Production & Supply Chain
Everything About Hydrogen Podcast: Producing Hydrogen with Wind Energy
Sep 2022
Publication
On this episode of Everything About Hydrogen we are speaking with David Wellard Regulatory Affairs Manager at Orsted. Orsted is a global leader in renewable energy generation projects particularly when it comes to the rapidly expanding wind energy sector. Headquartered in Denmark the company has a global reach across multiple continents and technologies. David helps lead Orsted’s policy and regulatory engagement in the United Kingdom and beyond. We are excited to have him with us to discuss how Orsted is looking at and deploying hydrogen technologies and how they expect to utilized hydrogen in a decarbonized energy future.
The podcast can be found on their website.
The podcast can be found on their website.
Co-gasification of Refuse-derived Fuels and Bituminous Coal with Oxygen/steam Blend to Hydrogen Rich Gas
May 2022
Publication
The gasification technology of refuse-derived fuels (RDF) can represent a future alternative to the global hydrogen production and a pathway for the development of the circular economy. The paper presents an innovative way of utilizing RDF through their oxygen/steam co-gasification with bituminous coal to hydrogen rich gas. Five different RDF samples (RDF1÷RDF5) were investigated. The in-depth analyses of the co-gasification of bituminous coal blends with different amounts of RDF (10 15 and 20%w/w) under various temperature conditions were conducted with the application of Hierarchical Clustering Analysis (HCA). The results of the research study revealed a decrease in the total gas yield as well as in the hydrogen yield observed with the increase in the RDF fraction in the fuel blend. The lowest hydrogen yield and the highest carbon conversion were noted for the co-gasification tests of coal blends with 20%w/w for all the studied RDFs. The SEM-EDS (Scanning Electron Microscopy with Energy Dispersive Spectroscopy) and WDXRF (Wavelength Dispersive X-ray Fluorescence) results showed a significantly higher H2 yield in RDF2 co-gasification with coal in comparison with all the remaining RDFs due to the higher concentration of calcium in the sample. The molecular structure analysis of polymers using Fourier transform infrared spectroscopy (FTIR) demonstrated that the most prevalent synthetic polymers in RDF2 are polyethylene terephthalate and polyvinyl chloride characterized by the lowest thermal stability compared to polyethylene and polypropylene.
Prospects and Technical Challenges in Hydrogen Production through Dry Reforming of Methane
Mar 2022
Publication
Environmental issues related to greenhouse gases (GHG) emissions have pushed the development of new technologies that will allow the economic production of low-carbon energy vectors such as hydrogen (H2 ) methane (CH4 ) and liquid fuels. Dry reforming of methane (DRM) has gained increased attention since it uses CH4 and carbon dioxide (CO2 ) which are two main greenhouse gases (GHG) as feedstock for the production of syngas which is a mixture of H2 and carbon monoxide (CO) and can be used as a building block for the production of fuels. Since H2 has been identified as a key enabler of the energy transition a lot of studies have aimed to benefit from the environmental advantages of DRM and to use it as a pathway for a sustainable H2 production. However there are several challenges related to this process and to its use for H2 production such as catalyst deactivation and the low H2/CO ratio of the syngas produced which is usually below 1.0. This paper presents the recent advances in the catalyst development for H2 production via DRM the processes that could be combined with DRM to overcome these challenges and the current industrial processes using DRM. The objective is to assess in which conditions DRM could be used for H2 production and the gaps in literature data preventing better evaluation of the environmental and economic potential of this process.
A Numerical Study on Turquoise Hydrogen Production by Catalytic Decomposition of Methane
Feb 2023
Publication
Catalytic decomposition of methane (CDM) is a novel technology for turquoise hydrogen production with solid carbon as the by-product instead of CO2. A computational fluid dynamics model was developed to simulate the CDM process in a 3D fixed bed reactor accounting for the impact of carbon deposition on catalytic activity. The model was validated with experimental data and demonstrated its capability to predict hydrogen concentration and catalyst deactivation time under varying operating temperatures and methane flow rates. The catalyst lifespan was characterized by the maximum carbon yield (i.e. gC/gcat) which is a crucial indicator for determining the cost of hydrogen generation. Parametric studies were performed to analyse the effect of inlet gas composition and operating pressure on CDM performance. Various CH4/H2 ratios were simulated to improve the methane conversion efficiency generating a higher amount of hydrogen while increasing the maximum carbon yield up to 49.5 gC/gcat. Additionally higher operating pressure resulted in higher methane decomposition rates which reflects the nature of the chemical kinetics.
Life Cycle Assessment and Economic Analysis of an Innovative Biogas Membrane Reformer for Hydrogen Production
Feb 2019
Publication
This work investigates the environmental and economic performances of a membrane reactor for hydrogen production from raw biogas. Potential benefits of the innovative technology are compared against reference hydrogen production processes based on steam (or autothermal) reforming water gas shift reactors and a pressure swing adsorption unit. Both biogas produced by landfill and anaerobic digestion are considered to evaluate the impact of biogas composition. Starting from the thermodynamic results the environmental analysis is carried out using environmental Life cycle assessment (LCA). Results show that the adoption of the membrane reactor increases the system efficiency by more than 20 percentage points with respect to the reference cases. LCA analysis shows that the innovative BIONICO system performs better than reference systems when biogas becomes a limiting factor for hydrogen production to satisfy market demand as a higher biogas conversion efficiency can potentially substitute more hydrogen produced by fossil fuels (natural gas). However when biogas is not a limiting factor for hydrogen production the innovative system can perform either similar or worse than reference systems as in this case impacts are largely dominated by grid electric energy demand and component use rather than conversion efficiency. Focusing on the economic results hydrogen production cost shows lower value with respect to the reference cases (4 €/kgH2 vs 4.2 €/kgH2) at the same hydrogen delivery pressure of 20 bar. Between landfill and anaerobic digestion cases the latter has the lower costs as a consequence of the higher methane content.
Development and Mechanistic Studies of Ternary Nanocomposites for Hydrogen Production from Water Splitting to Yield Sustainable/Green Energy and Environmental Remediation
Mar 2022
Publication
Photocatalysts lead vitally to water purifications and decarbonise environment each by wastewater treatment and hydrogen (H2 ) production as a renewable energy source from waterphotolysis. This work deals with the photocatalytic degradation of ciprofloxacin (CIP) and H2 production by novel silver-nanoparticle (AgNPs) based ternary-nanocomposites of thiolated reducegraphene oxide graphitic carbon nitride (AgNPs-S-rGO2%@g-C3N4 ) material. Herein the optimised balanced ratio of thiolated reduce-graphene oxide in prepared ternary-nanocomposites played matchlessly to enhance activity by increasing the charge carriers’ movements via slowing down charge-recombination ratios. Reduced graphene oxide (rGO) >2 wt.% or < 10 nm. Therefore AgNPs-S-rGO2%@g-C3N4 has 3772.5 µmolg−1 h −1 H2 production which is 6.43-fold higher than g-C3N4 having cyclic stability of 96% even after four consecutive cycles. The proposed mechanism for AgNPs-S-rGO2%@g-C3N4 revealed that the photo-excited electrons in the conduction-band of g-C3N4 react with the adhered water moieties to generate H2 .
Ammonia Decomposition in the Process Chain for a Renewable Hydrogen Supply
Jun 2022
Publication
This review article deals with the challenge to identify catalyst materials from literature studies for the ammonia decomposition reaction with potential for application in large-scale industrial processes. On the one hand the requirements on the catalyst are quite demanding. Of central importance are the conditions for the primary reaction that have to be met by the catalyst. Likewise the catalytic performance i.e. an ideally quantitative conversion and a high lifetime are critical as well as the consideration of requirements on the product properties in terms of pressure or by-products for potential follow-up processes in this case synthesis gas applications. On the other hand the evaluation of the multitude of literature studies poses difficulties due to significant varieties in catalytic testing protocols.
