Policy & Socio-Economics
The Role of Hydrogen and H2 Mobility on the Green Transition of Islands: The Case of Anafi (Greece)
Apr 2023
Publication
The holistic green energy transition of non-interconnected islands faces several challenges if all the energy sectors are included i.e. electricity heating/cooling and mobility. On the one hand the penetration of renewable energy systems (RES) is limited due to design restrictions with respect to the peak demand. On the other hand energy-intensive heating and mobility sectors pose significant challenges and may be difficult to electrify. The focus of this study is on implementing a hybrid Wind–PV system on the non-interconnected island of Anafi (Greece) that utilizes surplus renewable energy production for both building heating through heat pumps and hydrogen generation. This comprehensive study aims to achieve a holistic green transition by addressing all three main sectors—electricity heating and transportation. The produced hydrogen is utilized to address the energy needs of the mobility sector (H2 mobility) focusing primarily on public transportation vehicles (buses) and secondarily on private vehicles. The overall RES production was modeled to be 91724 MWh with a RES penetration of 84.68%. More than 40% of the produced electricity from RES was in the form of excess electricity that could be utilized for hydrogen generation. The modeled generated hydrogen was simulated to be more than 40 kg H2/day which could cover all four bus routes of the island and approximately 200 cars for moderate use i.e. traveled distances of less than 25 km/day for each vehicle.
Technical, Economic, Carbon Footprint Assessment, and Prioritizing Stations for Hydrogen Production Using Wind Energy: A Case Study
Jul 2021
Publication
While Afghanistan’s power sector is almost completely dependent on fossil fuels it still cannot meet the rising power demand of this country. Deploying a combination of renewable energy systems with hydrogen production as the excess energy storage mechanism could be a sustainable long-term approach for addressing some of the energy problems of Afghanistan. Since Badakhshan is known to have a higher average wind speed than any other Afghan province in this study a technical economic and carbon footprint assessment was performed to investigate the potential for wind power and hydrogen production in this province. Wind data of four stations in Badakhshan were used for technical assessment for three heights of 10 30 and 40 m using the Weibull probability distribution function. This technical assessment was expanded by estimating the energy pattern factor probability of wind speeds greater than 5 m/s wind power density annual power output and annual hydrogen output. This was followed by an economic assessment which involved computing the Leveled Cost Of Energy (LCOE) the Leveled Cost Of Hydrogen (LCOH) and the payback period and finally an carbon footprint assessment which involved estimating the consequent CO2 reduction in two scenarios. The assessments were performed for 22 turbines manufactured by reputable companies with capacities ranging from 600 kW to 2.3 MW. The results showed that the entire Badakhshan province and especially Qal’eh-ye Panjeh and Fayazabad have excellent potentials in terms of wind energy that can be harvested for wind power and hydrogen production. Also wind power generation in this province will be highly cost-effective as the produced electricity will cost about one-third of the price of electricity supplied by the government. For better evaluation the GIS maps of wind power and hydrogen outputs were prepared using the IDW method. These maps showed that the eastern and northeastern parts of Badakhshan province have higher wind power-hydrogen production potentials. The results of ranking the stations with SWARA-EDAS hybrid MCDM methods showed that Qal’eh-ye Panjeh station was the best location to produce hydrogen from wind energy.
