Policy & Socio-Economics
Knowledge, Skills, and Attributes Needed for Developing a Hydrogen Engineering Workforce: A Systematic Review of Literature on Hydrogen Engineering Education
May 2024
Publication
Growth in Australia’s demand for engineers is fast outpacing supply. A significant challenge for Australia to achieve high projected low emissions hydrogen export targets by 2030 will be finding engineers with suitable knowledge skills and attributes to deliver hydrogen engineering projects safely and sustainably. This systematic review investigates educational outcomes needed to develop a hydrogen engineering workforce. Sixteen relevant studies published between 2003 and 2023 were identified to explore “What key knowledge skills and attributes support the development of a hydrogen engineering workforce?”. While these studies advocated the need for training and prescribed areas of required knowledge for the low-emissions hydrogen sector there was limited empirical evidence that informed what knowledge skills and attributes are relevant for entry to practice. This finding represents a significant opportunity for researchers to engage with employers and engineering practitioners within emerging low-emissions hydrogen sector capture empirical evidence and inform the design of educational programs.
Cost Reduction in Low-carbon Hydrogen: Effective but Insufficient to Mitigate Carbon Emissions
Jun 2023
Publication
Many countries have announced hydrogen promotion strategies to achieve net zero CO2 emissions around 2050. The cost of producing low-carbon (green and blue) hydrogen has been projected to fall considerably as production is scaled up although more so for green hydrogen than for blue hydrogen. This article uses a global computable general equilibrium (CGE) model to explore whether the cost reduction of green and blue hydrogen production can mitigate the use of fossil fuels and related carbon emissions. The results show that cost reduction can raise low-carbon hydrogen consumption markedly in relative terms but marginally in absolute terms resulting in a modest decrease in fossil fuel use and related carbon emissions. The cost reduction of low-carbon hydrogen slightly lowers the use of coal and gas but marginally increases the use of oil. If regional CO2 taxes are introduced the increase in green hydrogen production is considerably larger than in the case of low-carbon hydrogen cost reduction alone. However if cost reduction in low-carbon hydrogen is introduced in addition to the CO2 tax the emissions from fossil fuels are only marginally reduced. Hence synergy efects between the two measures on emissions are practically absent. A low-carbon hydrogen cost reduction alone is efective but insufcient to have a substantial climate impact. This study also calls for modeling development to capture special user preferences for low-carbon hydrogen related to climate mitigation when phasing in new energy carriers like hydrogen.
Semi-Systematic Literature Review on the Contribution of Hydrogen to Universal Access to Energy in the Rationale of Sustainable Development Goal Target 7.1
Feb 2023
Publication
As part of the United Nations’ (UN) Sustainable Development Goal 7 (SDG7) SDG target 7.1 recognizes universal electrification and the provision of clean cooking fuel as two fundamental challenges for global society. Faltering progress toward SDG target 7.1 calls for innovative technologies to stimulate advancements. Hydrogen has been proposed as a versatile energy carrier to be applied in both pillars of SDG target 7.1: electrification and clean cooking. This paper conducts a semi-systematic literature review to provide the status quo of research on the application of hydrogen in the rationale of SDG 7.1 covering the technical integration pathways as well as the key economic environmental and social aspects of its use. We identify decisive factors for the future development of hydrogen use in the rationale of SDG target 7.1 and by complementing our analysis with insights from the related literature propose future avenues of research. The literature on electrification proposes that hydrogen can serve as a backup power supply in rural off-grid communities. While common electrification efforts aim to supply appliances that use lower amounts of electricity a hydrogen-based power supply can satisfy appliances with higher power demands including electric cook stoves while simultaneously supporting clean cooking efforts. Alternatively with the exclusive aim of stimulating clean cooking hydrogen is proposed to be used as a clean cooking fuel via direct combustion in distribution and utilization infrastructures analogous to Liquid Petroleum Gas (LPG). While expected economic and technical developments are seen as likely to render hydrogen technologies economically competitive with conventional fossil fuels in the future the potential of renewably produced hydrogen usage to reduce climate-change impacts and point-of-use emissions is already evident today. Social benefits are likely when meeting essential safety standards as a hydrogen-based power supply offers service on a high tier that might overachieve SDG 7.1 ambitions while hydrogen cooking via combustion fits into the existing social habits of LPG users. However the literature lacks clear evidence on the social impact of hydrogen usage. Impact assessments of demonstration projects are required to fill this research gap.
Modeling the Long-term Evolution of the Italian Power Sector: The Role of Renewable Resources and Energy Storage Facilities
Feb 2024
Publication
The aim of this study is to investigate the long-term planning of the Italian power sector from 2021 to 2050. The key role of photovoltaic and wind technologies in combination with power-to-power systems based on hydrogen and batteries is investigated. An updated version of the OSeMOSYS tool is used which employs a clustering method for the representation of time-varying input data. First the potential of variable renewable energy sources (VRES) is assessed. A sensitivity analysis is also performed on the temporal resolution of the model to determine an adequate trade-off between the computation time and the accuracy of the results. Then a technoeconomic optimization scenario is carried out resulting in a total net present cost of about 233.7 B€. A high penetration of VRES technologies is foreseen by 2050 with a total VRES installed capacity of 272.9 GW (mainly photovoltaic and onshore wind). Batteries are found to be the preferable energy storage solution in the first part of the energy transition while the hydrogen storage starts to be convenient from about the year 2040. Indeed the role of hydrogen storage becomes fundamental as the VRES penetration increases thanks to its cost-effective long-term storage capability. By 2050 74.6 % of electricity generation will be based on VRES which will also enable a significant reduction in CO2 emissions of about 87 %.
Mapping Hydrogen Initiatives in Italy: An Overview of Funding and Projects
May 2024
Publication
The global momentum towards hydrogen has led to various initiatives aimed at harnessing hydrogen’s potential. In particular low-carbon hydrogen is recognized for its crucial role in reducing greenhouse gas emissions across hard-to-abate sectors such as steel cement and heavy-duty transport. This study focuses on the presentation of all hydrogen-related financing initiatives in Italy providing a comprehensive overview of the various activities and their geographical locations. The examined funding comes from the National Recovery and Resilience Plan (PNRR) from projects directly funded through the Important Projects of Common European Interest (IPCEI) and from several initiatives supported by private companies or other funding sources (hydrogen valleys). Specific calls for proposals within the PNRR initiative outline the allocation of funds focusing on hydrogen production in brownfield areas (52 expected hydrogen production plants by 2026) hydrogen use in hard-to-abate sectors and the establishment of hydrogen refuelling stations for both road (48 refuelling stations by 2026) and railway transport (10 hydrogen-based railway lines). A detailed description of the funded initiatives (150 in total) is presented encompassing their geographical location typology and size (when available) as well as the funding they have received. This overview sheds light on regions prioritising decarbonisation efforts in heavy-duty transport especially along cross-border commercial routes as evident in northern Italy. Conversely some regions concentrate more on local transport typically buses or on the industrial sector primarily steel and chemical industries. Additionally the study presents initiatives aimed at strengthening the national manufacturing capacity for hydrogenrelated technologies alongside new regulatory and incentive schemes for hydrogen. The ultimate goal of this analysis is to foster connections among existing and planned projects stimulate new initiatives along the entire hydrogen value chain raise an awareness of hydrogen among stakeholders and promote cooperation and international competitiveness.
