Policy & Socio-Economics
Progress in Green Hydrogen Adoption in the African Context
Aug 2024
Publication
Hydrogen is an abundant element and a flexible energy carrier offering substantial potential as an environmentally friendly energy source to tackle global energy issues. When used as a fuel hydrogen generates only water vapor upon combustion or in fuel cells presenting a means to reduce carbon emissions in various sectors including transportation industry and power generation. Nevertheless conventional hydrogen production methods often depend on fossil fuels leading to carbon emissions unless integrated with carbon capture and storage solutions. Conversely green hydrogen is generated through electrolysis powered by renewable energy sources like solar and wind energy. This production method guarantees zero carbon emissions throughout the hydrogen’s lifecycle positioning it as a critical component of global sustainable energy transitions. In Africa where there are extensive renewable energy resources such as solar and wind power green hydrogen is emerging as a viable solution to sustainably address the increasing energy demands. This research explores the influence of policy frameworks technological innovations and market forces in promoting green hydrogen adoption across Africa. Despite growing investments and favorable policies challenges such as high production costs and inadequate infrastructure significantly hinder widespread adoption. To overcome these challenges and speed up the shift towards a sustainable hydrogen economy in Africa strategic investments and collaborative efforts are essential. By harnessing its renewable energy potential and establishing strong policy frameworks Africa can not only fulfill its energy requirements but also support global initiatives to mitigate climate change and achieve sustainable development objectives.
Energy Asset Stranding in Resource-rich Developing Countries and the Just Transition - A Framework to Push Research Frontiers
Jun 2024
Publication
Climate policy will inevitably lead to the stranding of fossil energy assets such as production and transport assets for coal oil and natural gas. Resourcerich developing countries are particularly aected as they have a higher risk of asset stranding due to strong fossil dependencies and wider societal consequences beyond revenue disruption. However there is only little academic and political awareness of the challenge to manage the asset stranding in these countries as research on transition risk like asset stranding is still in its infancy. We provide a research framework to identify wider societal consequences of fossil asset stranding. We apply it to a case study of Nigeria. Analyzing dierent policy measures we argue that compensation payments come with implementation challenges. Instead of one policy alone to address asset stranding a problem-oriented mix of policies is needed. Renewable hydrogen and just energy transition partnerships can be a contribution to economic development and SDGs. However they can only unfold their potential if fair benefit sharing and an improvement to the typical institutional problems in resource-rich countries such as the lack of rule of law are achieved. We conclude with presenting a future research agenda for the global community and acade
Uncovering an Emerging Policy Direction for Australian Energy and Future Fuels Using a "Participatory Decision-Making" Framework
Aug 2024
Publication
Introduction: An online deliberative engagement process was undertaken with members of the general public to understand what they value or would like to change about the energy system within the broader context of decarbonizing Australia's energy networks identifying a role for future fuels (hydrogen and biogas). Citizens developed a set of principles that could guide Australia's path toward a low-carbon energy future reflecting on expectations they place upon energy transition. Next citizens' principles were shared with policy-makers in government and policy-influencers from the energy industry using an online interactive workshop.<br/>Methods: This study analyses policy-makers and -influencers response to citizens' guiding principles using the 'diamond of participatory decision-making' framework for analysis. Convergence and divergence in diverse complex and rich views across cohorts and implications thereupon energy policy were identified.<br/>Results: Although considerable alignment between multi-stakeholders' views was noted key areas of divergence or what is called the “groan zone” were easily identified in relation to social and environmental justice issues. This groan zone highlights the struggles that energy policy-makers face -the need to listen and respond to citizens' voices vs. the need for practical and workable policies that also support overarching government or industry objectives.<br/>Discussion: Policy making when the views of different stakeholders align is relatively straightforward. However this is not the case where the expectations diverge. More creative measures will be needed to address divergent views and expectations whilst maintaining procedural fairness in this case using democratic deliberative engagement processes. While the use of deliberative processes is gaining momentum worldwide particularly concerning climate change and energy transition policies this paper also highlights the benefits of conducting a robust post facto analysis of the content of the processes. Areas of alignment where policy can be made and implemented relatively easily without contention are identified. Other areas (such as making electrification mandatory) might be more complex or have unwanted negative social and environmental justice effects. Overall this paper bridges an analytical gap between “expectation studies” and participatory research. By borrowing terminology from a participatory research framework we sharpen the concepts in “expectation studies” from a consensus inclusion and diversity standpoint.
Cost and Competitiveness of Green Hydrogen and the Effects of the European Union Regulatory Framework
May 2024
Publication
By passing the delegated acts supplementing the revised Renewable Energy Directive the European Commission has recently set a regulatory benchmark for the classifcation of green hydrogen in the European Union. Controversial reactions to the restricted power purchase for electrolyser operation refect the need for more clarity about the efects of the delegated acts on the cost and the renewable characteristics of green hydrogen. To resolve this controversy we compare diferent power purchase scenarios considering major uncertainty factors such as electricity prices and the availability of renewables in various European locations. We show that the permission for unrestricted electricity mix usage does not necessarily lead to an emission intensity increase partially debilitating concerns by the European Commission and could notably decrease green hydrogen production cost. Furthermore our results indicate that the transitional regulations adopted to support a green hydrogen production ramp-up can result in similar cost reductions and ensure high renewable electricity usage.
Energy Valorization Strategies in Rural Renewable Energy Communities: A Path to Social Revitalization and Sustainable Development
May 2025
Publication
Energy communities led by local citizens are vital for achieving the European energy transition goals. This study examines the design of a regional energy community in a rural area of Spain aiming to address the pressing issue of rural depopulation. Seven villages were selected based on criteria such as size energy demand population and proximity to infrastructure. Three energy valorization scenarios generating eight subscenarios were analyzed: (1) self-consumption including direct sale (1A) net billing (1B) and selling to other consumers (1C); (2) battery storage including storing for self-consumption (2A) battery-to-grid (2B) and electric vehicle recharging points (2C); and (3) advanced options such as hydrogen refueling stations (3A) and hydrogen-based fertilizer production (3B). The findings underscore that designing rural energy communities with a focus on social impact—especially in relation to depopulation—requires an innovative approach to both their design and operation. Although none of the scenarios alone can fully reverse depopulation trends or drive systemic change they can significantly mitigate the issue if social impact is embedded as a core principle. For rural energy communities to effectively tackle depopulation strategies such as acting as an energy retailer or aggregating individual villages into a single unified energy community structure are crucial. These approaches align with the primary objective of revitalizing rural communities through the energy transition.
Economy of Scale for Green Hydrogen-derived Fuel Production in Nepal
Apr 2024
Publication
Opportunity for future green hydrogen development in Nepal comes with enduse infrastructural challenges. The heavy reliance of industries on fossil fuels (63.4%) despite the abundance of hydroelectricity poses an additional challenge to the green transition of Nepal. The presented work aims to study the possibility of storing and utilizing spilled hydroelectricity due to runoff rivers as a compatible alternative to imported petroleum fuels. This is achieved by converting green hydrogen from water electrolysis and carbon dioxide from carbon capture of hard-to-abate industries into synthetic methane for heating applications via the Sabatier process. An economy-of-scale study was conducted to identify the optimal scale for the reference case (Industries in Makwanpur District Nepal) for establishing the Synthetic Natural Gas (SNG) production industry. The technoeconomic assessment was carried out for pilot scale and reference scale production unit individually. Uncertainty and sensitivity analyses were performed to study the project profitability and the sensitivity of the parameters influencing the feasibility of the production plant. The reference scale for the production of Synthetic Natural Gas was determined to be 40 Tons Per Day (TPD) with a total capital investment of around 72.15 Million USD. Electricity was identified as the most sensitive parameter affecting the levelized cost of production (LCOP). The 40 TPD plant was found to be price competitive to LPG when electricity price is subsidized below 3.55 NPR/unit (2.7 c/unit) from 12 NPR/unit (9.2 c/unit). In the case of the 2 TPD plant for it to be profitable the price of electricity must be subsidized to well below 2 NPR/kWh. The study concludes that the possibility of SNG production in Nepal is profitable and price-competitive at large scales and at the same time limited by the low round efficiency due to conversion losses. Additionally it was observed that highly favorable conditions driven by government policies would be required for the pilot-scale SNG project to be feasible.