Transition Analysis of Budgetary Allocation for Projects on Hydrogen-Related Technologies in Japan
Oct 2020
Publication
Hydrogen technologies are promising candidates of new energy technologies for electric power load smoothing. However regardless of long-term public investment hydrogen economy has not been realized. In Japan the National Research and Development Institute of New Energy and Industrial Technology Development Organization (NEDO) a public research-funding agency has invested more than 200 billion yen in the technical development of hydrogen-related technologies. However hydrogen technologies such as fuel cell vehicles (FCVs) have not been disseminated yet. Continuous and strategic research and development (R&D) are needed but there is a lack of expertise in this field. In this study the transition of the budgetary allocations by NEDO were analyzed by classifying NEDO projects along the hydrogen supply chain and research stage. We found a different R&D focus in different periods. From 2004 to 2007 empirical research on fuel cells increased with the majority of research focusing on standardization. From 2008 to 2011 investment in basic research of fuel cells increased again the research for verification of fuel cells continued and no allocation for research on hydrogen production was confirmed. Thereafter the investment trend did not change until around 2013 when practical application of household fuel cells (ENE-FARM) started selling in 2009 in terms of hydrogen supply chain. Hydrogen economy requires a different hydrogen supply infrastructure that is an existing infrastructure of city gas for ENE-FARM and a dedicated infrastructure for FCVs (e.g. hydrogen stations). We discussed the possibility that structural inertia could prevent the transition to investing more in hydrogen infrastructure from hydrogen utilization technology. This work has significant implications for designing national research projects to realize hydrogen economy.
Tourist Preferences for Fuel Cell Vehicle Rental: Going Green with Hydrogen on the Island of Tenerife
Mar 2023
Publication
Using a discrete choice experiment (DCE) a survey of international tourists on the island of Tenerife is conducted to examine preferences for fuel cell vehicle (FCV) rental while on vacation. Survey respondents were generally supportive of FCVs and willing to hire one as part of their trip but for most individuals this is contingent on an adequate fuel station infrastructure. A latent class model was used to identify three distinct groups; one of which potentially represent early adopters e they have a high willingness-to-pay (WTP) for green hydrogen and are more likely to accept a low number of fuel stations but it could be challenging to convince them to use FCVs if they are not run on green hydrogen.
Energy System Changes in 1.5 °C, Well Below 2 °C and 2 °C Scenarios
Dec 2018
Publication
Meeting the Paris Agreement's goal to limit global warming to well below 2 °C and pursuing efforts towards 1.5 °C is likely to require more rapid and fundamental energy system changes than the previously-agreed 2 °C target. Here we assess over 200 integrated assessment model scenarios which achieve 2 °C and well-below 2 °C targets drawn from the IPCC's fifth assessment report database combined with a set of 1.5 °C scenarios produced in recent years. We specifically assess differences in a range of near-term indicators describing CO2 emissions reductions pathways changes in primary energy and final energy across the economy's major sectors in addition to more detailed metrics around the use of carbon capture and storage (CCS) negative emissions low-carbon electricity and hydrogen.
Decarbonization of Former Lignite Regions with Renewable Hydrogen: The Western Macedonia Case
Oct 2023
Publication
For lignite intense regions such as the case of Western Macedonia (WM) the production and utilization of green hydrogen is one of the most viable ways to achieve near zero emissions in sectors like transport chemicals heat and energy production synthetic fuels etc. However the implementation of each technology that is available to a respective sector differs significantly in terms of readiness and the current installation scale of each technology. The goal of this study is the provision of a transition roadmap for a decarbonized future for the WM region through utilizing green hydrogen. The technologies which can take part in this transition are presented along with the implementation purpose of each technology and the reasonable extension that each technology could be adopted in the present context. The WM region’s limited capacity for green hydrogen production leads to certain integration scenarios with regards to the required hydrogen electrolyzer capacities and required power whereas an environmental assessment is also presented for each scenario.
Future Energy Scenarios 2020
Jul 2020
Publication
Our Future Energy Scenarios (FES) outline four different credible pathways for the future of energy over the next 30 years. Based on input from over 600 experts the report looks at the energy needed in Britain across electricity and gas - examining where it could come from how it needs to change and what this means for consumers society and the energy system itself.