The Making of H2-scapes in the Global South: Political Geography Perspectives on an Emergent Field of Research
Feb 2025
Publication
Clean hydrogen is touted as a cornerstone of the global energy transition. It can help to decarbonize hard-to-electrify sectors ship renewable power over great distances and boost energy security. Clean hydrogen’s appeal is increasingly felt in the Global South where countries seek to benefit from production export and consumption opportunities new infrastructures and technological innovations. These geographies are however in the process of taking shape and their associated power configurations spatialities and socio-ecological consequences are yet to be more thoroughly understood and examined. Drawing on political geography perspectives this article proposes the concept of “hydrogen landscape” – or in short H2-scape – to theorize and explore hydrogen transitions as space-making processes imbued with power relations institutional orders and social meanings. In this endeavor it outlines a conceptual framework for understanding the making of H2-scapes and offers three concrete directions for advancing empirical research on hydrogen transitions in the Global South: (1) H2-scapes as resource frontiers; (2) H2-scapes as port-centered arrangements; and (3) H2-scapes as failure. As hydrogen booms in finances projects and visibility the article illuminates conceptual tools and perspectives to think about and facilitate further research on the emergent political geographies of hydrogen transitions particularly in more uneven unequal and vulnerable Global South landscapes.
Speculative Connections: Port Authorities, Littoral Territories and the Assembling of the Green Hydrogen Frontier
Feb 2025
Publication
This article examines the role of European port authorities in assembling the green hydrogen frontier through the production of speculative connections with prospective hydrogen export zones in the global South. Specifically it analyses the role of a particular discursive tool the pre-feasibility report in fixing the meaning of Namibian territory for the purposes of green hydrogen export disembedding hydrogen products from the social political and ecological bases of their production. We argue that the green hydrogen frontier is fundamentally a speculative project insofar as it both accentuates the productive indeterminacy of green hydrogen as an energy commodity and develops a series of discursive strategies designed to measure map and capture the anticipated value of this commodity. The article’s findings advance geographical debates on energy territory and speculation by demonstrating the role of the port authority - an under-researched actor in the literature on energy transitions - in the reimagination and transformation of littoral territories in the global South.
Challenges and Potentials for Additive Manufacturing of Hydrogen Energy Components: A Review
Mar 2025
Publication
Climate change necessitates the development of sustainable energy systems with hydrogen technologies playing a key role in this transition. Additive manufacturing (AM) offers a significant potential to enhance the efficiency of hydrogen energy components and reduce their costs through rapid prototyping design freedom and functional integration. This review provides the first comprehensive summary of the current state of research on the application of AM processes in the production storage and utilization of hydrogen. It highlights various AM processes such as powder bed fusion directed energy deposition fused filament fabrication and stereolithography for the advancement of hydrogen energy components. Current research trends include the material development multi-material AM hybrid processes and the integration of artificial intelligence and machine learning. At present the technologies presented are mainly at a development stage of TRL 4–5. The next major step towards industrialization is the demonstration of prototypes outside the laboratory.
Everything About Hydrogen Podcast: Mobilizing Capital in Green Hydrogen
Apr 2023
Publication
Continuing from previous episodes about encouraging global investment in green hydrogen Patrick Molloy and Alicia Eastman speak with Ignacio de Calonje Chief Investment Officer IFC Global Infrastructure. Ignacio breaks down the role of the IFC and its relationship with other Multilateral Development Banks (MDBs) to encourage decarbonization and bespoke solutions for the Global South.
The podcast can be found on their website.
The podcast can be found on their website.
Delivering the EU Green Deal: Progress Towards Targets 2025
Jan 2025
Publication
This report provides a comprehensive assessment of progress towards the European Green Deal (EGD) the European Union’s transformative agenda for achieving climate neutrality by 2050. The analysis encompasses 154 quantifiable targets from 44 policy documents between 2019 and 2024 across key sectors such as climate energy circular economy transport agriculture and food ecosystems and biodiversity water soil and air pollution. The study shows that significant achievement has been delivered so far but progress needs to accelerate in many areas. As of mid-2024 32 of the 154 targets are currently “on track” and 64 are identified as “acceleration needed” meaning that more progress is needed to meet the targets on time. Furthermore 15 of the targets are found to be “not progressing” or “regressing” and for 43 of the targets no data is currently available. The timing of the binding policies most of which have been recently agreed and are expected to deliver results in the coming years is a significant factor influencing these assessments. This report integrates all EGD actions and related policies offering an assessment of the EU’s green transition based on robust data and science. It identifies priority areas for intensified efforts to meet short-term implementation goals and contribute to the long-term ambition of a sustainable fair just and climate-neutral Europe by 2050. This collective work serves as a benchmarking tool providing scientifically grounded guidance for future EU policies and programmes.
Sustainable Supply Chain and Industrialisation of Hydrogen Technologies, Summary Report 2024
Jan 2024
Publication
This report delves into the European renewable hydrogen supply chain to offer recommendations for Europe to become a leader in the hydrogen economy.
Challenges and Opportunities in Green Hydrogen Supply Chain through Metaheuristic Optimisation
May 2023
Publication
A comprehensive analysis of the green hydrogen supply chain is presented in this paper encompassing production storage transportation and consumption with a focus on the application of metaheuristic optimization. The challenges associated with each stage are highlighted and the potential of metaheuristic optimization methods to address these challenges is discussed. The primary method of green hydrogen production water electrolysis through renewable energy is outlined along with the importance of its optimization. Various storage methods such as compressed gas liquid hydrogen and material-based storage are covered with an emphasis on the need for optimization to improve safety capacity and performance. Different transportation options including pipelines trucks and ships are explored and factors influencing the choice of transportation methods in different regions are identified. Various hydrogen consumption methods and their associated challenges such as fuel cell performance optimization hydrogen-based heating systems design and energy conversion technology choice are also discussed. The paper further investigates multi-objective approaches for the optimization of problems in this domain. The significant potential of metaheuristic optimization techniques is highlighted as a key to addressing these challenges and improving overall efficiency and sustainability with respect to future trends in this rapidly advancing area.
Evaluation of Regional and Temporal Dynamics in CCUS-Hydrogen Development Pathways: A Data-driven Framework
Dec 2024
Publication
China as both a major energy consumer and the largest carbon emitter globally views carbon capture utilization and storage (CCUS) hydrogen production as a crucial and innovative technology for achieving its dual carbon goals of carbon peaking and carbon neutrality. The development of such technologies requires strong policy guidance making the quantification of policy pathways essential for understanding their effectiveness. This study employs a data-driven framewor integrating LDA topic modeling and the PMC-TE index to analyze the regional and temporal dynamics of CCUS-hydrogen development policies. The research identifies 16 optimal policy topics highlighting gaps in policy design and implementation. The analysis uncovers significant fragmentation in policy pathways with supply-side policies receiving disproportionate attention while demand-side and environmental policies remain under-supported. Regional disparities are evident with wealthier provinces showing higher policy engagement compared to underdeveloped regions. The study also reveals that policy evolution has been largely reactive emphasizing the need for a more proactive and consistent long-term strategy. These findings provide valuable insights for creating more balanced integrated and regionally tailored policy approaches to effectively drive CCUS-hydrogen development in China.
Regional Disparities and Strategic Implications of Hydrogen Production in 27 European Countries
Aug 2024
Publication
This study examines hydrogen production across 27 European countries highlighting disparities due to varying energy policies and industrial capacities. Germany leads with 109 plants followed by Poland France Italy and the UK. Mid-range contributors like the Netherlands Spain Sweden and Belgium also show substantial investments. Countries like Finland Norway Austria and Denmark known for their renewable energy policies have fewer plants while Estonia Iceland Ireland Lithuania and Slovenia are just beginning to develop hydrogen capacities. The analysis also reveals that a significant portion of the overall hydrogen production capacity in these countries remains underutilized with an estimated 40% of existing infrastructure not operating at full potential. Many countries underutilize their production capacities due to infrastructural and operational challenges. Addressing these issues could enhance output supporting Europe’s energy transition goals. The study underscores the potential of hydrogen as a sustainable energy source in Europe and the need for continued investment technological advancements supportive policies and international collaboration to realize this potential.