Hydrogen Economy Index - A Comparative Assessment of the Political and Economic Perspective in the MENA Region for a Clean Hydrogen Economy
Jan 2025
Publication
The ongoing discourse on the transition to a hydrogen-based economy and the lessons learned from visions such as the Desertec concept emphasise the necessity for a nuanced approach to the development of metrics to assess a country’s hydrogen readiness. In addition to economic criteria such as investment incentives factors including law and order governance performance geography infrastructure and renewable energy production potential significantly impact a location’s attractiveness. To transparently evaluate sites using multiple criteria defined in the PESTEL framework this article aims to analyse quantify and compare the development of a sustainable hydrogen economy in 18 Middle East and North African states. The index-based assessment integrates criteria across three dimensions offering a comprehensive perspective on regional challenges and opportunities striking for policymakers and investors. The results show that the highest-ranked countries belong to the Gulf Cooperation Council followed by North African countries.
Connotation, Innovation and Vision of "Carbon Neutrality"
Sep 2021
Publication
Global climate change caused by geological processes is one of the main causes of the 5 global mass extinctions in geological history. Human industrialization activities have caused serious damage to the ecosystem the greenhouse effect of atmospheric CO2 has intensified and the living environment is facing threats and challenges. Carbon neutrality is the active action and common goal of mankind in the face of the climate change crisis therefore probing into its theoretical and technological connotation scientific and technological innovation system has far-reaching significance and broad prospects. Studies indicate that (1) Carbon neutrality reflects the theoretical connotations of “energy science” and “carbon neutrality science” including technical connotations of carbon emission reduction zero carbon emission negative carbon emission and carbon trading. (2) Carbon neutrality spawns new industries such as carbon industry centering on CO2 capture utilization and storage (CCUS or CO2 capture and storage CCS) and hydrogen industry centering on green hydrogen. “Gray carbon” and “black carbon” are the two application attributes of CO2. “Carbonþ” “Carbon” and “Carbon¼” are three carbon-neutral products and technologies. (3) China faces three major challenges in achieving the goal of carbon neutrality: first energy transition is large in scale and the cycle is short; Second there are many problems in the process of energy transition such as security uncertainties economic utilization and unpredictable disruptive technologies; Third after transition we may face new key techno-logical “bottlenecks” and “broken chain” of key mineral resources. (4) Based on current knowledge to predict the top 10 disruptive technologies and industries in the energy field: underground coal gasification in-situ conversion process of medium and low-mature shale oil CCUS/CCS hydrogen energy and fuel cells bio-photovoltaic power generation space-based solar power generation optical storage smart micro-grid super energy storage controllable nuclear fusion wisdom energy Internet. Five strategic projects will be implemented including energy conservation and efficiency improvement carbon reduction and sequestration scientific and technological innovation emergency reserve and policy support. (5) In the future different types of energy will have different orientations. Coal will play the role of ensuring the national energy strategy “reserve” and “guarantee the bottom line”. Petroleum will play the role of ensuring national energy security “urgent need” and the “cornerstone” of raw materials in people's livelihood. Natural gas will play the role in ensuring national energy “safety” and “best partner” of new energy. New energy will play the role in ensuring the “replacement” and “main force” of the national energy strategy. (6) Carbon neutrality is a major practice of the green industrial revolution carbon reduction energy revolution and ecological technology revolution which will bring new and profound changes to human society the environment and the economy. (7) Carbon neutrality needs to follow the four principles of “disruptive breakthroughs in technology guarantee of energy security realization of economic feasibility and controllable social stability”. We should rely on technological innovation and management changes to ensure the realization of national energy “independence” and carbon neutrality goal and make China's contribution to the construction of a livable earth green development and ecological civilization.
Diverse Decarbonization Pathways under Near Cost-optimal Futures
Sep 2024
Publication
Energy system optimization models offer insights into energy and emissions futures through least-cost optimization. However real-world energy systems often deviate from deterministic scenarios necessitating rigorous uncertainty exploration in macro-energy system modeling. This study uses modeling techniques to generate diverse near cost-optimal net-zero CO2 pathways for the United States’ energy system. Our findings reveal consistent trends across these pathways including rapid expansion of solar and wind power generation substantial petroleum use reductions near elimination of coal combustion and increased end-use electrification. We also observe varying deployment levels for natural gas hydrogen direct air capture of CO2 and synthetic fuels. Notably carbon-captured coal and synthetic fuels exhibit high adoption rates but only in select decarbonization pathways. By analyzing technology adoption correlations we uncover interconnected technologies. These results demonstrate that diverse pathways for decarbonization exist at comparable system-level costs and provide insights into technology portfolios that enable near cost-optimal net-zero CO2 futures.
Research & Innovation for Climate Neutrality 2050: Challenges, Opportunities & the Path Forward
Jan 2024
Publication
Transforming Europe into a climate neutral economy and society by 2050 requires extraordinary efforts and the mobilisation of all sectors and economic actors coupled with all the creative and brain power one can imagine. Each sector has to fundamentally rethink the way it operates to ensure it can be transformed towards this new net-zero paradigm without jeopardising other environmental and societal objectives both within the EU and globally. Given the scale of the transformation ahead our ability to meet climate neutrality targets directly depends on our ability to innovate. In this context Research & Innovation programmes have a key role to play and it is crucial to ensure they are fit for purpose and well equipped to support the next wave of breakthrough innovations that will be required to achieve climate neutrality in the EU and globally by 2050. The objective of this study is to contribute to these strategic planning discussions by not only identifying high-risk and high-impact climate mitigation solutions but most importantly look beyond individual solutions and consider how systemic interactions of climate change mitigation approaches can be integrated in the development of R&I agendas.
Towards Suitable Practices for the Integration of Social Life Cycle Assessment into the Ecodesign Framework of Hydrogen-related Products
Feb 2024
Publication
The hydrogen sector is envisaged as one of the key enablers of the energy transition that the European Union is facing to accomplish its decarbonization targets. However regarding the technologies that enable the deployment of a hydrogen economy a growing concern exists about potential burden-shifting across sustainability dimensions. In this sense social life cycle assessment arises as a promising methodology to evaluate the social implications of hydrogen technologies along their supply chains. In the context of the European projects eGHOST and SH2E this study seeks to advance on key methodological aspects of social life cycle assessment when it comes to guiding the ecodesign of two relevant hydrogen-related products: a 5 kW solid oxide electrolysis cell stack for hydrogen production and a 48 kW proton-exchange membrane fuel cell stack for mobility applications. Based on the social life cycle assessment results for both case studies under alternative approaches the definition of a product-specific supply chain making use of appropriate cut-off criteria was found to be the preferable choice when addressing system boundaries definition. Moreover performing calculations according to the activity variable approach was found to provide valuable results in terms of social hotspots identification to support subsequent decision-making processes on ecodesign while the direct calculation approach is foreseen as a complement to ease the interpretation of social scores. It is concluded that advancements in the formalization of such suitable practices could foster the integration of social metrics into the sustainable-by-design framework of hydrogen-related products.