Opportunities for Production and Utilization of Green Hydrogen in the Philippines
Jun 2021
Publication
The Philippines is exploring different alternative sources of energy to become energy-independent while significantly reducing the country’s greenhouse gas emissions. Green hydrogen from renewable energy is one of the most sustainable alternatives with its application as an energy carrier and as a source of clean and sustainable energy as well as raw material for various industrial processes. As a preliminary study in the country this paper aims to explore different production and utilization routes for a green hydrogen economy in the Philippines. Production from electrolysis includes various available renewable sources consisting of geothermal hydropower wind solar and biomass as well as ocean technology and nuclear energy when they become available in the future. Different utilization routes include the application of green hydrogen in the transportation power generation industry and utility sectors. The results of this study can be incorporated in the development of the pathways for hydrogen economy in the Philippines and can be applied in other emerging economies.
Analysis of the Levelized Cost of Renewable Hydrogen in Austria
Mar 2023
Publication
Austria is committed to the net-zero climate goal along with the European Union. This requires all sectors to be decarbonized. Hereby hydrogen plays a vital role as stated in the national hydrogen strategy. A report commissioned by the Austrian government predicts a minimum hydrogen demand of 16 TWh per year in Austria in 2040. Besides hydrogen imports domestic production can ensure supply. Hence this study analyses the levelized cost of hydrogen for an off-grid production plant including a proton exchange membrane electrolyzer wind power and solar photovoltaics in Austria. In the first step the capacity factors of the renewable electricity sources are determined by conducting a geographic information system analysis. Secondly the levelized cost of electricity for wind power and solarphotovoltaics plants in Austria is calculated. Thirdly the most cost-efficient portfolio of wind power and solar photovoltaics plants is determined using electricity generation profiles with a 10-min granularity. The modelled system variants differ among location capacity factors of the renewable electricity sources and the full load hours of the electrolyzer. Finally selected variables are tested for their sensitivities. With the applied model the hydrogen production cost for decentralized production plants can be calculated for any specific location. The levelized cost of hydrogen estimates range from 3.08 EUR/kg to 13.12 EUR/kg of hydrogen whereas it was found that the costs are most sensitive to the capacity factors of the renewable electricity sources and the full load hours of the electrolyzer. The novelty of the paper stems from the model applied that calculates the levelized cost of renewable hydrogen in an off-grid hydrogen production system. The model finds a cost-efficient portfolio of directly coupled wind power and solar photovoltaics systems for 80 different variants in an Austria-specific context.
Fuelling the Transition Podcast: Building the UK Hydrogen Backbone
Feb 2022
Publication
In this episode Tony Green Hydrogen Director at National Grid and John Williams Head of Hydrogen Expertise Cluster at AFRYManagement Consulting join us to discuss the challenges in implementing hydrogen. Tony is involved in two exciting hydrogen projects: FutureGrid andProject Union. FutureGrid involves building a facility to create a representative whole-network to trial hydrogen. Project Union will develop a UK hydrogen ‘backbone’ joining together clusters around the country potentially creating a 2000km hydrogen network.
In addition to discussing these projects this episode will explore the following issues:
♦ Managing the transition and challenges in repurposing natural gas pipelines to hydrogen
♦ The potential for blending and de-blending hydrogen
♦ The impact of hydrogen on National Grid’s regulatory approach
♦ How to take the first steps towards a hydrogen wholesale market"
The podcast can be found on their website.
In addition to discussing these projects this episode will explore the following issues:
♦ Managing the transition and challenges in repurposing natural gas pipelines to hydrogen
♦ The potential for blending and de-blending hydrogen
♦ The impact of hydrogen on National Grid’s regulatory approach
♦ How to take the first steps towards a hydrogen wholesale market"
The podcast can be found on their website.