Investigation of an Intensified Thermo-Chemical Experimental Set-Up for Hydrogen Production from Biomass: Gasification Process Integrated to a Portable Purification System—Part II
Jun 2022
Publication
Biomass gasification is a versatile thermochemical process that can be used for direct energy applications and the production of advanced liquid and gaseous energy carriers. In the present work the results are presented concerning the H2 production at a high purity grade from biomass feedstocks via steam/oxygen gasification. The data demonstrating such a process chain were collected at an innovative gasification prototype plant coupled to a portable purification system (PPS). The overall integration was designed for gas conditioning and purification to hydrogen. By using almond shells as the biomass feedstock from a product gas with an average and stable composition of 40%-v H2 21%-v CO 35%-v CO2 2.5%-v CH4 the PPS unit provided a hydrogen stream with a final concentration of 99.99%-v and a gas yield of 66.4%.
Renewable Energy Pathways toward Accelerating Hydrogen Fuel Production: Evidence from Global Hydrogen Modeling
Dec 2022
Publication
Fossil fuel consumption has triggered worries about energy security and climate change; this has promoted hydrogen as a viable option to aid in decarbonizing global energy systems. Hydrogen could substitute for fossil fuels in the future due to the economic political and environmental concerns related to energy production using fossil fuels. However currently the majority of hydrogen is produced using fossil fuels particularly natural gas which is not a renewable source of energy. It is therefore crucial to increase the efforts to produce hydrogen from renewable sources rather from the existing fossil-based approaches. Thus this study investigates how renewable energy can accelerate the production of hydrogen fuel in the future under three hydrogen economy-related energy regimes including nuclear restrictions hydrogen and city gas blending and in the scenarios which consider the geographic distribution of carbon reduction targets. A random effects regression model has been utilized employing panel data from a global energy system which optimizes for cost and carbon targets. The results of this study demonstrate that an increase in renewable energy sources has the potential to significantly accelerate the growth of future hydrogen production under all the considered policy regimes. The policy implications of this paper suggest that promoting renewable energy investments in line with a fairer allocation of carbon reduction efforts will help to ensure a future hydrogen economy which engenders a sustainable low carbon society.
Design and Performance Assessment of a Solar-to-hydrogen System Thermally Assisted by Recovered Heat from a Molten Carbonate Fuel Cell
Mar 2022
Publication
Solar-to-hydrogen plants are predominantly based on steam electrolysis. Steam electrolysis requires water electricity and heat. The excess electric energy is generally converted into hydrogen via an electrolyser. The use of waste heat in hydrogen generation process promises energy efficiency improvement and production fluctuation reductions. This work investigates the techno-economic performance of the proposed system which recovers the waste heat from molten carbonate fuel cell and uses solar energy to produce steam. Comparison of thermally assisted solar system with corresponding solar system is done. The fuel cell provides 80% of the required thermal energy. The solar PV array provides the required electricity. The thermally assisted solar-to-hydrogen system annual energy efficiency (38.5 %) is higher than that of solar- to- hydrogen system. The investment cost of the proposed system is 2.4 % higher than that using only solar parabolic trough collector for the same required amount of heat. The advantage is that the fuel cell simultaneously produces electricity and heat. The recovery of waste heat allows getting an annual overall efficiency of 63.2 % for the molten carbonate fuel cell. It yields 2152 MWh of electricity per year. The 1 MW electrolysers annually generates 74 tonnes of hydrogen.
Feasibility Study of "CO2 Free Hydrogen Chain" Utilizing Australian Brown Coal Linked with CCS
Nov 2012
Publication
We had investigated feasible measures to reduce CO2 emission and came to conclusion that introduction of new fuel such as hydrogen with near zero CO2 emission is required for achieving Japan’s commitment of 80% CO2 reduction by 2050. Under this background we are proposing and aiming to realize “CO2 free hydrogen chain” utilizing Australian brown coal linked with CCS. In this chain hydrogen produced from brown coal is liquefied and transported to Japan by liquid hydrogen carrier. We have conducted feasibility study of commercial scale “CO2 free hydrogen chain” whose result shows the chain is technically and economically feasible.
Techno-economic Assessment of Blue and Green Ammonia as Energy Carriers in a Low-carbon Future
Feb 2022
Publication
Ammonia is an industrial chemical and the basic building block for the fertilizer industry. Lately attention has shifted towards using ammonia as a carbon-free energy vector due to the ease of transportation and storage in liquid state at − 33 ◦C and atmospheric pressure. This study evaluates the prospects of blue and green ammonia as future energy carriers; specifically the gas switching reforming (GSR) concept for H2 and N2 co-production from natural gas with inherent CO2 capture (blue) and H2 generation through an optimized value chain of wind and solar power electrolysers cryogenic N2 supply and various options for energy storage (green). These longer term concepts are benchmarked against conventional technologies integrating CO2 capture: the Kellogg Braun & Root (KBR) Purifier process and the Linde Ammonia Concept (LAC). All modelled plants utilize the same ammonia synthesis loop for a consistent comparison. A cash flow analysis showed that the GSR concept achieved an attractive levelized cost of ammonia (LCOA) of 332.1 €/ton relative to 385.1–385.9 €/ton for the conventional plants at European energy prices (6.5 €/GJ natural gas and 60 €/MWh electricity). Optimal technology integration for green ammonia using technology costs representative of 2050 was considerably more expensive: 484.7–772.1 €/ton when varying the location from Saudi Arabia to Germany. Furthermore the LCOA of the GSR technology drops to 192.7 €/ton when benefitting from low Saudi Arabian energy costs (2 €/GJ natural gas and 40 €/MWh electricity). This cost difference between green and blue ammonia remained robust in sensitivity analyses where input energy cost (natural gas or wind/solar power) was the most influential parameter. Given its low production costs and the techno-economic feasibility of international ammonia trade advanced blue ammonia production from GSR offers an attractive pathway for natural gas exporting regions to contribute to global decarbonization.
Towards Net-zero Compatible Hydrogen from Steam Reformation - Techno-economic Analysis of Process Design Options
Dec 2022
Publication
Increased consumption of low-carbon hydrogen is prominent in the decarbonisation strategies of many jurisdictions. Yet prior studies assessing the current most prevalent production method steam reformation of natural gas (SRNG) have not sufficiently evaluated how process design decisions affect life cycle greenhouse gas (GHG) emissions. This techno-economic case study assesses cradle-to-gate emissions of hydrogen produced from SRNG with CO2 capture and storage (CCS) in British Columbia Canada. Four process configurations with amine-based CCS using existing technology and novel process designs are evaluated. We find that cradle-to-gate GHG emission intensity ranges from 0.7 to 2.7 kgCO2e/kgH2 – significantly lower than previous studies of SRNG with CCS and similar to the range of published estimates for hydrogen produced from renewable-powered electrolysis. The levelized cost of hydrogen (LCOH) in this study (US$1.1–1.3/kgH2) is significantly lower than published estimates for renewable-powered electrolysis.