How "Clean" is the Hydrogen Economy? Tracing the Connections Between Hydrogen and Fossil Fuels
Feb 2024
Publication
Hydrogen is experiencing a resurgence in energy transition debates. Before representing a solution however the existing hydrogen economy is still a climate change headache: over 99 % of production depends on fossil fuels oil refining accounts for 42 % of demand and its transportation is intertwined with fossil infrastructure like natural gas pipelines. This article investigates the path-dependent dynamics shaping the hydrogen economy and its interconnections with the oil and gas industry. It draws on the global production networks (GPN) approach and political economy research to provide a comprehensive review of current and prospective enduses of hydrogen modes of transport networks of industrial actors and state strategies along the major production facilities and holders of intellectual property rights. The results presented in this article suggest that the superimposition of private agendas may jeopardise the viability of future energy systems and requires counterbalancing forces to override the negative consequences of path-dependent energy transitions.
The Competitive Edge of Norway's Hydrogen by 2030: Socio-environmental Considerations
Aug 2024
Publication
Can Norway be an important hydrogen exporter to the European Union (EU) by 2030? We explore three scenarios in which Norway’s hydrogen export market may develop: A Business-as-usual B Moderate Onshore C Accelerated Offshore. Applying a sector-coupled energy system model we examine the techno-economic viability spatial and socio-economic considerations for blue and green hydrogen export in the form of ammonia by ship. Our results estimate the costs of low-carbon hydrogen to be 3.5–7.3€/kg hydrogen. While Norway may be cost-competitive in blue hydrogen exports to the EU its sustainability is limited by the reliance on natural gas and the nascent infrastructure for carbon transport and storage. For green hydrogen exports Norway may leverage its strong relations with the EU but is less cost-competitive than countries like Chile and Morocco which benefit from cheaper solar power. For all scenarios significant land use is needed to generate enough renewable energy. Developing a green hydrogen-based export market requires policy support and strategic investments in technology infrastructure and stakeholder engagement ensuring a more equitable distribution of renewable installations across Norway and national security in the north. Using carbon capture and storage technologies and offshore wind to decarbonise the offshore platforms is a win-win solution that would leave more electricity for developing new industries and demonstrate the economic viability of these technologies. Finally for Norway to become a key hydrogen exporter to the EU will require a balanced approach that emphasises public acceptance and careful land use management to avoid costly consequences.
Is it Green? Designing a Blockchain-based Certification System for the EU Hydrogen Market
Dec 2024
Publication
Energy production and consumption are major contributors to greenhouse gas (GHG) emissions exacerbating one of the greatest challenges faced by modern societies: climate change. Thus societies must switch to more sustainable energy sources. Green hydrogen has emerged as a promising alternative energy carrier facilitating storage and utilization across various industries. However amidst different production processes solely sustainable electrolysis stands out as an environmentally benign production method. Hydrogen producers must prove provenance and sustainable production to regulatory bodies and hydrogen buyers to comply with the regulations for sustainable development. Blockchain provides a viable solution encompassing trustworthy and secure information sharing between untrusted partners. In this article we employ a design science research approach to develop a blockchain-based certification system (BLC-CS) for green hydrogen. Through collaboration with experts to gather requirements and conduct evaluations we design an artifact that streamlines the certification process for producers regulators and consumers. Our proposed solution facilitates information gathering verification and reporting contributing to the advancement of sustainable energy practices. We provide a comprehensive discussion of the BLC-CS’s feasibility for green hydrogen certification including technical extensions recommendations for practitioners and directions for future research.
Assessment of the Role of the Green Hydrogen as the Commodity Enabling a New Green Dialogue Among the Mediterranean Shores
Apr 2024
Publication
The Mediterranean basin has been characterized by a net flow of fossil commodities from the North African shore to Southern Europe and the Middle East for decades; however decarbonizing the energy system implies to substantially modify this situation turning the current “black dialogue” into a “green dialogue” (i.e. based on the exchange of renewable electricity and green hydrogen). This paper presents a feasibility study conducted to estimate the potential green hydrogen production by electrolysis in three Tunisian sites. It shows and compares several plant layouts varying the size and typology of renewable electricity generators and electrolyzers. The work adopts local weather data and technical features of the technologies in the computations and accounts for site specific topographical and infrastructural constraints such as land available for construction and local power grid connection capacities. It shows that configurations able to produce large quantities of green hydrogen may not be compliant with such constraints basically nullifying their contribution in any hydrogen strategy. Finally results show that the LCOH lies in the range 1.34 $/kgH2 and 4.06 $/kgH2 depending on both the location and the combination of renewable electricity generators and electrolyzers.
Levelised Cost of Hydrogen Production in Northern Africa and Europe in 2050: A Monte Carlo Simulation for Germany, Norway, Spain, Algeria, Morocco, and Egypt
May 2024
Publication
The production of green hydrogen through electrolysis utilizing renewable energies is recognized as a pivotal element in the pursuit of decarbonization. In order to attain cost competitiveness for green hydrogen reasonable generation costs are imperative. To identify cost-effective import partners for Germany given its limited green hydrogen production capabilities this study undertakes an exhaustive techno-economic analysis to determine the potential Levelized Cost of Hydrogen in Germany Norway Spain Algeria Morocco and Egypt for the year 2050 which represents a critical milestone in European decarbonization efforts. Employing a stochastic approach with Monte Carlo simulations the paper marks a significant contribution for projecting future cost ranges acknowledging the multitude of uncertainties inherent in related cost parameters and emphasizing the importance of randomness in these assessments. Country-specific Weighted Average Cost of Capital are calculated in order to create a refined understanding of political and economic influences on cost formation rather than using a uniform value across all investigated nations. Key findings reveal that among the evaluated nations PV-based hydrogen emerges as the most cost-efficient alternative in all countries except Norway with Spain presenting the lowest Levelized Cost of Hydrogen at 1.66 €/kg to 3.12 €/kg followed by Algeria (1.72 €/kg to 3.23 €/kg) and Morocco (1.73 €/kg to 3.28 €/kg). Consequently for economically favorable import options Germany is advised to prioritize PV-based hydrogen imports from these countries. Additionally hydrogen derived from onshore wind in Norway (2.24 €/kg to 3.73 €/kg) offers a feasible import alternative. To ensure supply chain diversity and reduce dependency on a single source a mixed import strategy is advisable. Despite having the lowest electricity cost Egypt shows the highest Levelized Cost of Hydrogen primarily due to a significant Weighted Average Cost of Capital.
Hydrogen UK Supply Chains Report Executive Summary 2023
Dec 2023
Publication
The strategic importance of hydrogen has gained significant recognition as nations across the world have committed to achieving net zero. Here in the UK there’s a widespread consensus that hydrogen is critical to achieving our net zero target. This commitment culminated in the launch of the UK’s first Hydrogen Strategy and has been reaffirmed by Chris Skidmore’s Independent Review of Net Zero. Both these documents highlight hydrogen’s importance not only to net zero but growing the UK industrial base1 . Analysis by Hydrogen UK estimates up to 20000 jobs could be created by 2030 contributing £26bn in cumulative GVA2. These economic benefits flow from all areas of the value chain ranging from production storage network development and off-taker markets. However with large scale projects still to take final investment decisions current volumes of low-carbon hydrogen produced and consumed fall well below the government’s 2030 ambitions. Encouragingly the UK has a positive track record of deploying low carbon technologies. The combination of the UK’s world leading policies and incentive schemes alongside our vibrant RD&I and engineering environment has enabled rapid deployment of technologies like offshore wind and electric vehicles. Yet despite being world leaders in deployment early opportunities for regional supply chain growth and job creation were not fully realised and taken advantage of from inception. The hydrogen sector is therefore at a tipping point. To capitalise on the economic opportunity hydrogen offers the UK must learn from prior technology deployments and build a strong domestic hydrogen supply chain in parallel to championing deployment. This report delivers on a recommendation from the Hydrogen Champion Report which encouraged industry to create an industry led supply chain strategy3 . With Hydrogen UK steering the work on behalf of the UK hydrogen industry this study focusses on identifying the actions needed to mature a local supply chain that can support the initial deployment of hydrogen technologies across the value chain. The report is segmented into two sections. The first section outlines a voluntary ambition for local content from industry alongside the potential intervention mechanisms needed to achieve the ambition. The second section exploresthe challenges companies across the hydrogen value chain face in maximising UK supply chain opportunities.