Expectations for the Role of Hydrogen and Its Derivatives in Different Sectors through Analysis of the Four Energy Scenarios: IEA-STEPS, IEA-NZE, IRENA-PES, and IRENA-1.5◦C
Jan 2024
Publication
Recently worldwide the attention being paid to hydrogen and its derivatives as alternative carbon-free (or low-carbon) options for the electricity sector the transport sector and the industry sector has increased. Several projects in the field of low-emission hydrogen production (particularly electrolysis-based green hydrogen) have either been constructed or analyzed for their feasibility. Despite the great ambitions announced by some nations with respect to becoming hubs for hydrogen production and export some quantification of the levels at which hydrogen and its derived products are expected to penetrate the global energy system and its various demand sectors would be useful in order to judge the practicality and likelihood of these ambitions and future targets. The current study aims to summarize some of the expectations of the level at which hydrogen and its derivatives could spread into the global economy under two possible future scenarios. The first future scenario corresponds to a business-as-usual (BAU) pathway where the world proceeds with the same existing policies and targets related to emissions and low-carbon energy transition. This forms a lower bound for the level of the role of hydrogen and its penetration into the global energy system. The second future scenario corresponds to an emission-conscious pathway where governments cooperate to implement the changes necessary to decarbonize the economy by 2050 in order to achieve net-zero emissions of carbon dioxide (carbon neutrality) and thus limit the rise in the global mean surface temperature to 1.5 ◦C by 2100 (compared to pre-industrial periods). This forms an upper bound for the level of the role of hydrogen and its penetration into the global energy system. The study utilizes the latest release of the annual comprehensive report WEO (World Energy Outlook—edition year 2023 the 26th edition) of the IEA (International Energy Agency) as well as the latest release of the annual comprehensive report WETO (World Energy Transitions Outlook—edition year 2023 the third edition) of the IRENA (International Renewable Energy Agency). For the IEA-WEO report the business-as-usual situation is STEPS (Stated “Energy” Policies Scenario) and the emissions-conscious situation is NZE (Net-Zero Emissions by 2050). For the IRENA-WETO report the business-asusual situation is the PES (Planned Energy Scenario) and the emissions-conscious situation is the 1.5◦C scenario. Through the results presented here it becomes possible to infer a realistic range for the production and utilization of hydrogen and its derivatives in 2030 and 2050. In addition the study enables the divergence between the models used in WEO and WETO to be estimated by identifying the different predictions for similar variables under similar conditions. The study covers miscellaneous variables related to energy and emissions other than hydrogen which are helpful in establishing a good view of how the world may look in 2030 and 2050. Some barriers (such as the uncompetitive levelized cost of electrolysis-based green hydrogen) and drivers (such as the German H2Global initiative) for the hydrogen economy are also discussed. The study finds that the large-scale utilization of hydrogen or its derivatives as a source of energy is highly uncertain and it may be reached slowly given more than two decades to mature. Despite this electrolysis-based green hydrogen is expected to dominate the global hydrogen economy with the annual global production of electrolysis-based green hydrogen expected to increase from 0 million tonnes in 2021 to between 22 million tonnes and 327 million tonnes (with electrolyzer capacity exceeding 5 terawatts) in 2050 depending on the commitment of policymakers toward decarbonization and energy transitions.
Power-to-X Economy: Green E-hydrogen, E-fuels, E-chemicals, and E-materials Opportunities in Africa
Aug 2024
Publication
Africa has enormous potential to produce low-cost e-fuels e-chemicals and e-materials required for complete defossilisation using its abundant renewable resources widely distributed across the continent. This research builds on techno-economic investigations using the LUT Energy System Transition Model and related tools to assess the power-to-X potential in Africa for meeting the local demand and exploring the export potential of power-to-products applications. In this context we analysed the economic viability of exporting green e-fuel echemicals and e-materials from Africa to Europe. We also present the core elements of the Power-to-X Economy i.e. renewable electricity and hydrogen. The results show that hydrogen will likely not be traded simply due to high transport costs. However there is an opportunity for African countries to export e-ammonia e-methanol ekerosene jet fuel e-methane e-steel products and e-plastic to Europe at low cost. The results show that Africa’s low-cost power-to-X products backed by low-cost renewable electricity mainly supplied by solar photovoltaics is the basis for Africa’s vibrant export business opportunities. Therefore the Power-to-X Economy could more appropriately be called a Solar-to-X Economy for Africa. The Power-to-X Economy will foster socio-economic growth in the region including new industrial opportunities new investment portfolios boost income and stimulate local technical know-how thereby delivering a people-driven energy economy. Research on the topic in Africa is limited and at a nascent stage. Thus more studies are required in future to guide investment decisions and cater to policy decisions in achieving carbon neutrality with e-fuels e-chemicals and e-materials.
Green Hydrogen Production Plants: A Techno-economic Review
Aug 2024
Publication
Green hydrogen stands as a promising clean energy carrier with potential net-zero greenhouse gas emissions. However different system-level configurations for green hydrogen production yield different levels of efficiency cost and maturity necessitating a comprehensive assessment. This review evaluates the components of hydrogen production plants from technical and economic perspectives. The study examines six renewable energy sources—solar photovoltaics solar thermal wind biomass hydro and geothermal—alongside three types of electrolyzers (alkaline proton exchange membrane and solid oxide electrolyzer cells) and five hydrogen storage methods (compressed hydrogen liquid hydrogen metal hydrides ammonia and liquid organic hydrogen carriers). A comprehensive assessment of 90 potential system configurations is conducted across five key performance indicators: the overall system cost efficiency emissions production scale and technological maturity. The most cost-effective configurations involve solar photovoltaics or wind turbines combined with alkaline electrolyzers and compressed hydrogen storage. For enhanced system efficiency geothermal sources or biomass paired with solid oxide electrolyzer cells utilizing waste heat show significant promise. The top technologically mature systems feature combinations of solar photovoltaics wind turbines geothermal or hydroelectric power with alkaline electrolyzers using compressed hydrogen or ammonia storage. The highest hydrogen production scales are observed in systems with solar PV wind or hydro power paired with alkaline or PEM electrolyzers and ammonia storage. Configurations using hydro geothermal wind or solar thermal energy sources paired with alkaline electrolyzers and compressed hydrogen or liquid organic hydrogen carriers yield the lowest life cycle GHG emissions. These insights provide valuable decision-making tools for researchers business developers and policymakers guiding the optimization of system efficiency and the reduction of system costs.
Liquid Air Energy Storage (LAES) Integrated into the Hydrogen Economy - Techno-economic Optimization of Waste Cold Recovery from Liquid Hydrogen Regasification
Jul 2025
Publication
A liquid air energy storage (LAES) system is a promising Carnot battery configuration capable of efficiently recovering waste heat and cold energy carriers. Among these liquid hydrogen (LH₂) regasification presents a significant opportunity due to its high exergy content and its regasification temperature which aligns well with the liquid air liquefaction process. While most existing studies focus on integrating LAES with liquid natural gas (LNG) regasification or improving hydrogen liquefaction via liquid air regasification this work takes a novel approach by enhancing liquid air liquefaction through the utilization of waste cold from LH₂ regasification. Additionally this study explores an economic innovation the valorization of clean dry air discharged by LAES which has not been extensively examined in prior literature. A novel LAES configuration is proposed and subjected to a techno-economic analysis comparing its performance with a stand-alone LAES system. Results show that the proposed integration increases round-trip efficiency by 15 % reduces the levelized cost of storage by 60 % and achieves a payback period of under 10 years. These findings provide valuable insights for both academia and industry advancing the development of more efficient and economically viable LAES systems.