Opportunities for Flexible Electricity Loads such as Hydrogen Production from Curtailed Generation
Jun 2021
Publication
Variable low-cost low-carbon electricity that would otherwise be curtailed may provide a substantial economic opportunity for entities that can flexibly adapt their electricity consumption. We used historical hourly weather data over the contiguous U.S. to model the characteristics of least-cost electricity systems dominated by variable renewable generation that powered firm and flexible electricity demands (loads). Scenarios evaluated included variable wind and solar power battery storage and dispatchable natural gas with carbon capture and storage with electrolytic hydrogen representing a prototypical flexible load. When flexible loads were small excess generation capacity was available during most hours allowing flexible loads to operate at high capacity factors. Expanding the flexible loads allowed the least-cost systems to more fully utilize the generation capacity built to supply firm loads and thus reduced the average cost of delivered electricity. The macro-scale energy model indicated that variable renewable electricity systems optimized to supply firm loads at current costs could supply 25% or more additional flexible load with minimal capacity expansion while resulting in reduced average electricity costs (10% or less capacity expansion and 10% to 20% reduction in costs in our modeled scenarios). These results indicate that adding flexible loads to electricity systems will likely allow more full utilization of generation assets across a wide range of system architectures thus providing new energy services with infrastructure that is already needed to supply firm electricity loads.
Photocatalytic Hydrogen Evolution from Biomass Conversion
Feb 2021
Publication
Biomass has incredible potential as an alternative to fossil fuels for energy production that is sustainable for the future of humanity. Hydrogen evolution from photocatalytic biomass conversion not only produces valuable carbon-free energy in the form of molecular hydrogen but also provides an avenue of production for industrially relevant biomass products. This photocatalytic conversion can be realized with efficient sustainable reaction materials (biomass) and inexhaustible sunlight as the only energy inputs. Reported herein is a general strategy and mechanism for photocatalytic hydrogen evolution from biomass and biomass-derived substrates (including ethanol glycerol formic acid glucose and polysaccharides). Recent advancements in the synthesis and fundamental physical/mechanistic studies of novel photocatalysts for hydrogen evolution from biomass conversion are summarized. Also summarized are recent advancements in hydrogen evolution efciency regarding biomass and biomass-derived substrates. Special emphasis is given to methods that utilize unprocessed biomass as a substrate or synthetic photocatalyst material as the development of such will incur greater benefts towards a sustainable route for the evolution of hydrogen and production of chemical feedstocks.
Techno-economic Evaluation of Medium Scale Power to Hydrogen to Combined Heat and Power Generation Systems
Jun 2022
Publication
The European Hydrogen Strategy and the new « Fit for 55 » package indicate the urgent need for the alignment of policy with the European Green Deal and European Union (EU) climate law for the decarbonization of the energy system and the use of hydrogen towards 2030 and 2050. The increasing carbon prices in EU Emission Trading System (ETS) as well as the lack of dispatchable thermal power generation as part of the Coal exit are expected to enhance the role of Combined Heat and Power (CHP) in the future energy system. In the present work the use of renewable hydrogen for the decarbonization of CHP plants is investigated for various fossil fuel substitution ratios and the impact of the overall efficiency the reduction of direct emissions and the carbon footprint of heat and power generation are reported. The analysis provides insights on efficient and decarbonized cogeneration linking the power with the heat sector via renewable hydrogen production and use. The levelized cost of hydrogen production as well as the levelized cost of electricity in the power to hydrogen to combined heat and power system are analyzed for various natural gas substitution scenarios as well as current and future projections of EU ETS carbon prices.
A Comprehensive Study on Production of Methanol from Wind Energy
Apr 2022
Publication
Methanol is a promising new alternative fuel that emits significantly less carbon dioxide than gasoline. Traditionally methanol was produced by gasifying natural gas and coal. Syn-Gas is created by converting coal and natural gas. After that the Syn-Gas is converted to methanol. Alternative renewable energy-to-methanol conversion processes have been extensively researched in recent years due to the traditional methanol production process’s high carbon footprint. Using an electrolysis cell wind energy can electrolyze water to produce hydrogen. Carbon dioxide is a gas that can be captured from the atmosphere and industrial processes. Carbon dioxide and hydrogen are combusted in a reactor to produce methanol and water; the products are then separated using a distillation column. Although this route is promising it has significant cost and efficiency issues due to the low efficiency of the electrolysis cells and high manufacturing costs. Additionally carbon dioxide capture is an expensive process. Despite these constraints it is still preferable to store excess wind energy in the form of methanol rather than sending it directly to the grid. This process is significantly more carbon-efficient and resource-efficient than conventional processes. Researchers have proposed and/or simulated a variety of wind power methods for methanol processes. This paper discusses these processes. The feasibility of wind energy for methanol production and its future potential is also discussed in this paper.
Technical Failures in Green Hydrogen Production and Reliability Engineering Responses: Insights from Database Analysis and a Literature Review
Nov 2024
Publication
Green hydrogen represents a promising solution for renewable energy application and carbon footprint reduc tion. However its production through renewable energy powered water electrolysis is hindered by significant cost arising from repair maintenance and economic losses due to unexpected downtimes. Although reliability engineering is highly effective in addressing such issues there is limited research on its application in the hydrogen field. To present the state-of-the-art research this study aims to explore the potential of reducing these events through reliability engineering a widely adopted approach in various industries. For this purpose it examines past accidents occurred in water electrolysis plants from the hydrogen incident and accident database (HIAD 2.1). Besides a literature review is performed to analyze the state-of-the-art application of reliability engineering techniques such as failure analysis reliability assessment and reliability-centered maintenance in the hydrogen sector and similar industries. The study highlights the contributions and potentials of reliability engineering for efficient and stable green hydrogen production while also discussing the gaps in applying this approach. The unique challenges posed by hydrogen’s physical properties and innovative technologies in water electrolysis plants necessitate advancement and specialized approaches for reliability engineering.
Decarbonization of Natural Gas Systems in the EU - Costs, Barriers, and Constraints of Hydrogen Production with a Case Study in Portugal
Jul 2022
Publication
The European Union (EU) imports a large amount of natural gas and the injection of renewable hydrogen (H2) into the natural gas systems could help decarbonize the sector. The new geopolitical and energy market situation demands urgent actions in the clean energy transition and energy independence from fossil fuels. This paper aims to investigate techno-economic analysis barriers and constraints in the EU policies/frameworks that affect natural gas decarbonization. First the study examines the levelized cost of hydrogen production (LCOH). The LCOH is evaluated for blue and grey hydrogen i.e. Steam Methane Reforming (SMR) natural gas as the feed stock with and without carbon capture and green hydrogen (three type electrolyzers with electricity from the grid solar and wind) for the years 2020 2030 and 2050. Second the study evaluates the current policies and framework based on a SWOT (Strength Weakness Opportunities and Weakness) analysis which includes a PEST (Political Economic Social and Technological) macro-economic factor assessment with a case study in Portugal. The results show that the cheapest production costs continue to be dominated by grey hydrogen (1.33 €/kg.H2) and blue hydrogen (1.68 €/kg.H2) in comparison to green hydrogen (4.65 €/kg.H2 and 3.54 €/kg.H2) from grid electricity and solar power in the PEM - Polymer Electrolyte Membrane for the year 2020 respectively. The costs are expected to decrease to 4.03 €/kg.H2 (grid-electricity) and 2.49 €/kg.H2 (solar – electricity) in 2030. The LCOH of the green grid-electricity and solar/wind-powered Alkaline Electrolyzer (ALK) and Solid Oxide Electrolyzer Cell (SOEC) are also expected to decrease in the time-span from 2020 to 2050. A sensitivity analysis shows that investments costs electricity price the efficiency of electrolyzers and carbon tax (for SMR) could play a key role in reducing LCOH thereby making the economic competitiveness of hydrogen production. The key barriers are costs amendments in rules/regulations institutions and market creation public perception provisions of incentives and constraints in creating market demand.