This report can be found on Hydrogen UK's website.
This report can be found on Hydrogen UK's website.
What will be the Hydrogen and Power Demands of the Process Industry in a Climate-neutral Germany?
Apr 2024
Publication
The defossilization of industry has far-reaching implications regarding the future demand for hydrogen and other forms of energy. This paper presents and applies a fundamental bottom-up model that relies on techno-economic data of industrial production processes. Its aim is to identify across a range of scenarios the most cost-effective low-carbon options considering a variety of production systems. Subsequently it derives the hydrogen and electricity demand that would result from the implementation of these least-cost low-carbon options in process industries in Germany. Aligning with the German government's target year for achieving climate neutrality this study’s reference year is 2045. The primary contribution lies in analyzing which hydrogen-based and direct electrification solutions would be cost-effective for a range of energy price levels under climate-neutral industrial production and what the resulting hydrogen and electricity demand would be. To this end the methodology of this paper comprises the following steps: selection of the relevant industries (I) definition of conventional reference production systems and their low-carbon options (II) investigation and processing of the techno-economic data of the standardized production systems (III) establishment of a scenario framework (IV) determination of the least-cost low-carbon solution of a conventional reference production system under the scenario assumptions made (V) and estimation of the resulting hydrogen and electricity demand (VI). According to the results the expected industrial hydrogen consumption in 2045 ranges from 255 TWh for higher hydrogen prices in or above the range of onshore wind-based green hydrogen supply costs to up to 542 TWh for very low hydrogen prices corresponding to typical blue hydrogen production costs. Meanwhile the direct electricity consumption of the process industries in the results ranges from 122 TWh for these rather low hydrogen prices to 368 TWh for the higher hydrogen prices in the region of or above the hydrogen supply costs from the electrolysis of energy from an onshore wind farm. Most of the break-even hydrogen prices that are relevant to the choice of low-carbon options are in the range of the benchmark purchase costs for blue hydrogen and green hydrogen produced from offshore wind power which span between €40 per MWh and €97 per MWh.
Hydrogen for a Net-Zero Carbon World
Mar 2024
Publication
The concept of the “hydrogen economy” was first coined by Prof. John Bockris during a talk he gave in 1970 at the General Motors Technical Center. Bockris’s talk introduced the vision of a world economy in which energy was carried in the form of hydrogen resulting in zero emissions at its point of use—be that as a chemical feedstock or as a fuel for industrial or domestic heating for power generation in a gas turbine or in a fuel cell “engine” for transport applications. Despite several waves of significant interest and investment however due to the relative costs and technological immaturity of hydrogen technologies the hydrogen economy was never delivered at scale nor was there sufficient motivation to create the technology needed to overcome these hurdles.<br/>But today as the world seeks to transition to a truly net-zero carbon economy hydrogen has returned to the fore as a key energy carrier—not as a hydrogen economy but as “hydrogen in the economy” synergistically working alongside low- to zero-carbon electricity to decarbonize those parts of the economy that are too expensive or too difficult to be directly decarbonized with electricity. These include:<br/>♦ Transport applications in which large amounts of energy are needed on the vehicle such as planes trains shipping long-distance trucks and heavy-duty vehicles;<br/>♦ Industrial applications such as steelmaking and cement manufacturing;<br/>♦ Long-term energy storage for days to weeks at a time;<br/>♦ The production of green chemicals such as green ammonia and green methanol;<br/>♦ Industrial (and potentially residential) heating.
Mid-century Net-zero Emissions Pathways for Japan: Potential Roles of Global Mitigation Scenarios in Informing National Decarbonisation Strategies
Jan 2024
Publication
Japan has formulated a net-zero emissions target by 2050. Existing scenarios consistent with this target generally depend on carbon dioxide removal (CDR). In addition to domestic mitigation actions the import of low-carbon energy carriers such as hydrogen and synfuels and negative emissions credits are alternative options for achieving net-zero emissions in Japan. Although the potential and costs of these actions depend on global energy system transition characteristics which can potentially be informed by the global integrated assessment models they are not considered in current national scenario assessments. This study explores diverse options for achieving Japan's net-zero emissions target by 2050 using a national energy system model informed by international energy trade and emission credits costs estimated with a global energy system model. We found that demand-side electrification and approximately 100 Mt-CO2 per year of CDR implementation equivalent to approximately 10% of the current national CO2 emissions are essential across all net-zero emissions scenarios. Upscaling of domestically generated hydrogen-based alternative fuels and energy demand reduction can avoid further reliance on CDR. While imports of hydrogen-based energy carriers and emission credits are effective options annual import costs exceed the current cost of fossil fuel imports. In addition import dependency reaches approximately 50% in the scenario relying on hydrogen imports. This study highlights the importance of considering global trade when developing national net-zero emissions scenarios and describes potential new roles for global models.
Roadmap to Reach Global Net Zero Emissions for Developing Regions by 2085
Jan 2025
Publication
As climate change intensifies determining a developing region’s role in achieving net-zero emissions worldwide is crucial. However regional efforts considering historical emissions remain underexplored. Here we assess energy system changes technology adoption and investments needed for developing regions including five major- and minor-emitting nations. Our analysis using an integrated assessment model shows a large gap in regional efforts toward global net-zero emissions stemming from the necessary shift of energy systems to low-carbon resources. The use of new technologies like electric vehicles hydrogen and carbon capture varies by region with the highest adoption required between 2020 and 2030. Financing this shift needs an average gross domestic product (GDP) investment rise of 0.464% in minor-emitting regions and up to 2.1% in major-emitting regions by 2085. Our results could guide policies and support setting quantifiable targets for developing nations. The findings are key to facilitating strategic technology use and finance mobilization to achieve a carbon-neutral future.
Optimal Decarbonisation Pathways for the Italian Energy System: Modelling a Long-term Energy Transition to Achieve Zero Emission by 2050
May 2024
Publication
The goal of achieving a zero-emission energy system by 2050 requires accurate energy planning to minimise the overall cost of the energy transition. Long-term energy models based on cost-optimal solutions are extremely dependent on the cost forecasts of different technologies. However such forecasts are inherently uncertain. The aim of the present work is to identify a cost-optimal pathway for the Italian energy system decarbonisation and assess how renewable cost scenarios can affect the optimal solution. The analysis has been carried out with the H2RES model a single-objective optimisation algorithm based on Linear Programming. Different cost scenarios for photovoltaics on-shore and off-shore wind power and lithium-ion batteries are simulated. Results indicate that a 100% renewable energy system in Italy is technically feasible. Power-to-X technologies are crucial for balancing purposes enabling a share of non-dispatchable generation higher than 90%. Renewable cost scenarios affect the energy mix however both on-shore and off-shore wind saturate the maximum capacity potential in almost all scenarios. Cost forecasts for lithium-ion batteries have a significant impact on their optimal capacity and the role of hydrogen. Indeed as battery costs rise fuel cells emerge as the main solution for balancing services. This study emphasises the importance of conducting cost sensitivity analyses in long-term energy planning. Such analyses can help to determine how changes in cost forecasts may affect the optimal strategies for decarbonising national energy systems.
AI-ML Techniques for Green Hydrogen: A Comprehensive Review
Feb 2025
Publication
Green hydrogen is a cleaner source to replace fossil-based fuels and is critical in the global shift toward energy production to combat climate change. This review of embedding artificial intelligence (AI) and machine learning (ML) in the value chain of green hydrogen outlines the significant potential for full transformation. These include optimizing the utilization of renewable sources of energy improving electrolysis process hydrogen storage in the salt cavern that has better condition and smarter systems in distribution side with inexpensive logistics. In this it nullifies leak risks and safeguards the safety operations with detection using AI. Consequently it positions the paper emphasizing AI-ML approaches demonstrating significant advancements in efficiency and sustainability in green hydrogen technology.
