas Sur is the least qualified. This study also assesses the economic feasibility of hydrogen production which shows that the levelized cost of hydrogen (LCOH) in the most suitable site Thumrait is 6.31 USD/kg. The LCOH in the least convenient location Sur is 7.32 USD/kg. Finally a sensitivity analysis is performed to reveal the most significant influential factor affecting the future’s green hydrogen production cost. The findings indicate that green hydrogen production using solar power in the Sultanate is promising and the LCOH is consistent with other studies worldwide.
Can Green Hydrogen Production Be Economically Viable under Current Market Conditions
Dec 2020
Publication
This paper discusses the potential of green hydrogen production in a case study of a Slovenian hydro power plant. To assess the feasibility and eligibility of hydrogen production at the power plant we present an overview of current hydrogen prices and the costs of the power-to-gas system for green hydrogen production. After defining the production cost for hydrogen at the case study hydro power plant we elaborate on the profitability of hydrogen production over electricity. As hydrogen can be used as a sustainable energy vector in industry heating mobility and the electro energetic sectors we discuss the current competitiveness of hydrogen in the heating and transport sectors. Considering the current prices of different fuels it is shown that hydrogen can be competitive in the transport sector if it is unencumbered by various environmental taxes. The second part of the paper deals with hydrogen production in the context of secondary control ancillary service provided by a case study power plant. Namely hydrogen can be produced during the time period when there is no demand for extra electric power within a secondary control ancillary service and thus the economics of power plant operation can be improved.
Nested Decomposition Approach for Dispatch Optimization of Large-Scale, Integrated Electricity, Methane and Hydrogen Infrastructures
Apr 2022
Publication
Energy system integration enables raising operational synergies by coupling the energy infrastructures for electricity methane and hydrogen. However this coupling reinforces the infrastructure interdependencies increasing the need for integrated modeling of these infrastructures. To analyze the cost-efficient sustainable and secure dispatch of applied large-scale energy infrastructures an extensive and non-linear optimization problem needs to be solved. This paper introduces a nested decomposition approach with three stages. The method enables an integrated and full-year consideration of large-scale multi-energy systems in hourly resolution taking into account physical laws of power flows in electricity and gas transmission systems as boundary conditions. For this purpose a zooming technique successively reduces the temporal scope while first increasing the spatial and last the technical resolution. A use case proves the applicability of the presented approach to large-scale energy systems. To this end the model is applied to an integrated European energy system model with a detailed focus on Germany in a challenging transport situation. The use case demonstrates the temporal regional and cross-sectoral interdependencies in the dispatch of integrated energy infrastructures and thus the benefits of the introduced approach.
Everything About Hydrogen Podcast: M&A in the Modern Hydrogen Economy
Sep 2021
Publication
This week we have Christopher Jackson in the hot seat as he catches up with BayoTech CEO Mo Vargas and BayoTech’s new President Michael Koonce to discuss the acquisition of IGX Group. Mergers & Acquisition activity has been growing in the hydrogen space with commentators suggesting the market is maturing faster than expected and customers seeking more integrated solutions. In this episode we look at the IGX acquisition by BayoTech and ask why the deal made sense what it means for the market and other participants and what listeners can learn from the deal to foreshadow future activity.
The podcast can be found on their website
The podcast can be found on their website
Influence of Hydrogen on Grid Investments for Smart Microgrids
Mar 2022
Publication
Electrification of the heat network in buildings together with a rise in popularity of Electric Vehicles (EVs) will result in a need to make investments in the electrical energy infrastructure in order to prevent congestion. This paper discusses the influence of hydrogen in future smart microgrids on these investments. Moreover smart control strategies i.e. EV management and demand response programs are used in this paper to lower the peak of electrical energy demand resulting in the reduction of these investments. Performances of microgrid with different levels of hydrogen penetration are discussed. It is shown that an increase in the level of hydrogen in the microgrid will reduce the electric grid investments costs but is not economically more beneficial than using ‘green’ gas due to the higher total economic costs.
No more items...