Internal Model Control for Onboard Methanol-Reforming Hydrogen Production Systems
Jan 2025
Publication
Methanol reforming is considered to be one of the most promising hydrogen production technologies for hydrogen fuel cells. It is expected to solve the problem of hydrogen storage and transportation because of its high hydrogen production rate low cost and good safety. However the strong nonlinearity and slow response of the pressure and temperature subsystems pose challenges to the tracking control of the methanol reforming hydrogen production system. In this paper two internal model-based temperature and pressure controllers are proposed in which the temperature is adjusted by controlling the air flow and the pressure is adjusted by controlling the opening of the backpressure valve. Firstly a lumped parameter model of the methanol reforming hydrogen production system is constructed using MATLAB/Simulink® (produced by MathWorks in Natick Massachusetts USA). In addition the transfer function model of the system is obtained by system identification at the equilibrium point and the internal model controller is further designed. The simulation results show that the control method achieves the robustness of the system and the temperature and pressure of the reforming reactor can quickly and accurately track the target value when the load changes. Small-load step tests indicate stable tracking of the temperature and pressure for the reforming reactor without steady-state errors. Under large-temperature step signal testing the response time for the reforming temperature is about 148 s while the large-pressure step signal test shows that the response time for the reforming pressure is about 8 s. Compared to the PID controller the internal model controller exhibits faster response zero steady-state error and no overshoot. The results show that the internal model control method has strong robustness and dynamic characteristics.
An Overview of Low-carbon Hydrogen Production via Water Splitting Driven by Piezoelectric and Pyroelectric Catalysis
Jun 2024
Publication
The focus on sustainable energy sources is intensifying as they present a viable alternative to conventional fossil fuels. The emergence of clean and renewable hydrogen fuel marks a significant technological shift toward decarbonizing the environment. Harnessing mechanical and thermal energy through piezoelectric and pyroelectric catalysis has emerged as an effective strategy for producing hydrogen and contributing to reducing dependence on carbon-based fuels. In this regard this review presents recent advances in piezoelectric and pyroelectric catalysis induced by mechanical and thermal excitations respectively towards hydrogen generation via the water splitting process. A thorough description of the fundamental principles underlying the piezoelectric and pyroelectric effects is provided complemented by an analysis of the catalytic processes induced by these effects. Subsequently these effects are examined to propose the prerequisites needed for such catalysts to achieve water splitting reaction and hydrogen generation. Special attention is devoted to identifying the various strategies adopted to enhance hydrogen production in order to provide new paths for increased efficiency.
Development of a Hydrophobic Coating for the Porous Gas Diffusion Layer in a PEM-based Electrochemical Hydrogen Pump to Mitigate Anode Flooding
Jan 2019
Publication
Anode flooding is one of the critical issues in developing a proton exchange membrane (PEM)-based electrochemical hydrogen pump. Improving the hydrophobicity of the gas diffusion layer (GDL) has been studied as an approach to mitigating anode flooding in electrochemical pumps. A mixture of Nafion™ and oxidized carbon nanotubes (O-CNT) has been applied to the porous gas diffusion medium in the hydrogen pump cell. The coating renders the GDL hydrophobic with an effective contact angle of 130°. Electrochemical pump testing has shown that with the help of the coating the flood-recovery performance of the hydrogen pump was greatly improved. A hydrogen pump cell with an uncoated GDL was not able to recover from a flooded state while a hydrogen pump cell with a coated GDL was able to recover its performance in about 100 s.
Network Evolutionary Game Analysis of Coal-to-Hydrogen CCUS Technology Dissemination in Carbon Trading Market
Jan 2025
Publication
Integrating coal-to-hydrogen production with Carbon Capture Utilization and Storage (CCUS) is essential for reducing greenhouse gas emissions and facilitating a shift towards a more sustainable energy paradigm. This paper explores the diffusion of CCUS technology within the coal-to-hydrogen sector against the dynamic backdrop of the carbon trading market. An evolutionary game-theoretic approach is utilized within a smallworld network framework to analyze the spread of CCUS technology among coal-tohydrogen enterprises. The simulation reveals that current market dynamics along with technological market and policy-related uncertainties do not robustly encourage the adoption of CCUS. As the carbon trading market continues to mature carbon prices become a significant factor influencing the diffusion of CCUS technology in coal-to-hydrogen processes. Furthermore investment costs hydrogen market prices and governmental policies are identified as pivotal elements in the propagation of CCUS technology. This study contributes valuable insights into the sustainable development of the hydrogen industry and the broader implications for low-carbon energy transition strategies.
Marine Renewable-Driven Green Hydrogen Production Toward a Sustainable Solution and a Low-carbon Future in Morocco
May 2024
Publication
Oceanic energy sources notably offshore wind and wave power present a significant opportunity to generate green hydrogen through water electrolysis. This approach allows for offshore hydrogen production which can be efficiently transported through existing pipelines and stored in various forms offering a versatile solution to tackle the intermittency of renewable energy sources and potentially revolutionize the entire electrical grid infrastructure. This research focusses on assessing the technical and economic feasibility of this method in six strategic coastal regions in Morocco: Laayoune Agadir Essaouira Eljadida Casablanca and Larache. Our proposed system integrates offshore wind turbines oscillating water column wave energy converters and PEM electrolyzers to meet energy demands while aligning with global sustainability objectives. Significant electricity production estimates are observed across these regions ranging from 14 MW to 20 MW. Additionally encouraging annual estimates of hydrogen production varying between 20 and 40 tonnes for specific locations showcase the potential of this approach. The system’s performance demonstrates promising efficiency rates ranging from 13% to 18% while maintaining competitive production costs. These findings underscore the ability of oceanic energy-driven green hydrogen to diversify Morocco’s energy portfolio bolster water resilience and foster sustainable development. Ultimately this research lays the groundwork for comprehensive energy policies and substantial infrastructure investments positioning Morocco on a trajectory towards a decarbonized future powered by innovative and clean technologies.
Decentralized Hydrogen-oxygen Co-production via Electrolysis for Large Hospitals with Integrated Hydrogen Refuelling Station
Jan 2025
Publication
In the pursuit of greener and more self-sufficient healthcare operations this study presents an integrated eco nomic and environmental analysis of on-site co-production of oxygen and hydrogen through proton exchange membrane electrolysis specifically designed for the Santa Maria Hospital in Lisbon Portugal. The proposed system aims to meet the hospital’s oxygen demand while simultaneously producing hydrogen for use in fuel cell electric vehicles such as ambulances. A 1.5 MW PEM electrolyser is found to be sufficient to meet the hospital’s O2 needs while generating hydrogen at a levelized cost of hydrogen of 4.6 €/kgH2. When considering the implementation costs of an on-site hydrogen refueling station an O2 drying and storage unit as well as the avoided costs in bulk liquid O2 purchases the break-even point for the sale of H2 at the refueling stations is 2.4 €/kgH2. Apart from the economic benefits that could be achieved by selling the produced H2 above this price the environmental analysis showed that 1874 tons of CO2 emissions per year could be avoided by the imple mentation of the concept proposed here. This integrated system not only contributes to the hospital’s energy independence but also serves as a model for sustainable solutions in the healthcare sector with significant environmental and financial benefits.