Spatial Optimization Strategies for China's Hydrogen Infrastructure Industry Chain
Oct 2024
Publication
Promoting the development of China’s hydrogen energy industry is crucial for achieving green energy transition. However existing research lacks systematic studies on the spatial layout of the hydrogen industry chain. This study constructed a comprehensive theoretical framework encompassing hardware infrastructure software systems and soft power. Using multi-source heterogeneous data GIS analysis and NVivo text coding methods the current regional layout and challenges of China’s hydrogen infrastructure industry chain were systematically evaluated. The findings determined that economically developed eastern regions lead in infrastructure and soft power while central and western regions leverage their resource and manufacturing advantages. Major challenges include regional imbalances in hardware infrastructure uneven distribution of soft power and misalignment between software systems and actual needs. Analysis of the “14th Five-Year Plan” of various regions elucidated deep insights into the diversity of local hydrogen energy development strategies identifying five types of hydrogen cities: resource-advantaged market-oriented regionally collaborative innovation-driven and policy-supported. Accordingly strategies to enhance industry chain synergy clarify city roles and optimize regional ecosystems were proposed. It is recommended to integrate hydrogen infrastructure with urban planning and incorporate environmental impact assessments into spatial optimization decisions. This study provides a systematic analytical framework and progressive policy recommendations for the efficient and green layout of China’s hydrogen infrastructure offering important implications for the sustainable development of the hydrogen industry and other rapidly developing economies.
Hydrogen Materials and Technologies in the Aspect of Utilization in the Polish Energy Sector
Nov 2024
Publication
Currently modern hydrogen technologies due to their low or zero emissions constitute one of the key elements of energy transformation and sustainable development. The growing interest in hydrogen is driven by the European climate policy aimed at limiting the use of fossil fuels for energy purposes. Although not all opinions regarding the technical and economic potential of hydrogen energy are positive many prepared forecasts and analyses show its prospective importance in several areas of the economy. The aim of this article is to provide a comprehensive review of modern materials current hydrogen technologies and strategies and show the opportunities problems and challenges Poland faces in the context of necessary energy transformation. The work describes the latest trends in the production transportation storage and use of hydrogen. The environmental social and economic aspects of the use of green hydrogen were discussed in addition to the challenges and expectations for the future in the field of hydrogen technologies. The main goals of the development of the hydrogen economy in Poland and the directions of actions necessary to achieve them were also presented. It was found that the existence of the EU CO2 emissions allowance trading system has a significant impact on the costs of hydrogen production. Furthermore the production of green hydrogen will become economically justified as the costs of energy obtained from renewable sources decrease and the costs of electrolysers decline. However the realisation of this vision depends on the progress of scientific research and technical innovations that will reduce the costs of hydrogen production. Government support mechanisms for the development of hydrogen infrastructure and technologies will also be of key importance.
Near-term Infrastructure Rollout and Investment Strategies for Net-zero Hydrogen Supply Chains
Feb 2024
Publication
Low-carbon hydrogen plays a key role in European industrial decarbonization strategies. This work investigates the cost-optimal planning of European low-carbon hydrogen supply chains in the near term (2025–2035) comparing several hydrogen production technologies and considering multiple spatial scales. We focus on mature hydrogen production technologies: steam methane reforming of natural gas biomethane reforming biomass gasification and water electrolysis. The analysis includes carbon capture and storage for natural gas and biomass-derived hydrogen. We formulate and solve a linear optimization model that determines the costoptimal type size and location of hydrogen production and transport technologies in compliance with selected carbon emission targets including the EU fit for 55 target and an ambitious net-zero emissions target for 2035. Existing steam methane reforming capacities are considered and optimal carbon and biomass networks are designed. Findings identify biomass-based hydrogen production as the most cost-efficient hydrogen technology. Carbon capture and storage is installed to achieve net-zero carbon emissions while electrolysis remains costdisadvantageous and is deployed on a limited scale across all considered sensitivity scenarios. Our analysis highlights the importance of spatial resolution revealing that national perspectives underestimate costs by neglecting domestic transport needs and regional resource constraints emphasizing the necessity for highly decarbonized infrastructure designs aligned with renewable resource availabilities.
Investments in Green Hydrogen as a Flexibility Source for the European Power System by 2050: Does it Pay Off?
Oct 2024
Publication
The European Union aims to deploy a high share of renewable energy sources in Europe’s power system by 2050. Large-scale intermittent wind and solar power production requires flexibility to ensure an adequate supply–demand balance. Green hydrogen (GH) can increase power systems’ flexibility and decrease renewable energy production’s curtailment. However investing in GH is costly and dependent on electricity prices which are important for operational costs in electrolysis. Moreover the use of GH for power system flexibility might not be economically viable if there is no hydrogen demand from the hydrogen market. If so questions would arise as to what would be the incentives to introduce GH as a source of flexibility in the power system and how would electrolyzer costs hydrogen demand and other factors affect the economic viability of GH usage for power system flexibility. The paper implements a European power system model formulated as a stochastic program to address these questions. The authors use the model to compare various instances with hydrogen in the power system to a no-hydrogen instance. The results indicate that by 2050 deployment of approximately 140 GW of GH will pay off investments and make the technology economically viable. We find that the price of hydrogen is estimated to be around €30/MWh.
An Overview of Hydrogen Valleys: Current Status, Challenges and their Role in Increased Renewable Energy Penetration
Sep 2024
Publication
Renewable hydrogen is a flexible and versatile energy vector that can facilitate the decarbonization of several sectors and simultaneously ease the stress on the electricity grids that are currently being saturated with intermittent renewable power. But hydrogen technologies are currently facing limitations related to existing infrastructure limitations available markets as well as production storage and distribution costs. These challenges will be gradually addressed through the establishment operation and scaling-up of hydrogen valleys. Hydrogen valleys are an important stepping stone towards the full-scale implementation of the hydrogen economy with the target to foster sustainability lower carbon emissions and derisk the associated hydrogen technologies. These hydrogen ecosystems integrate renewable energy sources efficient hydrogen production storage transportation technologies as well as diverse end-users within a defined geographical region. This study offers an overview of the hydrogen valleys concept analyzing the critical aspects of their design and the key segments that constitute the framework of a hydrogen valley. А holistic overview of the key characteristics of a hydrogen valley is provided whereas an overview of key on-going hydrogen valley projects is presented. This work underscores the importance of addressing challenges related to the integration of renewable energy sources into electricity grids as well as scale-up challenges associated with economic and market conditions society awareness and political decision-making.
Risky Business? Evaluating Hydrogen Partnerships Established by Germany, The Netherlands, and Belgium
Dec 2023
Publication
Following the introduction of the EU’s Hydrogen Strategy in 2020 as part of the European Green Deal some EU member states have deployed a very active hydrogen diplomacy. Germany The Netherlands and Belgium have been the most active ones establishing no less than 40 bilateral hydrogen trade partnerships with 30 potential export countries in the last three years. However concerns have been voiced about whether such hydrogen trade relationships can be economically feasible geopolitically wise environmentally sustainable and socially just. This article therefore evaluates these partnerships considering three risk dimensions: economic political and sustainability (covering both environmental and justice) risks. The analysis reveals that the selection of partner countries entails significant trade-offs. Four groups of partner countries can be identified based on their respective risk profile: “Last Resorts” “Volatile Ventures” “Strategic Gambits” and “Trusted Friends”. Strikingly less than one-third of the agreements are concluded with countries that fall within the “Trusted Friends” category which have the lowest overall risk profile. These findings show the need for policy makers to think much more strategically about which partnerships to pursue and to confront tough choices about which risks and trade-offs they are willing to accept.