Everything About Hydrogen Podcast: Resilience
Jul 2023
Publication
The EAH team discuss Nataliya’s plan for a green Ukraine including working with the current government on the Hydrogen Road Map. We also get another example of incredible Ukrainian resilience and discuss its importance for the current and future energy system.
The podcast can be found on their website.
The podcast can be found on their website.
Governance of Future-making: Green Hydrogen in Namibia and South Africa
Feb 2025
Publication
The green-hydrogen sector has created considerable expectations in the Global South about export-oriented development and industrial path creation. However whether and how these expectations are really materializing requires further scrutiny. This article develops a conceptual approach that we call governance of futuremaking. Thereby we want to understand how actors try to coordinate their expectations about future economic development in different contexts and across scales over time. We conceptualize the emergence of new regional development trajectories as resulting from the use of governance instruments with an increasing bindingness which reflect the interplay between governance of and by expectations. Based on this approach we analyze and compare green-hydrogen activities in Namibia and South Africa. We find that future-making is becoming more binding in both countries but has not resulted in path creation yet.
Hydrogen Revolution: Artificial Intelligence and Machine Learning Driven Policies, Feasibility, Challenges and Opportunities: Insights from Asian Countries
Aug 2025
Publication
Green hydrogen a zero-carbon emission fuel has become a real competitor to transform the energy market thanks to improvements in the electrolysis process decreased costs and the presence of renewable energy resources. Energy industries have shown considerable progress in hydrogen production due to the incorporation of artificial intelligence (AI) knowledge through algorithms AI-based models and data programs. These techniques can greatly enhance the production storage and transportation of hydrogen fuel. The main goal of this article is to demonstrate the recent technological advancements and the influence of various AI techniques algorithms and models on the hydrogen energy sector along with this further examination of the energy policies of countries like China Japan India and South Korea. The key challenges related to these energy policies are addressed through standardized datasets AI models and optimized environmental conditions. This paper serves as a valuable resource for researchers engineers and practitioners interested in applying cutting-edge technologies to enhance hydrogen safety systems. AI-based models contribute to the overall shift towards a sustainable energy future by enhancing efficiency reducing costs and facilitating hydrogen energy commerce for Asian countries. This study accelerates the global investigation and tremendous applications of sophisticated machine-learning methodologies for producing renewable green hydrogen.
Everything About Hydrogen Podcast: Getting Steel in the Ground in an IRA Driven H2 Market
May 2023
Publication
On this episode we speak with Scott Weiss Senior Vice President for Corporate Strategy and Ashleigh Cotting Senior Manager for Green Fuels Marketing with Apex Clean Energy. Apex has a history of developing utility scale renewables with more than 2GW under management and with nearly 8GW of renewables financed. Apex also partnered with Plug Power in April 2021 to develop a 345MW wind facility to support a 30 tonne per day green hydrogen production facility.
We are excited to discuss the emerging opportunities in the US hydrogen market and learn more about the challenges and learnings that the first project is providing and how that helps the team build the next generation of production facilities particularly in the Gulf Coast.
The podcast can be found on their website.
We are excited to discuss the emerging opportunities in the US hydrogen market and learn more about the challenges and learnings that the first project is providing and how that helps the team build the next generation of production facilities particularly in the Gulf Coast.
The podcast can be found on their website.
Everything About Hydrogen Podcast: Opportunities in Africa
Sep 2023
Publication
For the second episode in this new season the team interviews Oghosa Erhahon to discuss hydrogen opportunities in Africa including the African Climate Summit in September and what to look forward to at COP28.
The podcast can be found on their website.
The podcast can be found on their website.
The Role of Financial Mechanisms in Advancing Renewable Energy and Green Hydrogen
Jun 2025
Publication
Europe’s transition toward a low-carbon energy system relies on the deployment of hydrogen produced with minimized carbon emissions; however regulatory requirements increase system costs and create financial barriers. This study investigates the financial implications of enforcing European Commission rules for renewable hydrogen production from 2024 to 2048. Using a scenario-based modeling approach that draws on European power system investments in renewable energy the results show that immediate compliance leads to an additional cost of approximately eighty billion euros over twenty-four years corresponding to a 3.6 percent increase in total system costs. To address this investment gap the study employs a segmentation analysis of support mechanisms based on existing policies and market practices identifying seven categories that range from investment incentives and production subsidies to infrastructure and financial instruments. Among these hydrogen offtake support and infrastructure funding are identified as the most effective measures for reducing risk and enabling private investment. These findings provide strategic insights for policymakers seeking to align their regulatory ambitions with financially viable pathways for integrating renewable energy.
Energy Management in an Insular Region with Renewable Energy Sources and Hydrogen: The Case of Graciosa, Azores
Sep 2025
Publication
Insular regions face unique energy management challenges due to physical isolation. Graciosa (Azores) has high renewable energy sources (RES) potential theoretically enabling a 100% green system. However RES intermittency combined with the lack of energy storage solutions reduces renewable penetration and raises curtailment. This article studies the technical and economic feasibility of producing green hydrogen from curtailment energy in Graciosa through two distinct case studies. Case Study 1 targets maximum renewable penetration with green hydrogen serving as chemical storage converted back to electricity via fuel cells during RES shortages. Case Study 2 focuses on maximum profitability where produced gases are sold to monetize curtailment without additional electricity production. Levelized Cost of Hydrogen (LCOH) values of €3.06/kgH2 and €2.68/kgH2 respectively and Internal Rate of Return (IRR) values of 3.7% and 17.1% were obtained for Case Studies 1 and 2 with payback periods of 15.2 and 6.1 years. Hence only Case Study 2 is economically viable but it does not allow increasing the renewable share in the energy mix. Sensitivity analysis for Case Study 1 shows that overall efficiency and CAPEX are the main factors affecting viability highlighting the need for technological advances and economies of scale as well as the importance of public funding to promote projects like this.
Modeling Gas Producibility and Hydrogen Potential—An Eastern Mediterranean Case Study
Oct 2025
Publication
The transition to low-carbon energy systems demands robust strategies that leverage existing fossil resources while integrating renewable technologies. In this work a single-cycle Gaussian-based producibility model is developed to forecast natural gas production profiles domestic consumption export potential hydrogen production and revenues adaptive for untapped natural gas discoveries. Annual natural gas production is represented by a bell curve defined by peak year and maximum capacity allowing flexible adaptation to different reserve sizes. The model integrates renewable energy adoption and steam–methane reforming to produce hydrogen while tracking revenue streams from domestic sales exports and hydrogen markets alongside carbon taxation. Applicability is demonstrated through a case study of Eastern Mediterranean gas discoveries where combined reserves of 2399 bcm generate a production peak of 100 bcm/year in 2035 and deliver 40.71 billion kg of hydrogen by 2050 leaving 411.87 bcm of reserves. A focused Cyprus scenario with 411 bcm of reserves peaks at 10 bcm/year produces 4.07 billion kg of hydrogen and retains 212.29 bcm of reserves. Cumulative revenues span from USD 84.37 billion under low hydrogen pricing to USD 247.29 billion regionally while the Cyprus-focused case yields USD 1.79 billion to USD 18.08 billion. These results validate the model’s versatility for energy transition planning enabling strategic insights into infrastructure deployment market dynamics and resource management in gas-rich regions.