Hydrogen Production Towards a Carbon-free Economy: A Comprehensive Thermodynamic Analysis
Jan 2025
Publication
Sustainable hydrogen production is key to achieving zero-emission targets and a hydrogen-based economy. Hydrogen production methods vary in terms of resource technology and system efficiency. This work analyzes the thermodynamics of fourteen hydrogen production pathways using Gibbs free energy minimization to examine the effects of pressure (1–60 bar) temperature (100–1000 ◦C) and feed composition using reactant conversion and product selectivity as key indicators of reaction performance. The impact of simultaneous reactions on hydrogen production is also discussed. From the results full conversion (100 %) independent of parameter variations at 1 bar pressure was observed for biomass gasification and steam reforming of glycerol methanol ethanol and bio-oil reactions. However H2 selectivity in all tested reactions except for NH3 dissociation and the splitting of water and H2S is greatly affected by side reactions. Finally the thermodynamic results of all reactions are compared and validated with published experiments followed by an evaluation of the challenges and opportunities in hydrogen production. The study provides optimal reaction parameters and a comprehensive comparison of H2 production processes aiding in designing and developing processes based on regional resource availability. Additionally it highlights the potential for both local and remote hydrogen production pathways from various renewable energy sources.
Everything About Hydrogen Podcast: Nuclear-enabled Hydrogen at Port of Belledune
Jul 2024
Publication
The team sits down with Rishi Jain to discuss Cross River’s marquee wind hydro nuclear hydrogen ammonia project in the revitalized heavy industrial Port of Belledune New Brunswick Canada.
The podcast can be found on their website.
The podcast can be found on their website.
Recent Progress in Seawater Electrolysis for Hydrogen Evolution by Transition Metal Phosphides
Dec 2021
Publication
The electrocatalytic seawater splitting has become an important and necessary way for large-scale hydrogen production with challenges ahead. In this review a brief introduction to the reaction mechanism of seawater electrocatalytic process is first provided including the cathodic hydrogen evolution reaction and the anodic oxygen evolution reaction as well as the competitive chloride evolution reaction. Recent progress in transition metal phosphides-based catalysts for seawater electrolysis such as phosphorus doped transition metals binary metal phosphides and structural engineering are then evaluated and discussed. Finally the challenges and opportunities of transition metal phosphides are proposed and discussed.
A High-performance Capillary-fed Electrolysis Cell Promises More Cost-competitive Renewable Hydrogen
Mar 2022
Publication
Renewable or green hydrogen will play a critical role in the decarbonisation of hard-to-abate sectors and will therefore be important in limiting global warming. However renewable hydrogen is not cost-competitive with fossil fuels due to the moderate energy efficiency and high capital costs of traditional water electrolysers. Here a unique concept of water electrolysis is introduced wherein water is supplied to hydrogen- and oxygen-evolving electrodes via capillary-induced transport along a porous inter-electrode separator leading to inherently bubble-free operation at the electrodes. An alkaline capillary-fed electrolysis cell of this type demonstrates water electrolysis performance exceeding commercial electrolysis cells with a cell voltage at 0.5 A cm−2 and 85 °C of only 1.51 V equating to 98% energy efficiency with an energy consumption of 40.4 kWh/kg hydrogen (vs. ~47.5 kWh/kg in commercial electrolysis cells). High energy efficiency combined with the promise of a simplified balance-ofplant brings cost-competitive renewable hydrogen closer to reality.
Review of Next Generation Hydrogen Production from Offshore Wind Using Water Electrolysis
Dec 2023
Publication
Hydrogen produced using renewable energy from offshore wind provides a versatile method of energy storage and power-to-gas concepts. However few dedicated floating offshore electrolyser facilities currently exist and therefore conditions of the offshore environment on hydrogen production cost and efficiency remain uncertain. Therefore this review focuses on the conversion of electrical energy to hydrogen using water electrolysis located in offshore areas. The challenges associated with the remote locations fluctuating power and harsh conditions are highlighted and recommendations for future electrolysis system designs are suggested. The latest research in polymer electrolyte membrane alkaline and membraneless electrolysis are evaluated in order to understand their capital costs efficiency and current research status for achieving scaled manufacturing to the GW scale required in the next three decades. Operating fundamentals that govern the performance of each device are investigated and future recommendations of research specifically for the integration of water electrolysers with offshore wind turbines is presented.
Maximizing H2 Production from a Combination of Catalytic Partial Oxidation of CH4 and Water Gas Shift Reaction
Jan 2025
Publication
A single-bed and dual-bed catalyst system was studied to maximize H2 production from the combination of partial oxidation of CH4 and water gas shift reaction. In addition the different types of catalysts including Ni Cu Ni-Re and Cu-Re supported on gadolinium-doped ceria (GDC) were investigated under different operating conditions of temperature (400–650 ◦C). Over Ni-based catalysts methane can easily dissociate on a Ni surface to give hydrogen and carbon species. Then carbon species react with lattice oxygen of ceria-based material to form CO. The addition of Re to Ni/GDC enhances CH4 dissociation on the Ni surface and increases oxygen storage capacity in the catalyst thus promoting carbon elimination. In addition the results showed that a dual-bed catalyst system exhibited catalytic activity better than a single-bed catalyst system. The dual-bed catalyst system by the combination of 1%Re4%Ni/GDC as a partial oxidation catalyst and 1%Re4%Cu/GDC as a water gas shift catalyst provided the highest CH4 conversion and H2 yield. An addition of Re onto Ni/GDC and Cu/GDC caused an increase in catalytic performance because Re addition could improve the catalyst reducibility and increase metal surface area as more of their surface active sites are exposed to reactants.
A Bibliometric Study on the Research Trends and Hotspots of Proton Exchange Membrane Electrolyzer
Jan 2024
Publication
The application of hydrogen energy produced by proton exchange membrane electrolyzer (PEMEC) is conducive to the solution of the greenhouse effect and the energy crisis. In order to understand the development trends and research hotspot of PEMEC in recent years a total of 1874 research articles related to this field from 2003 to 2023 were obtained from the Web of Science Core Collection (WoS CC) database. The visualization software VOSviewer is used for bibliometric analysis and the research progress hotspots and trends in the PEMEC field are summarized. It was found that in the past two decades literature in the PEMEC field has shown a trend of stable increase at first and then rapidly increasing. And it is in a stage of rapid growth after 2021.Renewable Energy previously published research articles related to PEMEC with the highest frequency of citations. There are a total of 6128 researchers in this field but core authors only account for 4.5% of the total. Although China entered this field later than the United States and Canada it has the largest number of research articles. The research results provide a comprehensive overview of various aspects in the PEMEC field which is beneficial for researchers to grasp the development hotspots of PEMEC.
Large-Scale Hydrogen Production Systems Using Marine Renewable Energies: State-of-the-Art
Dec 2023
Publication
To achieve a more ecologically friendly energy transition by the year 2050 under the European “green” accord hydrogen has recently gained significant scientific interest due to its efficiency as an energy carrier. This paper focuses on large-scale hydrogen production systems based on marine renewable-energy-based wind turbines and tidal turbines. The paper reviews the different technologies of hydrogen production using water electrolyzers energy storage unit base hydrogen vectors and fuel cells (FC). The focus is on large-scale hydrogen production systems using marine renewable energies. This study compares electrolyzers energy storage units and FC technologies with the main factors considered being cost sustainability and efficiency. Furthermore a review of aging models of electrolyzers and FCs based on electrical circuit models is drawn from the literature and presented including characterization methods of the model components and the parameters extraction methods using a dynamic current profile. In addition industrial projects for producing hydrogen from renewable energies that have already been completed or are now in progress are examined. The paper is concluded through a summary of recent hydrogen production and energy storage advances as well as some applications. Perspectives on enhancing the sustainability and efficiency of hydrogen production systems are also proposed and discussed. This paper provides a review of behavioral aging models of electrolyzers and FCs when integrated into hydrogen production systems as this is crucial for their successful deployment in an ever-changing energy context. We also review the EU’s potential for renewable energy analysis. In summary this study provides valuable information for research and industry stakeholders aiming to promote a sustainable and environmentally friendly energy transition.