Life Cycle Assessments Use in Hydrogen-related Policies: The Case for a Harmonized Methodology Addressing Multifunctionality
May 2024
Publication
Legislation regulating the sustainability requirements for hydrogen technologies relies more and more on life cycle assessments (LCAs). Due to different scopes and development processes different pieces of EU legislation refer to different LCA methodologies with differences in the way multifunctional processes (i.e. co-productions recycling and energy recovery) are treated. These inconsistencies arise because incentive mechanisms are not standardized across sectors even though the end product hydrogen remains the same. The goal of this paper is to compare the life-cycle greenhouse gas (GHG) emissions of hydrogen from four production pathways depending on the multifunctional approach prescribed by the different EU policies (e.g. using substitution or allocation). The study reveals a large variation in the LCA results. For instance the life-cycle GHG emissions of hydrogen co-produced with methanol is found to vary from 1 kg CO2-equivalent/kg H2 (when mass allocation is considered) to 11 kg CO2-equivalent/kg H2 (when economic allocation is used). These inconsistencies could affect the market (e.g. hydrogen from a certain pathway could be considered sustainable or unsustainable depending on the approach) and the environment (e.g. pathways that do not lead to a global emission reduction could be promoted). To mitigate these potential negative effects we urge for harmonized and strict guidelines to assess the life-cycle GHG emissions of hydrogen technologies in an EU policy context. Harmonization should cover international policies too to avoid the same risks when hydrogen will be traded based on its GHG emissions. The appropriate methodological approach for each production pathway should be chosen by policymakers in collaboration with the LCA community and stakeholders from the industry based on the potential market and environmental consequences of such choice.
Positioning Germany in an International Hydrogen Economy: A Policy Review
Apr 2024
Publication
Germany the European Union member state with the largest fiscal space and its leading manufacturer of industrial goods is pursuing an ambitious hydrogen strategy aiming at establishing itself as a major technology provider and importer of green hydrogen. The success of its hydrogen strategy represents not only a key element in realizing the European vision of climate neutrality but also a central driver of an emerging global hydrogen economy. This article provides a detailed review of German policy highlighting its prominent international dimension and its implications for the development of a global renewable hydrogen economy. It provides an overview of the strategy’s central goals and how these have evolved since the launch of the strategy in 2020. Next it moves on to provide an overview of the strategy’s main areas of intervention and highlights corresponding policy instruments. For this we draw on a comprehensive assessment of hydrogen policy instruments which have been systematically analyzed and coded. This was complemented by a detailed analysis of policy documents and information gathered in six interviews with government officials and staff of key implementing agencies. The article places particular emphasis on the strategy’s international dimension. While less significant in financial terms than domestic hydrogen-related spending it represents a defining feature of the German hydrogen strategy setting it apart from strategies in other major economies. The article closes with a reflection on the key features of the strategy compared to other important countries identifies gaps of the strategy and discusses important avenues for future research.
Monitored Data and Social Perceptions Analysis of Battery Electric and Hydrogen Fuelled Buses in Urban and Suburban Areas
Jul 2023
Publication
Electrification of the transportation sector is one of the main drivers in the decarbonization of energy and mobility systems and it is a way to ensure security of energy supply. Public bus fleets can assist in achieving fast reduction of CO2 emissions. This article provides an analysis of a unique real-world dataset to support decision makers in the decarbonization of public fleets and interlink it with the social acceptance of drivers. Data was collected from 21 fuel cell and electric buses. The tank-to-wheel efficiency results of fuel cell electric buses (FCEB) are much lower than that of battery electric buses (BEB) and there is a higher variation in consumption for BEBs compared to FCEBs. Both technologies permit a strong reduction in CO2 emissions compared to conventional buses. There is a high level of acceptance of drivers which are likely to support the transition towards zero-emission buses introduced by the management.