Review of the Hydrogen Supply Chain and Use in Africa
Oct 2024
Publication
The high potential in renewable energy sources (RES) and the availability of strategic minerals for green hydrogen technologies place Africa in a promising position for the development of a climate-compatible economy leveraging on hydrogen. This study reviews the potential hydrogen value chain in Africa considering production and final uses while addressing perspectives on policies possible infrastructures and facilities for hydrogen logistics. Through scientific studies research and searching in relevant repositories this review features the collection analysis of technical data and georeferenced information about key aspects of the hydrogen value chain. Detailed maps and technical data for gas transport infrastructure and liquefaction terminals in the continent are reported to inform and elaborate findings about readiness for hydrogen trading and domestic use in Africa. Specific maps and technical data have been also collected for the identification of potential hydrogen offtakers focusing on individual industrial installations to produce iron and steel chemicals and oil refineries. Finally georeferenced data are presented for main road and railway corridors as well as for most important African ports as further end-use and logistic platforms. Beyond technical information this study collects and discusses more recent perspectives about policies and implementation initiatives specifically addressing hydrogen production logistics and final use also introducing potential criticalities associated with environmental and social impacts.
Power and Green Hydrogen Trade Potential between North African and European Countries: Conditions, Challenges, and Sustainability Prospects
Dec 2024
Publication
This study investigates the implications of hydrogen demand and trade between Europe and North Africa emphasizing how renewable energy system (RES) capacity limitations impact both regions. Growing hydrogen demand for decarbonization has fueled interest in North Africa’s potential to export green hydrogen to Europe. Using the eTIMES-EUNA model this study examines how demand trade and RES development challenges shape the energy landscapes of both regions. The findings indicate that hydrogen demand amplifies renewable electricity requirements in both regions with Europe particularly benefiting from importing hydrogen to alleviate additional RES capacity installation. Hydrogen trade reduces overall costs by 1 % yet it shifts a considerable financial burden onto North Africa demanding a rapid RES capacity expansion at a rate significantly higher than the current pace. Slower RES development in North Africa could hinder the region’s ability to meet both domestic and export targets thereby complicating Europe’s hydrogen sourcing strategies which are also challenged by social acceptance issues that limit RES deployment. These constraints in Europe necessitate adjustments to the technological mix and place additional pressure on North Africa to increase production. Furthermore the varying implications and stakes at the national level highlight the need for further analysis as individual countries may prioritize their own interests potentially leading to conflicts with neighboring nations under different development schemes. Consequently the results underscore the importance of coordinated financial and policy support to ensure equitable trade that aligns with both regions’ sustainability goals.
Environmental and Climate Impacts of a Large-scale Deployment of Green Hydrogen in Europe
Apr 2024
Publication
Green hydrogen is expected to play a vital role in decarbonizing the energy system in Europe. However large-scale deployment of green hydrogen has associated potential trade-offs in terms of climate and other environmental impacts. This study aims to shed light on a comprehensive sustainability assessment of this large-scale green hydrogen deployment based on the EMPIRE energy system modeling compared with other decarbonization paths. Process-based Life Cycle Assessment (LCA) is applied and connected with the output of the energy system model revealing 45% extra climate impact caused by the dedicated 50% extra renewable infrastructure to deliver green hydrogen for the demand in the sectors of industry and transport in Europe towards 2050. Whereas the analysis shows that green hydrogen eventually wins on the climate impact within four designed scenarios (with green hydrogen with blue hydrogen without green hydrogen and baseline) mainly compensated by its clean usage and renewable electricity supply. On the other hand green hydrogen has a lower performance in other environmental impacts including human toxicity ecotoxicity mineral use land use and water depletion. Furthermore a monetary valuation of Life Cycle Impact (LCI) is estimated to aggregate 13 categories of environmental impacts between different technologies. Results indicate that the total monetized LCI cost of green hydrogen production is relatively lower than that of blue hydrogen. In overview a large-scale green hydrogen deployment potentially shifts the environmental pressure from climate and fossil resource use to human health mineral resource use and ecosystem damage due to its higher material consumption of the infrastructure.
Everything About Hydrogen Podcast: State of the Union with the Everything About Hydrogen Team
Dec 2024
Publication
Back by popular demand Christopher Jackson Alicia Eastman and Patrick Molloy speak about the industry highlights and lowlights expectations for 2025 and what we can do to improve outcomes across the board. Equal parts sweepingly generalist and mind numbing minutiae create the perfect pundit cocktail. Wallow in the bad news and celebrate the bright sides together.
The podcast can be found on their website.
The podcast can be found on their website.
Regional Capabilities and Hydrogen Adoption Barriers
Dec 2023
Publication
Hydrogen is gaining importance to decarbonize the energy system and tackle the climate crisis. This exploratory study analyzes three focus groups with representatives from relevant organizations in a Northern German region that has unique beneficial characteristics for the transition to a hydrogen economy. Based upon this data (1) a category system of innovation adoption barriers for hydrogen technologies is developed (2) decision levels associated with the barriers are identified (3) detailed insights on how decision levels contribute to the adoption barriers are provided and (4) the barriers are evaluated in terms of their importance. Our analysis adds to existing literature by focusing on short-term barriers and exploring relevant decision levels and their associated adoption barriers. Our main results comprise the following: flaws in the funding system complex approval procedures lack of networks and high costs contribute to hydrogen adoption barriers. The (Sub-)State level is relevant for the uptake of the hydrogen economy. Regional entities have leeway to foster the hydrogen transition especially with respect to the distribution infrastructure. Funding policy technological suitability investment and operating costs and the availability of distribution infrastructure and technical components are highly important adoption barriers that alone can impede the transition to a hydrogen economy.
The Transition to an Eco-Friendly City as a First Step Toward Climate Neutrality with Green Hydrogen
Mar 2025
Publication
A city of the future will need to be eco-friendly while meeting general social and economic requirements. Hydrogen-based technologies provide solutions for initially limiting CO2 emissions with prospects indicating complete decarbonization in the future. Cities will need to adopt and integrate these technologies to avoid a gap between the development of hydrogen production and its urban application. Achievable results are analyzed by injecting hydrogen into the urban methane gas network initially in small proportions but gradually increasing over time. This paper also presents a numerical application pertaining to the city of Bucharest Romania—a metropolis with a population of 2.1 million inhabitants. Although the use of fuel cells is less advantageous for urban transport compared to electric battery-based solutions the heat generated by hydrogen-based technologies such as fuel cells can be efficiently utilized for residential heating. However storage solutions are required for residential consumption separate from that of urban transport along with advancements in electric transport using existing batteries which necessitate a detailed economic assessment. For electricity generation including cogeneration gas turbines have proven to be the most suitable solution. Based on the analyzed data the paper synthesizes the opportunities offered by hydrogen-based technologies for a city of the future.
Hydrogen for a Sustainable Europe
Nov 2024
Publication
This brochure provides a detailed overview of the EU’s funding mechanisms and an inspiring look at real projects managed by CINEA. These examples illustrate how diverse stakeholders from industry leaders to research institutions are translating hydrogen ambitions into impactful on-the-ground solutions that address both technological and societal needs.
Designing Effective Hydrogen Markets: Policy Recommendations from Electricity and Gas Market Reform
Aug 2025
Publication
For low-carbon hydrogen to become a viable decarbonization solution the creation of a robust and effective market is essential. This paper examines the applicability of market reforms from the renewable energy natural gas and liquefied natural gas (LNG) sectors with a focus on pricing mechanisms business models and infrastructure access to facilitate hydrogen market development. Applying the Structure-Conduct-PerformanceRegulation (SCP-R) framework and informed by stakeholder insights we identify critical enablers for advancing the hydrogen market formation. Our analysis highlights the importance of innovative pricing strategies and regulatory measures incentivizing investment and managing risks. Establishing a market reference price for low-carbon hydrogen — akin to benchmarks in the natural gas and LNG sectors—is critical for ensuring transparency predictability and regional adaptability in trade. Additionally customized business models are also needed to mitigate volume risks for producers. Government interventions such as offtake agreements and the development of hydrogen hubs are indispensable for fostering competition and driving decarbonization.