Life-cycle Assessment of Hydrogen Produced through Chemical Looping Dry Reforming of Biogas
Jun 2024
Publication
Chemical looping dry reforming of methane (CLDRM) using perovskites as a catalyst is considered a promising option for producing hydrogen from biogas. In this work the life-cycle performance of a system compiling a CLDRM unit paired with a water gas shift unit a pressure swing adsorption unit and a combined cycle scheme to provide steam and electricity was assessed. The main data needed to reflect the behavior of the reforming reaction was obtained experimentally and implemented in an Aspen Plus® simulation. Inventory data was obtained through process simulation and used to assess the environmental performance of the process in terms of carbon footprint acidification freshwater eutrophication ozone depletion photochemical ozone formation and depletion of minerals and metals. Overall the environmental viability of the production of green hydrogen from biogas was found to be heavily dependent on the biogas leakage in anaerobic digestion plants. The CLDRM system was benchmarked against a conventional DRM implementation for the same feedstock. While the conventional DRM plant environmentally outperformed the perovskite-based CLDRM the latter might present advantages from an implementation point of view.
Thermodynamic Evaluation of Solar Energy-based Methanol and Hydrogen Production and Power Generation Pathways: A Comparative Study
Sep 2024
Publication
This work presents a comparative novel evaluation of two distinct fuels methanol and hydrogen production and power generation routes via fuel cells. The first route includes the methanol production from direct partial oxidation of methane to methanol where the methanol is condensed stored and sent to a direct methanol fuel cell. The second route is hydrogen production from solar methane cracking (named as turquoise hydrogen) where heat is supplied from concentrated solar power and hydrogen is stored and directed to a hydrogen fuel cell. This study aims to provide insights into these fuel's production conditions storage methods energy and exergy efficiencies. The proposed system is simulated using the Engineering Equation Solver software and a thermodynamic analysis of the entire system including all the equipment and process streams is performed. The methanol and hydrogen route's overall energy and exergy efficiencies are 39.75% 38.35% 35.84% and 34.58% respectively. The highest exergy destruction rate of 1605 kW is observed for the partial oxidation of methane to methanol. The methanol and hydrogen routes generate 32.087 MWh and 11.582 MWh of electricity for 16-hour of fuel cell operation respectively. Sensitivity analysis has been performed to observe the effects of different parameters such as operating temperature and mass flow rate of fuels on the electricity production and energy efficiencies of the systems.
Recent Advances in Electrocatalysts for Seawater Splitting
Dec 2020
Publication
Water splitting is an effective strategy to produce renewable and sustainable hydrogen energy. Especially seawater splitting avoiding use of the limited freshwater resource is more intriguing. Nowadays electrocatalysts explored for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) using natural seawater or saline electrolyte have been increasingly reported. To better understand the current status and challenges of the electrocatalysts for HER and OER from seawater we comprehensively review the recent advances in electrocatalysts for seawater splitting. The fundamentals challenges and possible strategies for seawater splitting are firstly presented. Then the recently reported electrocatalysts that explored for HER and OER from seawater are summarized and discussed. Finally the perspectives in the development of high-efficient electrocatalysts for seawater splitting are also proposed.
Modelling and Simulation of an Integrated Coupled Reactor for Hydrogen Production and Carbon Dioxide Utilisation in an Integrated Fuel Cell Power System
Dec 2024
Publication
In today’s world the need for sustainable energy solutions is paramount to address the ongoing crisis of increasing greenhouse gas emissions and global warming. Industries heavily reliant on fossil fuels must explore alternative energy sources. Hydrogen with its high heating value and zero direct emissions has emerged as a promising fuel for the future. Electrolytic hydrogen production has gained significance as it enables demand-side response grid stabilization using excess energy and the mitigation of curtailment from intermittent renewable energy sources (RES) such as solar and wind. Advanced combined heat and power (CHP) systems comprise of Solid oxide fuel cell (SOFC) module and a coupled reforming reactor to capture energy contained in the SOFC exhaust gases from SOFC. In present work 3D CFD model of an experimental coupled reactor used for onsite hydrogen production is developed and implemented into ANSYS Fluent® software. The study is aimed at opti mizing the reactor performance by identifying appropriate kinetic models for reforming and combustion re actions. SOFC anode off-gas (AOG) comprising mainly of unconverted hydrogen is combined with methane combustion to enhance thermal efficiency of the reactor and hence the CHP system. Kinetic models for catalytic reforming and combustion are implemented into ANSYS Fluent® through custom-built user defined functions (UDFs) written in C programming language. Simulation results are validated with experimental data and found in good agreement. AOG assisted combustion of methane shows a substantial improvement in thermal efficiency of the system. Improvement in thermal efficiency and reduction in carbon-based fuel demand AOG utilization contributes to sustainable hydrogen production and curtailment of greenhouse gas emissions.
The Cost of Clean Hydrogen from Offshore Wind and Electrolysis
Feb 2024
Publication
The decarbonization of industry heating and transportation is a major challenge for many countries’ energy transition. Hydrogen is a direct low-carbon fuel alternative to natural gas offering a higher flexibility in the range of possible applications yet currently most hydrogen is produced using carbonintensive steam methane reforming due to cost considerations. Therefore this study explores the economics of a prominent low-carbon method of hydrogen production comparing the cost of hydrogen generation from offshore wind farms with and without grid electricity imports to conventional hydrogen production methods. A novel techno-economic model for offshore electrolysis production costs is presented which makes hydrogen production fully dispatchable leveraging geological salt-cavern storage. This model determines the lifetime costs aportioned across the system components as well as the Levelized Cost of Hydrogen (LCOH). Using the United Kingdom as a case study LCOH from offshore wind power is calculated to be €8.68 /kgH2 using alkaline electrolysis (AEL) €10.49 /kgH2 using proton exchange membrane electrolysis (PEMEL) and €10.88 /kgH2 with grid electricity to backup the offshore wind power. A stochastic Monte-Carlo model is used to asses the uncertainty on costs and identify the cost of capital electrolyser and wind farm capital costs and cost of electricity as the most important drivers of LCOH across the different scenarios. Reducing the capital cost to comparative levels observed on today’s wind farms alone could see AEL LCOH fall to €5.32 /kgH2 near competitive with conventional generation methods.
Challenges and Opportunities for Hydrogen Production from Microalgae
Nov 2015
Publication
The global population is predicted to increase from ~7.3 billion to over 9 billion people by 2050.Together with rising economic growth this is forecast to result in a 50% increase in fueldemand which will have to be met while reducing carbon dioxide (CO 2 ) emissions by 50–80%to maintain social political energy and climate security. This tension between rising fuel demandand the requirement for rapid global decarbonization highlights the need to fast-track thecoordinated development and deployment of efficient cost-effective renewable technologies forthe production of CO 2 neutral energy. Currently only 20% of global energy is provided aselectricity while 80% is provided as fuel. Hydrogen (H 2) is the most advanced CO 2 -free fuel andprovides a ‘common’ energy currency as it can be produced via a range of renewabletechnologies including photovoltaic (PV) wind wave and biological systems such as microalgaeto power the next generation of H 2 fuel cells. Microalgae production systems for carbon-basedfuel (oil and ethanol) are now at the demonstration scale. This review focuses on evaluating thepotential of microalgal technologies for the commercial production of solar-driven H2 fromwater. It summarizes key global technology drivers the potential and theoretical limits ofmicroalgal H2 production systems emerging strategies to engineer next-generation systems andhow these fit into an evolving H 2 economy.