Global Hydrogen Review 2023
Sep 2023
Publication
The Global Hydrogen Review is an annual publication by the International Energy Agency that tracks hydrogen production and demand worldwide as well as progress in critical areas such as infrastructure development trade policy regulation investments and innovation. The report is an output of the Clean Energy Ministerial Hydrogen Initiative and is intended to inform energy sector stakeholders on the status and future prospects of hydrogen while also informing discussions at the Hydrogen Energy Ministerial Meeting organised by Japan. Focusing on hydrogen’s potentially major role in meeting international energy and climate goals the Review aims to help decision makers fine-tune strategies to attract investment and facilitate deployment of hydrogen technologies at the same time as creating demand for hydrogen and hydrogen-based fuels. It compares real-world developments with the stated ambitions of government and industry. This year’s report includes a focus on demand creation for low-emission hydrogen. Global hydrogen use is increasing but demand remains so far concentrated in traditional uses in refining and the chemical industry and mostly met by hydrogen produced from unabated fossil fuels. To meet climate ambitions there is an urgent need to switch hydrogen use in existing applications to low-emission hydrogen and to expand use to new applications in heavy industry or long-distance transport.
Future Green Energy: A Global Analysis
Jun 2024
Publication
The main problem confronting the world is human-caused climate change which is intrinsically linked to the need for energy both now and in the future. Renewable (green) energy has been proposed as a future solution and many renewable energy technologies have been developed for different purposes. However progress toward net zero carbon emissions by 2050 and the role of renewable energy in 2050 are not well known. This paper reviews different renewable energy technologies developed by different researchers and their potential and challenges to date and it derives lessons for world and especially African policymakers. According to recent research results the mean global capabilities for solar wind biogas geothermal hydrogen and ocean power are 325 W 900 W 300 W 434 W 150 W and 2.75 MWh respectively and their capacities for generating electricity are 1.5 KWh 1182.5 KWh 1.7 KWh 1.5 KWh 1.55 KWh and 3.6 MWh respectively. Securing global energy leads to strong hope for meeting the Sustainable Development Goals (SDGs) such as those for hunger health education gender equality climate change and sustainable development. Therefore renewable energy can be a considerable contributor to future fuels.
Supply and Demand Drivers of Global Hydrogen Deployment in the Transition Toward a Decarbonized Energy System
Nov 2023
Publication
The role of hydrogen in energy system decarbonization is being actively examined by the research and policy communities. We evaluate the potential “hydrogen economy” in global climate change mitigation scenarios using the Global Change Analysis Model (GCAM). We consider major hydrogen production methods in conjunction with delivery options to understand how hydrogen infrastructure affects its deployment. We also consider a rich set of hydrogen end-use technologies and vary their costs to understand how demand technologies affect deployment. We find that the availability of hydrogen transmission and distribution infrastructure primarily affects the hydrogen production mix particularly the share produced centrally versus on-site whereas assumptions about end-use technology primarily affect the scale of hydrogen deployment. In effect hydrogen can be a source of distributed energy enabled by on-site renewable electrolysis and to a lesser extent by on-site production at industrial facilities using natural gas with carbon capture and storage (CCS). While the share of hydrogen in final energy is small relative to the share of other major energy carriers in our scenarios hydrogen enables decarbonization in difficult-to-electrify end uses such as industrial high-temperature heat. Hydrogen deployment and in turn its contribution to greenhouse gas mitigation increases as the climate objective is tightened.
Hydrogen as a Transition Tool in a Fossil Fuel Resource Region: Taking China’s Coal Capital Shanxi as an Example
Aug 2023
Publication
Because of the pressure to meet carbon neutrality targets carbon reduction has become a challenge for fossil fuel resource-based regions. Even though China has become the most active country in carbon reduction its extensive energy supply and security demand make it difficult to turn away from its dependence on coal-based fossil energy. This paper analyzes the Chinese coal capital—Shanxi Province—to determine whether the green low-carbon energy transition should be focused on coal resource areas. In these locations the selection and effect of transition tools are key to ensuring that China meets its carbon reduction goal. Due to the time window of clean coal utilization the pressure of local governments and the survival demands of local high energy consuming enterprises Shanxi Province chose hydrogen as its important transition tool. A path for developing hydrogen resources has been established through lobbying and corporative influence on local and provincial governments. Based on such policy guidance Shanxi has realized hydrogen applications in large-scale industrial parks regional public transport and the iron and steel industry. This paper distinguishes between the development strategies of gray and green hydrogen. It shows that hydrogen can be an effective development model for resource-based regions as it balances economic stability and energy transition.