Low-emission Hydrogen: Global Value Chain Opportunities for Latecomers and Industrial Policy Challenges
Jul 2025
Publication
To meet decarbonization targets demand for low-emission hydrogen is increasing. A considerable share of supply will come from latecomer countries. We study how latecomer countries and firms participate in the emerging global low-emission hydrogen economy and how industrial policies can help maximize societal benefits. This requires a specific conceptualization of industrial policy: First the latecomer condition calls for specific policy mixes as latecomers typically cannot build on established innovation systems and network externalities and rather need to combine FDI attraction with measures strengthening absorptive capacity and ensuring knowledge transfer from FDI to domestic firms; second low-emission hydrogen is a policy-induced alternative that requires creating entirely new firm ecosystems while competing with lower-cost emission-intensive incumbent technologies. Hence industrial policies need to account for enhanced coordination failure and internalization of environmental costs. We analyze the published national hydrogen strategies of 20 latecomer economies and derive a novel typology differentiating four hydrogen-specific industrial development pathways. For each pathway we assess entry barriers and risks identify the policies suggested in the country strategies and discuss how likely those are to be successful. The novel pathway typology and comparison of associated policy mixes may help policymakers maximize the gains of hydrogen investments.
Hydrogen UK - Supply Chain Strategic Assessment: Phase I
Mar 2025
Publication
The UK Hydrogen Supply Chain Strategic Assessment – Phase II report is developed as an appendix to the UK Hydrogen Supply Chain Strategic Assessment – Phase I report published in September 2024. Whereas the Phase I report prioritised the supply side elements of the hydrogen supply chain i.e. power industry storage electrolytic production CCUS enabled production and networks the Phase II focuses on demand side elements in the hydrogen supply chain i.e. fuel cell systems (including cars vans heavy goods vehicles & non road mobile machinery rail marine) and hydrogen refuelling systems. The Phase II adopts the same approach as carried out in Phase I by utilising analysis based on feedback from survey questionnaires interviews with key industrial stakeholders and internal research.
The paper can be found on their website.
The paper can be found on their website.
The European Hydrogen Market Landscape - November 2024
Nov 2024
Publication
This report aims to summarise the status of the European hydrogen market landscape. It is based on the information available at the European Hydrogen Observatory (EHO) initiative the leading source of data on hydrogen in Europe exploring the basic concepts latest trends and role of hydrogen in the energy transition. The data presented in this report is based on research conducted until the end of September 2024. This report contains information on current hydrogen production and trade distribution and storage end-use cost and technology manufacturing as of the end of 2023 except if stated otherwise in Europe. A substantial portion of the data gathering was carried out within the framework of Hydrogen Europe's efforts for the European Hydrogen Observatory. Downloadable spreadsheets of the data can be accessed on the website: https://observatory.clean-hydrogen.europa.eu/. The production and trade section provides insights into hydrogen production capacity and production output by technology in Europe and into international hydrogen trade (export and import) to and between European countries. The section referring to distribution and storage presents the location and main attributes of operational dedicated hydrogen pipelines and storage facilities as well as publicly accessible and operational hydrogen refuelling stations in Europe. The end-use section provides information on annual hydrogen consumption per end-use in Europe the deployment of hydrogen fuel cell electric vehicles in Europe the current and future hydrogen Valleys in Europe and the leading scenarios for future hydrogen demand in Europe in 2030 2040 and 2050 by sector. The cost chapter offers a comprehensive examination of the levelised cost of hydrogen production by technology and country. This chapter also gives estimations of renewable hydrogen break-even prices for different end-use applications in addition to electrolyser cost components by technology. Finally a chapter on technologies manufacturing explores data on the European electrolyser manufacturing capacity and sales and the fuel cell market.
Levelised Cost of Hydrogen (LCOH) Calculator Manual - Update of the May 2024 Manual
May 2025
Publication
The LCOH calculator manual explains the methodology behind the calculator in detail and demonstrates how the calculator can be used.<br/>In this second version the default prices are updated based on the latest data available in the calculator and a new use case is introduced on changing the economic lifetime and cost of capital of an electrolysis installation.
Cruel Utopia of the Seas? Multiple Risks Challenge the Singular Hydrogen Hype in Finnish Maritime Logistics
Oct 2025
Publication
To address the global climate crisis maritime logistics are undergoing a transition away from fossil-based energy sources. The transition is envisaged to be both green (involving renewables) and digital (involving various kinds of digitalization). Much of the hope rests on the new hydrogen economy involving the build-up of infrastructure for hydrogen-derived alternative fuels such as methanol and ammonia. Indeed the new hydrogen economy is often portrayed as set to revolutionize maritime transport. The hope behind the hype reflects a belief in the performativity of hypes: some technological phenomenon will eventually materialise in innovation and business practices. In this paper we critically analyse the current hydrogen hype in the field of Finnish maritime logistics as a paradigmatic case of performative techno-optimism. Based on causal network analysis and thematic analysis of expert interviews and workshop data we argue that the phenomenon of performative techno-optimism is more nuanced than hitherto presented in the related literature. We showcase a variety of stances along a spectrum ranging from radical optimism to radical pessimism. Furthermore our causal network analysis indicates that the current green and digital transition of maritime transport is caught in a systemic catch-22: transitioning to alternative fuels in maritime logistics faces a lock-in of between overly cautious demand for alternative fuels leading to overly cautious investment in supply which only secures the modest demand. Finally our thematic analysis of techno-optimist stances suggests the following two major ways out of the systemic dilemma: large-scale technological innovations and global regulatory solutions.
System Efficiency Analysis of Direct Coupled PV-PEM Electrolyzer Systems
Oct 2025
Publication
Green hydrogen is an important technology in the energy transition with potential to decarbonize industrial processes increase renewable energy use and reduce reliance on fossil fuels yet it currently accounts for less than 1% of global hydrogen demand. One promising approach to expand production is the direct coupling of photovoltaic–electrolyzer systems. In this study overall and sub-system efficiencies were analyzed for different system setups coupling points and operating conditions such as temperature and irradiance. The highest overall system efficiencies were found to be more than 18%. The effect of varying irradiances on the coupled efficiency was not more than 5.7%. Different system designs optimized for different irradiances led to effects such as an increase in current density at the electrolyzer and thus an increase in the overvoltage which resulted in an overall efficiency loss of more than 3%. A key finding was that aligning the PV maximum power point with the electrolyzer polarization curve enables consistently high system efficiencies across the investigated irradiances. The findings were validated with two real life systems reproducing the coupling efficiencies of the model with 12%–14% including loss factors and approximately 18% for a direct coupled system respectively
Hydrogen Valleys to Foster Local Decarbonisation Targets: A Multiobjective Optimisation Approach for Energy Planning
Oct 2025
Publication
Hydrogen Valley represents localised ecosystems that enable the integrated production storage distribution and utilisation of hydrogen to support the decarbonisation of the energy system. However planning such integrated systems necessitates a detailed evaluation of their interconnections with variable renewable generation sector coupling and system flexibility. The novelty of this work lies in addressing a critical gap in system-level modelling for Hydrogen Valleys by introducing an optimization-based framework to determine their optimal configuration. This study focuses on the scenario-based multiobjective design of local hydrogen energy systems considering renewable integration infrastructure deployment and sector coupling. We developed and simulated three scenarios based on varying hydrogen pathways and penetration levels using the EnergyPLAN model implemented through a custom MATLAB Toolbox. Several decision variables such as renewable energy capacity electrolyser size and hydrogen storage were optimised to minimise CO₂ emissions total annual system cost and critical excess electricity production simultaneously. The findings show that Hydrogen Valley deployment can reduce CO₂ emissions by up to 30 % triple renewable penetration in the primary energy supply and lower the levelized cost of hydrogen from 7.6 €/kg to 5.6 €/kg despite a moderate increase in the total cost of the system. The approach highlights the potential of sector coupling and Power-to-X technologies in enhancing system flexibility and supporting green hydrogen integration. The outcome of our research offers valuable insights for policymakers and planners seeking to align local hydrogen strategies with broader decarbonisation targets and regulatory frameworks.