Techno-economic and Environmental Assessment of a Solar-powered Multi-generation System for a Sustainable Energy, Hydrogen and Fresh-water Production
Jul 2025
Publication
This study presents a comprehensive 4E (energy exergy economic and exergo-environmental) analysis of a solar-powered multi-generation system (MGS) that integrates parabolic trough collectors (PTCs) thermal energy storage (TES) an organic Rankine cycle (ORC) an absorption refrigeration cycle (ARC) a proton exchange membrane electrolyzer (PEME) and a reverse osmosis (RO) unit to simultaneously produce electricity cooling potable water and hydrogen. A complete thermodynamic model is developed in Engineering Equation Solver (EES) to evaluate the system from technical economic and environmental perspectives. Results indicate that the MGS can convert solar energy into multiple outputs with energy and exergy efficiencies of 12.2% and 4.3% respectively. The highest and lowest energy efficiencies are found in PEME (58.6%) and ORC (7.4%) while the highest and lowest exergy efficiencies are related to PEME (57.4%) and PTC (11.9%) respectively. Despite notable environmental impacts from the complex subsystems (particularly PTC and PEME) the system demonstrates strong economic performance with a net present value of approximately USD 8 million an internal rate of return of 30% and a payback period of 3.8 years. Sensitivity analysis shows that increasing solar radiation reduces the number of required PTCs and shortens payback time with less effect on energy and exergy efficiencies due to increased thermal and radiative losses.
Classification Framework for Hydrological Resources for Sustainable Hydrogen Production with a Predictive Algorithm for Optimization
Aug 2025
Publication
Given the urgent need to decarbonize the global energy system green hydrogen has emerged as a key alternative in the transition to renewables. However its production via electrolysis demands high water quality and raises environmental concerns particularly regarding reject water discharge. This study employs an experimental and analytical approach to define optimal water characteristics for electrolysis focusing on conductivity as a key parameter. A pilot water treatment plant with reverse osmosis and electrodeionization (EDI) was designed to simulate industrial-scale pretreatment. Twenty water samples from diverse natural sources (surface and groundwater) were tested selected for geographical and geological variability. A predictive algorithm was developed and validated to estimate useful versus reject water based on input quality. Three conductivity-based categories were defined: optimal (0–410 µS/cm) moderate (411–900 µS/cm) and restricted (>900 µS/cm). Results show that water quality significantly affects process efficiency energy use waste generation and operating costs. This work offers a technical and regulatory framework for assessing potential sites for green hydrogen plants recommending avoidance of high-conductivity sources. It also underscores the current regulatory gap regarding reject water treatment stressing the need for clear environmental guidelines to ensure project sustainability.
A Comprehensive Review of the State-of-the-art of Proton Exchange Membrane Water Electrolysis
Jul 2024
Publication
Hydrogen has attracted growing research interest due to its exceptionally high energy per mass content and being a clean energy carrier unlike the widely used hydrocarbon fuels. With the possibility of long-term energy storage and re-electrification hydrogen promises to promote the effective utilization of renewable and sustainable energy resources. Clean hydrogen can be produced through a renewable-powered water electrolysis process. Although alkaline water electrolysis is currently the mature and commercially available electrolysis technology for hydrogen production it has several shortcomings that hinder its integration with intermittent and fluctuating renewable energy sources. The proton exchange membrane water electrolysis (PEMWE) technology has been developed to offer high voltage efficiencies at high current densities. Besides PEMWE cells are characterized by a fast system response to fluctuating renewable power enabling operations at broader partial power load ranges while consistently delivering high-purity hydrogen with low ohmic losses. Recently much effort has been devoted to improving the efficiency performance durability and economy of PEMWE cells. The research activities in this context include investigations of different cell component materials protective coatings and material characterizations as well as the synthesis and analysis of new electrocatalysts for enhanced electrochemical activity and stability with minimized use of noble metals. Further many modeling studies have been reported to analyze cell performance considering cell electrochemistry overvoltage and thermodynamics. Thus it is imperative to review and compile recent research studies covering multiple aspects of PEMWE cells in one literature to present advancements and limitations of this field. This article offers a comprehensive review of the state-of-the-art of PEMWE cells. It compiles recent research on each PEMWE cell component and discusses how the characteristics of these components affect the overall cell performance. In addition the electrochemical activity and stability of various catalyst materials are reviewed. Further the thermodynamics and electrochemistry of electrolytic water splitting are described and inherent cell overvoltage are elucidated. The available literature on PEMWE cell modeling aimed at analyzing the performance of PEMWE cells is compiled. Overall this article provides the advancements in cell components materials electrocatalysts and modeling research for PEMWE to promote the effective utilization of renewable but intermittent and fluctuating energy in the pursuit of a seamless transition to clean energy.
Steam Reforming for Winery Wastewater Treatment: Hydrogen Production and Energy Self-sufficiency Assessment
Jan 2025
Publication
A thermodynamic assessment using Gibbs free energy minimization to explore the potential of winery wastewater steam reforming (WWWSR) as a technique to treat water while simultaneously producing renewable hydrogen was conducted for the first time. This assessment focused on four types of reactors: a conventional reactor (CR) a sorption-enhanced reactor (SER) with CO2 capture a membrane reactor (MR) with H2 removal and a sorption-enhanced membrane reactor (SEMR) that combines features of both the SER and MR. The effects on WWWSR of temperature pressure water content in the feed composition of winery wastewater (WWW) sorbent to feed ratio (SFR) and the split fraction of H2 in the membrane were studied. For the CR SER MR and SEMR the study showed that low pressures and high water content in the reactor inlet resulted in higher hydrogen production. Considering a representative WWW composition with a water content of 75 wt% in the feed it was shown that the CR needed to operate at extremely high temperatures (over 600 ◦C) to maximize H2 yield while producing less hydrogen than its counterparts. In contrast the MR and SER achieved higher hydrogen production at optimal temperatures around 500 ◦C while the SEMR performed even better producing more hydrogen at just 400 ◦C. Moreover the organic composition of the feed stream did not significantly influence the optimal temperature and pressure conditions for maximizing hydrogen production. However wastewater with a higher fraction of sugars generated more hydrogen whereas wastewater with a higher fraction of acetic acid produced less hydrogen via the steam reforming reaction. Notably a novel energy analysis was conducted demonstrating that the energy self-sufficiency of this process changed drastically when different reactor types were considered. Only the MR with a high degree of hydrogen separation in the membrane the SER with optimal quantities of CO2-capturing sorbent and the SEMR can be energetically selfsufficient as they produce enough hydrogen to offset the energy expenditure associated with steam reforming
Economic Feasibility of Hydrogen Generation Using HTR-PM Technology in Saudi Arabia
Feb 2025
Publication
The global push for clean hydrogen production has identified nuclear energy particularly high-temperature gas-cooled reactors (HTGRs) as a promising solution due to their ability to provide high-temperature heat. This study conducted a techno-economic analysis of hydrogen production in Saudi Arabia using the pebble bed modular reactor (HTRPM) focusing on two methods: high-temperature steam electrolysis (HTSE) and the sulfur– iodine (SI) thermochemical cycle. The Hydrogen Economic Evaluation Program (HEEP) was used to assess the economic viability of both methods considering key production factors such as the discount rate nuclear power plant (NPP) capital cost and hydrogen plant efficiency. The results show that the SI cycle achieves a lower levelized cost of hydrogen (LCOH) at USD 1.22/kg H2 compared to HTSE at USD 1.47/kg H2 primarily due to higher thermal efficiency. Nonetheless HTSE offers simpler system integration. Sensitivity analysis reveals that variations in the discount rate and NPP capital costs significantly impact both production methods while hydrogen plant efficiency is crucial in determining overall economics. The findings contribute to the broader discourse on sustainable hydrogen production technologies by highlighting the potential of nuclear-driven methods to meet global decarbonization goals. The paper concludes that the HTR-PM offers a viable pathway for large-scale hydrogen production in Saudi Arabia aligning with the Vision 2030 objectives.