Towards Green Hydrogen? - A Comparison of German and African Visions and Expectations in the Context of the H2Atlas-Africa Project
Sep 2023
Publication
Green hydrogen promises to be critical in achieving a sustainable and renewable energy transition. As green hydrogen is produced with renewables green hydrogen could become an energy storage medium of the future and even substitute the current unsustainable grey or blue hydrogen used in the industry. Bringing this transition into reality for instance in Germany there are visions to rapidly build hydrogen facilities in Africa and export the produced green hydrogen to Europe. One problem however is that these visions presumably conflict with the visions of actors within Africa. Therefore this study aims to provide an initial assessment of African stakeholders’ visions for future energy exports and renewable energy expectations. By comparing visions from Germany and Africa this assessment was conducted to identify differences in green energy and hydrogen visions that could lead to conflict and similarities that could be the basis for cooperation. The National Hydrogen Strategy outlines the German visions which clarifies that Germany will have to import green hydrogen to meet its green transition target. In this context of future energy export demand a partnership between German and African researchers on assessing green hydrogen potentials in Africa started. The African visions were explored by surveying the partners from different African countries working on the project. The results revealed that while both sides see the need for an immediate transition to renewable energy the African side is not envisioning the immediate export of green hydrogen. Based on the responses the partners are primarily concerned with improving the continent’s still deficient energy access for both the population and industry. Nevertheless this African perspective greatly emphasises cross-border cooperation where both sides can realise their visions. In the case of Germany that German investment could build infrastructure which would benefit the receiving African country or countries and open up the possibility for the envisioned green hydrogen export to Europe.
Parameterization Proposal to Determine the Feasibility of Geographic Areas for the Green Hydrogen Industry under Socio-environmental and Technical Constraints in Chile
Oct 2023
Publication
Chile abundant in solar and wind energy resources presents significant potential for the production of green hydrogen a promising renewable energy vector. However realizing this potential requires an understanding of the most suitable locations for the installation of green hydrogen industries. This study proposes a quantitative methodology that identifies and ranks potential public lands for industrial use based on a range of technical parameters (such as solar and wind availability) and socio-environmental considerations (including land use restrictions and population density). The results reveal optimal locations that can facilitate informed sustainable decision-making for large-scale green hydrogen implementation in Chile. While this methodology does not replace project-specific technical or environmental impact studies it provides a flexible general classification to guide initial site selection. Notably this approach can be applied to other regions worldwide with abundant solar and wind resources such as Australia and Northern Africa promoting more effective and sustainable global decision-making for green hydrogen production.
Renewable Fuel Production and the Impact of Hydrogen Infrastructure - A Case Study of the Nordics
Apr 2024
Publication
Hard-to-electrify sectors will require renewable fuels to facilitate the green transition in the future. Therefore it is crucial to identify promising production locations while taking into account the local biomass resources variable renewable energy sources and the synergies between sectors. In this study investments and dispatch operations are optimised of a large catalogue of renewable fuel production technologies in the open-source software SpineOpt and this is soft-linked to the comprehensive energy system model Balmorel. We analyse future production pathways by comparing various levels of hydrogen infrastructure including large-scale hydrogen storage and assess system impacts. The results indicate that methanol may provide synergies in its multipurpose use as an early (2030–2040) shipping fuel and later as an aviation fuel through further refining if ammonia becomes more competitive (2050). We furthermore show that a hydrogen infrastructure increases the competitiveness of non-flexible hydrogen-based fuel production technologies. Offshore electrolysis hubs decrease energy system impacts in scenarios with 105 TWh of Nordic hydrogen export. However hydrogen export scenarios are much costlier compared to scenarios with no export unless a high hydrogen price is received. Finally we find that emission taxes in the range of 250–265 e/tCO2 will be necessary for renewable fuels to become competitive.
No more items...