Examining Dynamics of Hydrogen Supply Chains
Mar 2025
Publication
Hydrogen is poised to play a pivotal role in achieving net-zero targets and advancing green economies. However a range of complex operational challenges hinders its planning production delivery and adoption. At the same time numerous drivers within the hydrogen value chain present significant opportunities. This paper investigates the intricate relationships between these drivers and barriers associated with hydrogen supply chain (HSC). Utilising expert judgment in combination Grey-DEMATEL technique we propose a framework to assess the interplay of HSC drivers and barriers. Gaining insight into these relationships not only improves access to hydrogen but also foster innovation in its development as a low-carbon resource. The use of prominence scores and net influence rankings for each driver and barrier in the framework provides a comprehensive understanding of their relative significance and impact. Our findings demonstrate that by identifying and accurately mapping these attributes clear cause-and-effect relationships can be established contributing to a more nuanced understanding of the HSC. These insights have broad implications across operational policy scholarly and social domains. For instance this framework can aid stakeholders in recognizing the range of opportunities available by addressing key barriers to hydrogen adoption.
Towards Inclusive Path Transplanation: Local Agency for Green Hydrogen Linkage Creation in Namibia
Aug 2025
Publication
Many countries of the Global South struggle to achieve inclusive growth paths despite investment in the exploitation of rich resources. Resource-based industrialization literature stresses the potential for achieving broader development effects via the development of production linkages with local enterprises. The focus lies on market-driven outsourcing dynamics that foster linkage development such as efficiency location-specific knowledge and technology and scale complexity. However little is known about the opportunity space for both policy making and local firms to create these linkages. To address this issue we incorporate the concept of change agency stemming from the path development literature into the discussion on production linkages to show how both (local) firm agency and system-level agency can achieve linkage creation for inclusive path transplantation. We illustrate the framework by scrutinizing the potential inclusion of solar energy companies in Namibia’s emerging green hydrogen economy. The study finds that while the potential for renewable energy companies in Namibia to participate in the value chain is limited an integrated bundle of measures relying on firm- and system-level agency could address peripheral contextual factors overcome entry barriers and leverage further potential for linkage creation in the solar energy sector: mobilizing the local workforce fostering inter-firm cooperation leveraging local advantages creating knowledge institutions enhancing the regulatory framework upgrading infrastructure and enforcing local content regulations.
The European Hydrogen Policy Landscape - Extensive Update of the April 2024 Report
Jan 2025
Publication
This report aims to summarise the status of the European hydrogen policy landscape. It is based on the information available at the European Hydrogen Observatory (EHO) website the leading source of data on hydrogen in Europe. The data presented in this report is based on research conducted by Hydrogen Europe until the end of July 2024 but also goes beyond this timeline for major policies legislations or standards implemented recently. This report builds upon the previous version published in April 2024 which reflected data as of August 2023 providing updated insights on European policies and legislation national strategies national policies and legislation and codes and standards. Interactive data dashboards can be accessed on the website: https://observatory.cleanhydrogen.europa.eu/ The EU policies and legislation section provides insights into the main European policies and legislation relevant to the hydrogen sector which are briefly summarized on content and their potential impact to the sector. The national hydrogen strategies chapter offers a comprehensive examination of the hydrogen strategies adopted in Europe. It summarizes the quantitative indicators that have been published (targets and estimates) and provides brief summaries of the different national strategies that have been adopted. The section referring to national policies and legislation focuses on the policy framework measures incentives and targets in place that have an impact on the development of the respective national hydrogen markets within Europe. The codes and standards section provides information on current European standards and initiatives developed by the standardisation bodies including CEN CENELEC ISO IEC OIML The standards are categorised according to the different stages of the hydrogen value chain: production distribution and storage and end-use applications.
Potential Vulnerability of US Green Hydrogen in a World of Interdependent Networks
Jul 2025
Publication
Green hydrogen is viewed as a promising pathway to future decarbonized energy systems. However hydrogen production depends on a few critical minerals particularly platinum and iridium. Here we examine how the supply of these minerals is subject to vulnerabilities hidden in interdependent global networks of trade and investment. We develop an index to quantify these vulnerabilities for a combination of a target country an investing country an intermediary country and a commodity. Focusing on the US as the target country for the import of platinum and iridium we show how vulnerability-inducing investing countries changed between 2010 and 2019. We find that the UK is consistently among investing countries that can potentially induce US vulnerabilities via intermediary exporters of platinum and iridium with South Africa being the primary intermediary country. Future research includes incorporating geopolitical factors and technological innovations to move the index closer from potential to real-world vulnerabilities.
The Hydrogen Challenge: Addressing Storage, Safety, and Environmental Concerns in the Hydrogen Economy
Aug 2025
Publication
As part of global decarbonization efforts hydrogen has emerged as a key energy carrier that can achieve deep emission reductions in various sectors. This review critically assesses the role of hydrogen in the low-carbon energy transition and highlights the interlinked challenges within the Techno-Enviro-Socio-Political (TESP) framework. It examines key aspects of deployment including production storage safety environmental impacts and socio-political factors to present an integrated view of the opportunities and barriers to large-scale adoption. Despite growing global interest over 90 % of the current global hydrogen production originated from fossilbased processes resulting in around 920 Mt of CO2 emissions two-thirds of which were attributable to fossil fuels. The Life Cycle Assessment (LCA) shows that coal-based electrolysis resulted in the highest GHG emission (144 - 1033 g CO2-eq/MJ) and an energy consumption (1.55–10.33 MJ/MJ H2). Without a switch to low-carbon electricity electrolysis cannot deliver significant climate benefits. Conversely methanol steam reforming based on renewable feedstock offered the lowest GHG intensity (23.17 g CO2-eq/MJ) and energy demand (0.23 MJ/ MJ) while biogas reforming proved to be a practical short-term option with moderate emissions (51.5 g CO2-eq/ MJ) and favourable energy figures. Catalytic ammonia cracking which is suitable for long-distance transport represents a compromise between low energy consumption (2.93 MJ/MJ) and high water intensity (8.34 L/km). The thermophysical properties of hydrogen including its low molecular weight high diffusivity and easy flammability lead to significant safety risks during storage and distribution which are exacerbated by its sensitivity to ignition and jet pulse effects. The findings show that a viable hydrogen economy requires integrated strategies that combine decarbonised production scalable storage harmonised safety protocols and cross-sector stakeholder engagement for better public acceptance. This review sets out a multi-dimensional approach to guide technological innovation policy adaptation and infrastructure readiness to support a scalable and environmentally sustainable hydrogen economy.
Understanding the Framing of Hydrogen Technology: A Cross-national Content Analysis of Newspaper Coverage in Germany, Saudi Arabia, UAE, and Egypt
Jul 2025
Publication
Introduction: The implementation of national hydrogen strategies targeting zero-emission goals has sparked public discussions regarding energy and environmental communication. However gaining societal acceptance for hydrogen technology poses a significant challenge in numerous countries. Hence this research investigates the framing of hydrogen technology through a comparative analysis of opinion-leading newspapers in Germany Saudi Arabia the United Arab Emirates and Egypt. Methods: Utilizing a quantitative framing analysis based on Entman’s framing approach this research systematically identifies media frames and comprehend their development through specific frame characteristics. A factor analysis identified six distinct frames: Hydrogen as a Sustainable Energy Solution Benefits of Economic and Political Collaboration Technological and Scientific Challenges Governance Issues and Energy Security Industrial and Climate Solutions and Economic Risk. Results: The findings reveal that newspapers frames vary significantly due to contextual factors such as national hydrogen strategies media systems political ideologies article types and focusing events. Specifically German newspapers display diverse and balanced framing in line with its pluralistic media environment and national emphasis on green hydrogen and energy security while newspapers from MENA countries primarily highlight economic and geopolitical benefits aligned with their national strategies and state-controlled media environments. Additionally the political orientation of newspapers affects the diversity of frames particularly in Germany. Moreover non-opinion articles in Germany exhibit greater framing diversity compared to opinion pieces while in the MENA region the framing remains uniform regardless of article type due to centralized media governance. A notable shift in media framing in Germany was found after a significant geopolitical event which changed the frame from climate mitigation to energy security. Discussion: This study underscores the necessity for theoretical and methodological thoroughness in identifying frames as well as the considerable impact of contextual factors on the media representation of emerging sustainable technologies.