The Global Yet Local Nature of Energy Imaginaries: The Cases of Dutch and Spanish Hydrogen Valleys
Mar 2025
Publication
Hydrogen valleys are envisaged (imagined) integrated industrial systems where hydrogen is produced stored and utilized. Here we show how hydrogen valleys as sociotechnical imaginaries are differentiated in terms of their specific configurations but homogenous in terms of reflecting the interests of large industrial fossil fuel suppliers and consumers. This path dependence is anticipated in sociotechnical transitions theory which emphasises the power of incumbents with vested interests to maintain basic templates or regimes of production and consumption. The simultaneously heterogeneous and homogenous nature of hydrogen valley imaginaries can be thought of as a form of glocalisation for which we draw on Roudometof's theory of glocalisation as involving the local refraction of diffusing global tendencies. To illustrate this we compare two hydrogen valleys one in the north of the Netherlands and one in southern Spain. In the north Netherlands the hydrogen valley imaginary comprises use of offshore windpower to electrolyse hydrogen for transport fuel and as feedstock to heavy industry in proximate regions including northern Germany and Belgium. This is consistent with existing gas distribution networks connecting industrial consumers. In the southern Spanish case the imaginary positions Spain as a major exporter of green hydrogen to the rest of Europe via onshore renewable electrolysis with export including via ocean tankers and chemical refining in existing infrastructure in Rotterdam. Overall the study explores empirically theoretically-informed themes concerning the interrelationship of mutually supportive local and global imaginaries – hence our term glocalised imaginaries.
Pieces of a Jigsaw: Opportunities and Challenges in the Nascent Australian Hydrogen Mobility Market
Mar 2023
Publication
Mobility has been a prominent target for proponents of the hydrogen economy. Given the complexities involved in the mobility value chain actors hoping to participate in this nascent market must overcome a range of challenges relating to the availability of vehicles the co-procurement of supporting infrastructure a favourable regulatory environment and a supportive community among others. In this paper we present a state-of-play account of the nascent hydrogen mobility market in Victoria Australia drawing on data from a workshop (N ¼ 15) and follow-up interviews (n ¼ 10). We interpret findings through a socio-technical framework to understand the ways in which fuel cell electric vehicles (FCEVs)dand hydrogen technologies more generallydare conceptualised by different stakeholder groups and how these conceptualisations mediate engagement in this unfolding market. Findings reveal prevailing efforts to make sense of the FCEV market during a period of considerable institutional ambiguity. Discourses embed particular worldviews of FCEV technologies themselves in addition to the envisioned roles the resultant products and services will play in broader environmental and energy transition narratives. Efforts to bring together stakeholders representing different areas of the FCEV market should be seen as important enablers of success for market participants.
Water Electrolysis and Hydrogen in the European Union - Status Report on Technology Development, Trends, Value Chains & Markets
Jan 2024
Publication
This report is an output of the Clean Energy Technology Observatory (CETO) and is an update of the “Water electrolysis and hydrogen in the European Union” 2023 CETO report. CETO’s objective is to provide an evidencebased analysis feeding the policy making process and hence increasing the effectiveness of R&I policies for clean energy technologies and solutions. It monitors EU research and innovation activities on clean energy technologies needed for the delivery of the European Green Deal; and assesses the competitiveness of the EU clean energy sector and its positioning in the global energy market. CETO is being implemented by the Joint Research Centre for DG Research and Innovation Energy in coordination with DG Energy.
Sustainability Analysis of the Global Hydrogen Trade Network from a Resilience Perspective: A Risk Propagation Model Based on Complex Networks
Jul 2025
Publication
Hydrogen is being increasingly integrated into the international trade system as a clean and flexible energy carrier motivated by the global energy transition and carbon neutrality objectives. The rapid expansion of the global hydrogen trade network has simultaneously exposed several sustainability challenges including a centralized structure overdependence on key countries and limited resilience to external disruptions. Based on this we develop a risk propagation model that incorporates the absorption capacity of nodes to simulate the propagation of supply shortage risks within the global hydrogen trade network. Furthermore we propose a composite sustainability index constructed from structural economic and environmental resilience indicators enabling a systematic assessment of the network’s sustainable development capacity under external shock scenarios. Findings indicate the following: (1) The global hydrogen trade network is undergoing a structural shift from a Western Europe-dominated unipolar configuration to a more polycentric pattern. Countries such as China and Singapore are emerging as key hubs linking Eurasian regions with trade relationships among nations becoming increasingly dense and diversified. (2) Although supply shortage shocks trigger structural disturbances economic losses and risks of carbon rebound their impacts are largely concentrated in a limited number of hub countries with relatively limited disruption to the overall sustainability of the system. (3) Countries exhibit significant heterogeneity in structural economic and environmental resilience. Risk propagation demonstrates an uneven pattern characterized by hub-induced disruptions chain-like transmission and localized clustering. Accordingly policy recommendations are proposed including the establishment of a polycentric coordination mechanism the enhancement of regional emergency coordination mechanisms and the advancement of differentiated capacity-building efforts.
Distributed Waste-to-hydrogen Refuelling Station Implementation in South Africa: Techno-economic-socio-political and Environmental Indications
Feb 2025
Publication
The combustion of liquid fossil fuels in the transportation sector disposal and incineration of municipal solid waste (MSW) are the main sources of greenhouse gas emissions in cities across the world. In an effort to decarbonize the transportation sector the South African government is dedicated to advancing green trans portation through the hydrogen economy. Waste-to-hydrogen production can simultaneously achieve the goals of green transportation and waste management through widespread availability of hydrogen refuelling stations. This study assesses the techno-economic and environmental viability of waste-to-hydrogen refuelling stations in five selected South Africa cities. The refuelling stations’ capacity was determined based on assumption that a 5 kg hydrogen-fuel-cell vehicle is refuelled per day. The economic feasibility was premised on net present value (NPV) payback period (PBP) internal rate of return (IRR) and levelized cost of hydrogen refuelling (LCOHr). The environmental analysis was based on ecological efficiency and carbon emission reduction potential. Some of the main findings indicate that the City of Tshwane and City of Johannesburg have refuelling station capacities of 356 thousand kg/day H2 and 395 thousand kg/day H2 respectively. Economically the project is viable with positive NPV between 1.099 and 8.0563 Billion $ LCOHr in the range of 3.99 $/kg - 5.63 $/kg PBP of 9.03–13.74 years and IRR of 18.16 %–39.88 %. An ecological efficiency of 99.982 % was obtained which in dicates an environmentally friendly system with the potential to save 1439 million litres and 1563 million litres of diesel fuel and gasoline respectively capable of preventing about 4 kilo-tons of CO2 into the atmosphere annually. Sensitivity analysis indicates that reforming efficiency selling price of hydrogen and station capacity are crucial parameters with great influence on the economic profitability of waste-to-hydrogen refuelling station.