Recent Trends in Transition Metal Phosphide (TMP)-Based Seawater Electrolysis for Hydrogen Evolution
Sep 2023
Publication
Large-scale hydrogen (H2 ) production is an essential gear in the future bioeconomy. Hydrogen production through electrocatalytic seawater splitting is a crucial technique and has gained considerable attention. The direct seawater electrolysis technique has been designed to use seawater in place of highly purified water which is essential for electrolysis since seawater is widely available. This paper offers a structured approach by briefly describing the chemical processes such as competitive chloride evolution anodic oxygen evolution and cathodic hydrogen evolution that govern seawater electrocatalytic reactions. In this review advanced technologies in transition metal phosphide-based seawater electrolysis catalysts are briefly discussed including transition metal doping with phosphorus the nanosheet structure of phosphides and structural engineering approaches. Application progress catalytic process efficiency opportunities and problems related to transition metal phosphides are also highlighted in detail. Collectively this review is a comprehensive summary of the topic focusing on the challenges and opportunities.
Intermediate Temperature Solid Oxide Fuel Cell/Electrolyzer Towards Future Large-scale Production
Apr 2020
Publication
This paper reports on the experimental data analysis and numerical results carried out by algorithms in order to meet the provisions of Industry 4.0 in the field of research of Solid Oxide Fuel Cell/Electrolyzer. A performance mapping of the analyzed SOFC/SOE systems is developed in order to enhance system efficiency when it is fed by biofuels. The analyses concern the main operative parameters such as pressure temperature fuel compositions and other main system parameters such as fuel and oxidant utilization factors and the recirculation of anode exhaust stream gas.
Thermo-economic Analysis of Green Hydrogen Production Onboard LNG Carriers through Solid Oxide Electrolysis Powered by Organic Rankine Cycles
Nov 2024
Publication
LNG carriers play a crucial role in the shipping industry meeting the global demand for natural gas (NG). However the energy losses resulting from the propulsion system and the excess boil-off gas (BOG) cannot be overlooked. The present article investigates the H2 production on board LNG carriers employing both the engine's waste heat (WH) and the excess BOG. Conventional (ORC) and dual-pressure (2P-ORC) organic Rankine cycles coupled separately with a solid oxide electrolysis (SOEC) have been simulated and compared. The hydrogen (H2) produced is then compressed at 150 bar for subsequent use as required. According to the results the 2P-ORC generates 14.79 % more power compared to ORC allowing for an increased energy supply to the SOEC; hence producing more H2 (34.47 kg/h compared to 31.14 kg/h). Including the 2P-ORC in the H2 production plant results in a cheaper H2 cost by 0.04 $/kgH2 compared to ORC a 1.13 %LHV higher system efficiency when leveraging all the available waste heat. The plant including 2P-ORC exploits more than 86 % of the of the available waste compared to 70 % when using ORC. Excluding the compression system decreases the capital cost by almost the half regardless of the WH recovery system used yet it plays in favour of the plant with ORC making the cost of H2 cheaper by 0.29 $/kgH2 in this case. Onboard H2 production is a versatile process independent from the propulsion system ensuring the ship's safety and availability throughout a sea journey.
Comparative Techno-Economic Analysis of Gray Hydrogen Production Costs: A Case Study
Jan 2025
Publication
Despite Iran’s considerable renewable energy (RE) potential and excellent wind capacity and high solar radiation levels these sources contribute only a small fraction of the country’s total energy production. This paper addresses the techno-economic viability of gray hydrogen production by these renewables with a particular focus on solar energy. Given the considerable potential of solar energy and the strategic location of Shahrekord it would be an optimal site for a hydrogen generation plant integrated with a solar field. HOMER Pro 3.18.3 software was utilized to model and optimize the levelized cost of hydrogen (LCOH) of steam reforming using different hydrocarbons in various scenarios. The results of this study indicate that natural gas (NG) reforming represents the most cost-effective method of gray hydrogen production in this city with an LCOH of −0.423 USD/kg. Other hydrocarbons such as diesel gasoline propane methanol and ethanol have a price per kilogram of produced hydrogen as follows: USD −0.4 USD −0.293 USD 1.17 USD 1.48 and USD 2.15. In addition integrating RE sources into hydrogen production was found to be viable. Moreover by implementing RE technologies CO2 emissions can be significantly reduced and energy security can be achieved.
An Experimental Investigation of Hydrogen Production through Biomass Electrolysis
Jan 2024
Publication
This work investigated hydrogen production from biomass feedstocks (i.e. glucose starch lignin and cellulose) using a 100 mL h-type proton exchange membrane electrolysis cell. Biomass electrolysis is a promising process for hydrogen production although low in technology readiness level but with a series of recognised advantages: (i) lower-temperature conditions (compared to thermochemical processes) (ii) minimal energy consumption and low-cost post-production (iii) potential to synthesise high-volume H2 and (iv) smaller carbon footprint compared to thermochemical processes. A Lewis acid (FeCl3 ) was employed as a charge carrier and redox medium to aid in the depolymerisation/oxidation of biomass components. A comprehensive analysis was conducted measuring the H2 and CO2 emission volume and performing electrochemical analysis (i.e. linear sweep voltammetry and chronoamperometry) to better understand the process. For the first time the influence of temperature on current density and H2 evolution was studied at temperatures ranging from ambient temperature (i.e. 19 ◦C) to 80 ◦C. The highest H2 volume was 12.1 mL which was produced by FeCl3 -mediated electrolysis of glucose at ambient temperature which was up to two times higher than starch lignin and cellulose at 1.20 V. Of the substrates examined glucose also showed a maximum power-to-H2 -yield ratio of 30.99 kWh/kg. The results showed that hydrogen can be produced from biomass feedstock at ambient temperature when a Lewis acid (FeCl3 ) is employed and with a higher yield rate and a lower electricity consumption compared to water electrolysis.
Thermodynamic and Techno-Economic Performance Comparison of Methanol Aqueous Phase Reforming and Steam Reforming for Hydrogen Production
Dec 2024
Publication
Methanol which can be derived from sustainable energy sources such as biomass solar power and wind power is widely considered an ideal hydrogen carrier for distributed and mobile hydrogen production. In this study a comprehensive comparison of the thermodynamic and techno-economic performance of the aqueous phase reforming (APR) and steam reforming (SR) of methanol was conducted using Aspen Plus and CAPCOST software to evaluate the commercial feasibility of the APR process. Thermodynamic analysis based on the Gibbs free energy minimization method reveals that while APR and SR have similar energy demands APR achieves higher energy efficiency by avoiding losses from evaporation and compression. APR typically operates at higher pressures and lower temperatures compared to SR suppressing CO formation and increasing hydrogen fraction but reducing methanol single-pass conversion. A techno-economic comparison of APR and SR for a distributed hydrogen production system with a 50 kg/h hydrogen output shows that although APR requires higher fixed operating costs and annual capital charges it benefits from lower variable operating costs. The minimum hydrogen selling price for APR was calculated to be 7.07 USD/kg compared to 7.20 USD/kg for SR. These results suggest that APR is a more economically viable alternative to SR for hydrogen production.
No more items...