An Expert Opinion-based Perspective on Emerging Policy and Economic Research Priorities for Advancing the Low-carbon Hydrogen Sector
Jun 2025
Publication
This perspective sheds light on emerging research priorities crucial for advancing the low-carbon hydrogen sector considered critical for achieving net zero greenhouse gas emissions targets especially for hard-to-abate sectors. Our analysis follows a five-step process including drawing from news media academic discourse and expert consultations. We identify twenty-one major research challenges. Among the top priorities highlighted by experts are: (i) Evaluating the trade-offs of hydrogen-fueled power generation compared to hydrocarbon fuels and renewables with alternative storage solutions and the feasibility of co-firing hydrogen and ammonia with hydrocarbon fuels for backup or independent power generation; (ii) Exploring how global hydrogen trade could be shaped by market forces such as price volatility geopolitical dynamics and international collaborations; (iii) Examining the financial considerations for investors from developed nations pursuing hydrogen projects in resource-rich developing countries balancing costs investment risks and expected returns. We find statistically significant differences in opinions on hydrogen/ammonia co-firing for power generation between experts from China and those from the U.S. and Germany.
The Financial Results of Energy Sector Companies in Europe and Their Involvement in Hydrogen Production
Jun 2025
Publication
In response to growing environmental concerns hydrogen production has emerged as a critical element in the transition to a sustainable global economy. We evaluate the impact of hydrogen production on both the financial performance and market value of energy sector companies using balanced panel data from 288 European-listed firms over the period of 2018 to 2022. The findings reveal a paradox. While hydrogen production imposes significant financial constraints it is positively recognized by market participants. Despite short-term financial challenges companies engaged in hydrogen production experience higher market value as investors view these activities as a long-term growth opportunity aligned with global sustainability goals. We contribute to the literature by offering empirical evidence on the financial outcomes and market valuation of hydrogen engagement distinguishing between production and storage activities and further categorizing production into green blue and gray hydrogen. By examining these nuances we highlight the complex relationship between financial market results. While hydrogen production may negatively impact short-term financial performance its potential for long-term value creation driven by decarbonization efforts and sustainability targets makes it attractive to investors. Ultimately this study provides valuable insights into how hydrogen engagement shapes corporate strategies within the evolving European energy landscape.
Towards Net-Zero: Comparative Analysis of Hydrogen Infrastructure Development in USA, Canada, Singapore, and Sri Lanka
Sep 2025
Publication
This paper compares national hydrogen (H2) infrastructure plans in Canada the United States (the USA) Singapore and Sri Lanka four countries with varying geographic and economic outlooks but shared targets for reaching net-zero emissions by 2050. It examines how each country approaches hydrogen production pipeline infrastructure policy incentives and international collaboration. Canada focuses on large-scale hydrogen production utilizing natural resources and retrofitted natural gas pipelines supplemented by carbon capture technology. The USA promotes regional hydrogen hubs with federal investment and intersectoral collaboration. Singapore suggests an innovation-based import-dominant strategy featuring hydrogen-compatible infrastructure in a land-constrained region. Sri Lanka maintains an import-facilitated pilot-scale model facilitated by donor funding and foreign collaboration. This study identifies common challenges such as hydrogen embrittlement leakages and infrastructure scalability as well as fundamental differences based on local conditions. Based on these findings strategic frameworks are proposed including scalability adaptability partnership policy architecture digitalization and equity. The findings highlight the importance of localized hydrogen solutions supported by strong international cooperation and international partnerships.
An Overview of the Hydrogen Value Chain in Energy Transitioning Economies: A Focus on India
Oct 2025
Publication
India’s energy sector is undergoing a major transformation as the nation targets energy independence by 2047 and net-zero emissions by 2070. With a high dependency on energy imports a strategic shift toward renewable energy and decarbonisation is crucial. Hydrogen has emerged as a promising solution to address energy storage and sustainability challenges prompting emerging countries to develop strong hydrogen infrastructures. This paper examines various methods involved in the hydrogen value chain from production to utilisation from the perspective of transitioning economies. By identifying key parameters and existing gaps this paper aims to support policymakers and stakeholders in designing effective strategies to accelerate the development of a sustainable and secure hydrogen economy. India currently relies on carbon-intensive hydrogen from fossil fuels. Green hydrogen faces high costs and infrastructure gaps. Despite storage and safety concerns hydrogen shows strong potential for clean energy and industry transformation.
Assessing Hydrogen Supply and Demand in the Liverpool City Region: A Regional Development Review from Stakeholders' Perspective
Oct 2025
Publication
Under the UK’s carbon neutrality goals for 2050 the Liverpool City Region’s (LCR) strategic positioning with its rich industrial heritage and infrastructure assets such as extensive port facilities and proximity to vast renewable energy resources positions it as a potential leader in the UK’s shift towards a hydrogen economy. Given this the regional hydrogen industry and stakeholders in decarbonisation initiatives intend to undertake a critical review of the opportunities challenges and uncertainties to local hydrogen supply and demand systems to assist in their decision-making. To achieve this goal this study reviews the readiness of the hydrogen supply chain infrastructure within the LCR which highlights four sectors in the hydrogen economy i.e. production storage transportation and utilisation. Subsequently to offer the first-hand data in practice a multi-faceted approach that incorporates a broad array of stakeholders through the Triple Helix (TH) model is adopted. Special attention is given to hydrogen’s role in transforming heavy industry transportation and heating sectors supported by significant local projects like HyNet North West. During a roundtable discussion industry-academia-government stakeholders identify challenges in scaling up infrastructure and assess the economic and technological landscape for hydrogen adoption. To the best of our knowledge this will be the first regional academic endeavour to comprehensively examine the alignment between hydrogen supply and demand theory and practice. Based on a detailed SWOT analysis this study outlines the region’s strengths including established industrial clusters and technological capabilities in manufacturing. It also highlights weaknesses such as the high costs associated with emerging hydrogen technologies technological immaturity and gaps in necessary infrastructure. The opportunities presented by national policy incentives and growing global demand for sustainable energy solutions are considered alongside threats including regulatory complexities and the slow pace of public acceptance. This comprehensive examination not only maps the current landscape but also sets the stage for strategic interventions needed to realise hydrogen’s full potential within the LCR aiming to guide policymakers industry leaders and researchers in their efforts to foster a viable hydrogen economy. Moreover the findings offer valuable insights that can inform the development of hydrogen strategies in other regions and cities.
Hydrogen Production from Winery Wastewater Through a Dual-Chamber Microbial Electrolysis Cell
Jun 2025
Publication
This study explores the feasibility of producing biohydrogen from winery wastewater using a dual-chamber microbial electrolysis cell (MEC). A mixed microbial consortium pre-adapted to heavy-metal environments and enriched with Geobacter sulfurreducens was anaerobically cultivated from diverse waste streams. Over 5000 h of development the MEC system was progressively adapted to winery wastewater enabling long-term electrochemical stability and high organic matter degradation. Upon winery wastewater addition (5% v/v) the system achieved a sustained hydrogen production rate of (0.7 ± 0.3) L H2 L −1 d −1 with an average current density of (60 ± 4) A m−3 and COD removal efficiency exceeding 55% highlighting the system’s resilience despite the presence of inhibitory compounds. Coulombic efficiency and cathodic hydrogen recovery reached (75 ± 4)% and (87 ± 5)% respectively. Electrochemical impedance spectroscopy provided mechanistic insight into charge transfer and biofilm development correlating resistive parameters with biological adaptation. These findings demonstrate the potential of MECs to simultaneously treat agro-industrial wastewaters and recover energy in the form of hydrogen supporting circular resource management strategies.
No more items...