Green Hydrogen Supply Chain Decision-Making and Contract Optimization Under Uncertainty: A Pessimistic-Based Perspective
Jul 2025
Publication
To address the issue of excessive pessimism caused by demand and supply uncertainties in the green hydrogen supply chain this study develops a two-tier green hydrogen supply chain model comprising upstream hydrogen production stations and downstream hydrogen refueling stations. This research work investigates optimal ordering and production strategies under stochastic demand and supply conditions. Additionally option contracts are introduced to share the risks associated with the stochastic output of green hydrogen. This study shows the following: (1) Under decentralized decision-making the optimal ordering quantity when the hydrogen refueling station is excessively pessimistic is not necessarily lower than the optimal ordering quantity when it is in a rational state and hydrogen production stations will only operate when the degree of excessive pessimism is relatively low. (2) The initial option ordering quantity is always larger than the minimum execution quantity under the option contract; higher first-order option prices and lower second-order option prices can help to increase the initial option ordering quantity. (3) The option contract is effective in circumventing the negative impact of excessive pessimism at hydrogen production stations on planned production quantities. This study addresses the gap in the existing research regarding excessively pessimistic behaviors and the application of option contracts within the green hydrogen supply chain providing both theoretical insights and practical guidance for decision-making optimization. This advancement further promotes the sustainable development of the green hydrogen industry.
Breakthrough Position and Trajectory of Sustainable Energy Technology
Jan 2025
Publication
This research aims to determine the position and the breakthrough trajectory of sustainable energy technologies. Fine-grained insights into these breakthrough positions and trajectories are limited. This research seeks to fill this gap by analyzing sustainable energy technologies’ breakthrough positions and trajectories in terms of development application and upscaling. To this end the breakthrough positions and trajectories of seven sustainable energy technologies i.e. hydrogen from seawater electrolysis hydrogen airplanes inland floating photovoltaics redox flow batteries hydrogen energy for grid balancing hydrogen fuel cell electric vehicles and smart sustainable energy houses are analyzed. This is guided by an extensively researched and literature-based model that visualizes and describes these technologies’ experimentation and demonstration stages. This research identifies where these technologies are located in their breakthrough trajectory in terms of the development phase (prototyping production process and organization and niche market creation and sales) experiment and demonstration stage (technical organizational and market) the form of collaboration (public–private private–public and private) physical location (university and company laboratories production sites and marketplaces) and scale-up type (demonstrative and first-order and second-order transformative). For scientists this research offers the opportunity to further refine the features of sustainable energy technologies’ developmental positions and trajectories at a detailed level. For practitioners it provides insights that help to determine investments in various sustainable energy technologies.
Mapping China's Hydrogen Energy City Clusters: Old and New Synergistic Effects
Feb 2025
Publication
Hydrogen is a pivotal driver of the green economy and clean energy transition and global efforts are underway to scale up hydrogen technology and its adoption. This study explores China’s hydrogen fuel cell vehicle (HFCV) city clusters policy launched in 2021 involving five clusters consisting of 44 cities to boost the country’s hydrogen economy. Drawing on cluster theory collaborative network literature and evolutionary economic geography we investigate the connections between hydrogen city clusters and historical geographically based and industrial-based clusters as well as the formation of collaborative networks among cities. By comparing these heterogeneous city networks our findings highlight the competitive edge of HFCV city clusters that capitalize on resource and innovation complementarity instead of relying solely on geographical positioning or pre-existing collaborations. The results of the Exponential Random Graph Analysis reveal that existing clusters economic strength of cities and their strategic positions within the hydrogen industrial chain significantly shape collaborative networks. This study contributes to cluster policy research by examining how China’s HFCV city clusters integrate historical advantages while fostering synergies with less connected cities offering valuable insights into inter-city collaboration and strategies for sustainable industrial development.
Environmental Life-cycle Analysis of Hydrogen Technology in the United States
Oct 2024
Publication
Hydrogen is a zero-carbon energy carrier with potential to decarbonize industrial and transportation sectors but its life-cycle greenhouse gas (GHG) emissions depend on its energy supply chain and carbon management measures (e.g. carbon capture and storage). Global support for clean hydrogen production and use has recently intensified. In the United States Congress passed several laws that incentivize the production and use of renewable and low-carbon hydrogen such as the Bipartisan Infrastructure Law (BIL) in 2021 and the Inflation Reduction Act (IRA) in 2022 which provides tax credits of up to $3/kg depending on the carbon intensity of the produced hydrogen. A comprehensive life-cycle accounting of GHG emissions associated with hydrogen production is needed to determine the carbon intensity of hydrogen throughout its value chain. In the United States Argonne’s R&D GREET® (Greenhouse Gases Regulated emissions and Energy use in Technologies) model has been widely used for hydrogen carbon intensity calculations. This paper describes the major hydrogen technology pathways considered in the United States and provides data sources and carbon intensity results for each of the hydrogen production and delivery pathways using consistent system boundaries and most recent technology performance and supply chain data.
Advanced Biofuels in the European Union - Status Report on Technology Development, Trends, Value Chains & Markets
Jan 2024
Publication
The report provides a detailed examination of the biofuel sector and advanced biofuel sector within the European Union (EU) focusing on its economic environmental and technological dimensions. The report is an update of the CETO 2023 report. The EU is highlighted as the central point of view with specific references to EU Member States showcasing their roles in the sector. The report is essential for understanding the multifaceted role of advanced biofuels in the EU's strategy to reduce greenhouse gas emissions and enhance energy security. The report underscores the EU's commitment through various policies and directives such as the Renewable Energy Directive and its amendment which set sustainability criteria and define advanced biofuels. The report details the EU's leadership in scientific publications and high-value patents in the advanced biofuel sector. It gives insights into the current state of innovation and the areas where the EU is leading. The report delves into technological advancements and challenges in the biofuel sector. It discusses various advanced biofuel technologies currently being developed and commercialised. The report covers the trends in installed capacity and production of biofuels within the EU providing a comparative analysis with other regions. It details the production capacities and operational plants for bioethanol and biodiesel. The report provides comprehensive data on the economic contributions of the advanced biofuel sector to the EU's economy. The report details the sector's impact on GDP and employment highlighting the significant contributions from operation and maintenance feedstock supply construction and equipment manufacturing. The report emphasises the importance of continued investment technological development and international collaboration to ensure the advanced biofuel sector's growth and sustainability.
Bridging the Gap: Public Perception and Acceptance of Hydrogen Technology in the Philippines
Jan 2025
Publication
This study examines the effects of transitioning to hydrogen production in the National Capital Region (NCR) and Palawan Province Philippines focusing on technology environment and stakeholder impact. This research conducted through a July 2022 survey aimed to assess public awareness knowledge risk perception and acceptance of hydrogen and its environmentally friendly variant green hydrogen infrastructure. Disparities were found between urban NCR and rural Palawan with lower awareness in Palawan. Safety concerns were highlighted with NCR respondents generally considering hydrogen production safe while Palawan respondents had mixed feelings particularly regarding nuclear-based hydrogen generation. This report emphasizes the potential ecological advantages of hydrogen technology but highlights potential issues concerning water usage and land impacts. It suggests targeted public awareness campaigns robust safety assurance programs regional pilot projects and integrated environmental plans to facilitate the seamless integration of hydrogen technology into the Philippines’ energy portfolio. This collective effort aims to help the country meet climate action obligations foster sustainable development and enhance energy resilience.
Modelling of a "Hydrogen Valley" to Investigate the Impact of a Regional Pipeline for Hydrogen Supply
Jul 2024
Publication
Introduction: The transition towards electrolysis-produced hydrogen in refineries and chemical industries is expected to have a potent impact on the local energy system of which these industries are part. In this study three urban areas with hydrogen-intense industries are studied regarding how the energy system configuration is affected if the expected future hydrogen demand is met in each node individually as compared to forming a “Hydrogen Valley” in which a pipeline can be used to trade hydrogen between the nodes.<br/>Method: A technoeconomic mixed-integer linear optimization model is used to study the investments in and dispatch of the included technologies with an hourly time resolution while minimizing the total system cost. Four cases are investigated based on the availability of offshore wind power and the possibility to invest in a pipeline.<br/>Results: The results show that investments in a pipeline reduces by 4%–7% the total system cost of meeting the demands for electricity heating and hydrogen in the cases investigated. Furthermore investments in a pipeline result in greater utilization of local variable renewable electricity resources as compared to the cases without the possibility to invest in a pipeline.<br/>Discussion: The different characteristics of the local energy systems of the three nodes in local availability of variable renewable electricity grid capacity and available storage options compared to local demands of electricity heating and hydrogen are found to be the driving forces for forming a Hydrogen Valley.
Geotechnical Properties of Carbonate Sands on the Coast of Ceará: Implications for Offshore Wind Foundations and Green Hydrogen Initiatives
May 2025
Publication
The coastal region of Ceará Brazil is expected to host offshore wind farms aimed at producing green hydrogen (GH2) through electrolysis. However the viability and cost of these developments may be affected by the mechanical behaviour of the marine subsoil which is largely composed of carbonate sands. These sediments are known for their complex and variable geotechnical properties which can influence the foundation performance. This study investigates the geotechnical characteristics of carbonate sands in comparison with quartz sands to support the design of offshore wind turbine foundations. Field testing using the Ménard pressuremeter and laboratory analyses including particle size distribution microscopy X-ray fluorescence calcimetry direct shear and triaxial testing were performed to determine the key strength and stiffness parameters. The results show substantial differences between carbonate and quartz sands particularly in terms of the stiffness and friction angle with notable variability even within the same material type. These findings highlight the need for site-specific characterisation in offshore foundation design. This study contributes data that can improve geotechnical risk assessments and assist in selecting appropriate foundation solutions under local conditions supporting the planned offshore wind energy infrastructure essential to Ceará’s green hydrogen strategy.
Decarbonizing Rural Off-Grid Areas Through Hybrid Renewable Hydrogen Systems: A Case Study from Turkey
Sep 2025
Publication
Access to renewable energy is vital for rural development and climate change mitigation. The intermittency of renewable sources necessitates efficient energy storage especially in off-grid applications. This study evaluates the technical economic and environmental performance of an off-grid hybrid system for the rural settlement of Soma Turkey. Using HOMER Pro 3.14.2 software a system consisting of solar wind battery and hydrogen components was modeled under four scenarios with Cyclic Charging (CC) and Load Following (LF) control strategies for optimization. Life cycle assessment (LCA) and hydrogen leakage impacts were calculated separately through MATLAB R2019b analysis in accordance with ISO 14040 and ISO 14044 standards. Scenario 1 (PV + wind + battery + H2) offered the most balanced solution with a net present cost (NPC) of USD 297419 with a cost of electricity (COE) of USD 0.340/kWh. Scenario 2 without batteries increased hydrogen consumption despite a similar COE. Scenario 3 with wind only achieved the lowest hydrogen consumption and the highest efficiency. In Scenario 4 hydrogen consumption decreased with battery reintegration but COE increased. Specific CO2 emissions ranged between 36–45 gCO2-eq/kWh across scenarios. Results indicate that the control strategy and component selection strongly influence performance and that hydrogen-based hybrid systems offer a sustainable solution in rural areas.
Assessing the Feasibility of a Green Hydrogen Economy in Selected African Regions with Composite Indicators
Jan 2025
Publication
This study offers a comprehensive analysis of the feasibility of green hydrogen economies in Western and Southern African regions focusing on the ECOWAS and SADC countries. Utilizing a novel approach based on composite indicators the research evaluates the potential readiness and overall feasibility of green hydrogen production and export across these regions. The study incorporates various factors including the technical potential of renewable energy sources water resource availability energy security and existing infrastructure for transport and export. Country-specific analyses reveal unique insights into the diverse potential of nations like South Africa Lesotho Ghana Nigeria Angola and Namibia each with its unique strengths and challenges in the context of green hydrogen. The research findings underscore the complexity of developing green hydrogen economies highlighting the need for nuanced region-specific approaches that consider technical socioeconomic geopolitical and environmental factors. The paper concludes that cooperation and integration between countries in the regions may be crucial for the success of a future green hydrogen economy
Carbon Neutrality in Malaysia and Kuala Lumpur: Insights from Stakeholder-driven Integrated Assessment Modelling
Apr 2024
Publication
Introduction: Several cities in Malaysia have established plans to reduce their CO2 emissions in addition to Malaysia submitting a Nationally Determined Contribution to reduce its carbon intensity (against GDP) by 45% in 2030 compared to 2005. Meeting these emissions reduction goals will require ajoint effort between governments industries and corporations at different scales and across sectors.<br/>Methods: In collaboration with national and sub-national stakeholders we developed and used a global integrated assessment model to explore emissions mitigation pathways in Malaysia and Kuala Lumpur. Guided by current climate action plans we created a suite of scenarios to reflect uncertainties in policy ambition level of adoption and implementation for reaching carbon neutrality. Through iterative engagement with all parties we refined the scenarios and focus of the analysis to best meet the stakeholders’ needs.<br/>Results: We found that Malaysia can reduce its carbon intensity and reach carbon neutrality by 2050 and that action in Kuala Lumpur can play a significant role. Decarbonization of the power sector paired with extensive electrification energy efficiency improvements in buildings transportation and industry and the use of advanced technologies such as hydrogen and carbon capture and storage will be Major drivers to mitigate emissions with carbon dioxide removal strategies being key to eliminate residual emissions.<br/>Discussion: Our results suggest a hopeful future for Malaysia’s ability to meet its climate goals recognizing that there may be technological social and financial challenges along the way. This study highlights the participatory process in which stakeholders contributed to the development of the model and guided the analysis as well as insights into Malaysia’s decarbonization potential and the role of multilevel governance.
Investigating Wind Energy Curtailment to Enable Constraint Analysis and Green Hydrogen Potential in Scotland’s Energy Infrastructure
May 2025
Publication
Curtailment of renewable energy is a growing issue in global energy infrastructure. A case study is carried out to investigate wind energy curtailment occurring in Scotland which presents a growing issue with an increasing amount of renewable energy going to waste. Complex relationships between grid constraints and wind farm operations must be explored to maximise utilisation of low-carbon electricity and to avoid the “turnup” of non-renewable sources. Transmission zones and boundaries are considered and mapped and a novel method of direct measurement of curtailment for transmission-level assets is proposed with an intuitive reproducible approach utilising balancing mechanism data. Curtailment data is examined and combined to find national trends explore the viability of distributed hydrogen electrolysis and compare curtailment and constraint directly across transmission boundaries. The weaknesses of the data collection methods are considered solutions for a future iteration are proposed and further uses of the outputs are discovered.
Prospects for the Development of Hydrogen Technologies: A Study of Projects in Europe and Australia
Jun 2025
Publication
This study examines the development of hydrogen energy technologies across continents focusing on the concentration of expertise in hydrogen production within specific cross-border alliances and individual countries. The evolution of green hydrogen is assessed through an analysis of 297 hydrogen projects in Europe and Australia. The implementation of projects is constrained by high production costs limiting the price competitiveness of the final product. The analysis reveals that electrolysis is the predominant technology employed in hydrogen production with mobility being the primary area of application. The study includes a forecast indicating a significant decrease in auction prices for green hydrogen products due to economies of scale. Learning curve modeling confirms an expected reduction in auction prices by a factor of 2.5–3.7 over the next decade. However delays in project implementation and the relocation of 49 projects across Australia. The results obtained indicate the existence of barriers implementation of hydrogen technologies. Although green hydrogen demonstrates strong potential for growth and scalability realizing all announced projects will require enhanced policy support.
No more items...