Production & Supply Chain
Urban Hydrogen Production Model Using Environmental Infrastructures to Achieve the Net Zero Goal
Dec 2022
Publication
Land available for energy production is limited in cities owing to high population density. To reach the net zero goal cities contributing 70% of overall greenhouse gas emissions need to dramatically reduce emissions and increase self-sufficiency in energy production. Environmental infrastructures such as sewage treatment and incineration plants can be used as energy production facilities in cities. This study attempted to examine the effect of using environmental infrastructure such as energy production facilities to contribute toward the carbon neutrality goal through urban energy systems. In particular since the facilities are suitable for hydrogen supply in cities the analysis was conducted focusing on the possibility of hydrogen production. First the current status of energy supply and demand and additional energy production potential in sewage treatment and incineration plants in Seoul were analyzed. Then the role of these environmental infrastructures toward energy self-sufficiency in the urban system was examined. This study confirmed that the facilities can contribute to the city’s energy self-sufficiency and the achievement of its net-zero goal.
Techno-economic Model and Feasibility Assessment of Green Hydrogen Projects Based on Electrolysis Supplied by Photovoltaic PPAs
Nov 2022
Publication
The use of hydrogen produced from renewable energy enables the reduction of greenhouse gas (GHG) emissions pursued in different international strategies. The use of power purchase agreements (PPAs) to supply renewable electricity to hydrogen production plants is an approach that can improve the feasibility of projects. This paper presents a model applicable to hydrogen projects regarding the technical and economic perspective and applies it to the Spanish case where pioneering projects are taking place via photovoltaic PPAs. The results show that PPAs are an enabling mechanism for sustaining green hydrogen projects.
Assessing Sizing Optimality of OFF-GRID AC-Linked Solar PV-PEM Systems for Hydrogen Production
Jul 2023
Publication
Herein a novel methodology to perform optimal sizing of AC-linked solar PV-PEM systems is proposed. The novelty of this work is the proposition of the solar plant to electrolyzer capacity ratio (AC/AC ratio) as optimization variable. The impact of this AC/AC ratio on the Levelized Cost of Hydrogen (LCOH) and the deviation of the solar DC/AC ratio when optimized specifically for hydrogen production are quantified. Case studies covering a Global Horizontal Irradiation (GHI) range of 1400e2600 kWh/m2 -year are assessed. The obtained LCOHs range between 5.9 and 11.3 USD/kgH2 depending on sizing and location. The AC/AC ratio is found to strongly affect cost production and LCOH optimality while the optimal solar DC/AC ratio varies up to 54% when optimized to minimize the cost of hydrogen instead of the cost of energy only. Larger oversizing is required for low GHI locations; however H2 production is more sensitive to sizing ratios for high GHI locations.
A Low-temperature Ammonia Electrolyser for Wastewater Treatment and Hydrogen Production
May 2023
Publication
Ammonia is a pollutant present in wastewater and is also a valuable carbon-free hydrogen carrier. Stripping recovery and anodic oxidation of ammonia to produce hydrogen via electrolysis is gaining momentum as a technology yet the development of an inexpensive stable catalytic material is imperative to reduce cost. Here we report on a new nickel copper (NiCu) catalyst electrodeposited onto a high surface area nickel felt (NF) as an anode for ammonia electrolysis. Cyclic voltammetry demonstrated that the catalyst/substrate combination reached the highest current density (200 mA cm2 at 20 C) achieved for a non-noble metal catalyst. A NiCu/NF electrode was tested in an anion exchange membrane electrolyser for 50 h; it showed good stability and high Faradaic efficiency for ammonia oxidation (88%) and hydrogen production (99%). We demonstrate that this novel electrode catalyst/substrate material combination can oxidise ammonia in a scaled system and hydrogen can be produced as a valuable by-product at industrial-level current densities and cell voltages lower than that for water electrolysis.
Techno-Economic Assessment of Pink Hydrogen Produced from Small Modular Reactors for Maritime Applications
Jul 2025
Publication
This paper presents a techno-economic assessment of liquid hydrogen produced from small modular reactors (SMRs) for maritime applications. Pink hydrogen is examined as a carbon-free alternative to conventional marine fuels leveraging the zero-emission profile and dispatchable nature of nuclear energy. Using Greece as a case study the analysis includes both production and transportation costs along with a sensitivity analysis on key parameters influencing the levelized cost of hydrogen (LCOH) such as SMR and electrolyzer CAPEX uranium cost and SMR operational lifetime. Results show that with an SMR CAPEX of 10000 EUR/kW the LCOH reaches 6.64 EUR/kg which is too high to compete with diesel under current market conditions. Economic viability is achieved only if carbon costs rise to 0.387 EUR/kg and diesel prices exceed 0.70 EUR/L. Under these conditions a manageable deployment of fewer than 1000 units (equivalent to 77 GW) is sufficient to achieve economies of mass production. Conversely lower carbon and fuel prices require over 10000 units (770 GW) rendering their establishment impractical.
Life Cycle Net Energy Assessment of Sustainable H2 Production and Hydrogenation of Chemicals in a Coupled Photoelectrochemical Device
Feb 2023
Publication
Green hydrogen has been identified as a critical enabler in the global transition to sustainable energy and decarbonized society but it is still not economically competitive compared to fossil-fuel-based hydrogen. To overcome this limitation we propose to couple photoelectrochemical (PEC) water splitting with the hydrogenation of chemicals. Here we evaluate the potential of coproducing hydrogen and methyl succinic acid (MSA) by coupling the hydrogenation of itaconic acid (IA) inside a PEC water splitting device. A negative net energy balance is predicted to be achieved when the device generates only hydrogen but energy breakeven can already be achieved when a small ratio (~2%) of the generated hydrogen is used in situ for IA-to-MSA conversion. Moreover the simulated coupled device produces MSA with much lower cumulative energy demand than conventional hydrogenation. Overall the coupled hydrogenation concept offers an attractive approach to increase the viability of PEC water splitting while at the same time decarbonizing valuable chemical production.
Perspectives for a Sustainable Implementation of Super-green Hydrogen Production by Photoelectrochemical Technology in Hard-to-abate Sectors
May 2023
Publication
The energy transition's success hinges on the effectiveness to curbing carbon emissions from hard-to-abate sectors. Hydrogen (H2) has been proposed as the candidate vector that could be used to replace fossils in such energy-intensive industries. Despite green H2 via solar-powered water electrolysis being a reality today the overall defossilization of the hard-to-abate sectors by electrolytic H2 would be unfeasible as it relies on the availability of renewable electricity. In this sense the unbiassed photoelectrochemical water splitting (PEC) as inspired by natural photosynthesis may be a promising alternative expected in the long term. PEC could be partly or even completely decoupled from renewable electricity and then could produce H2 autonomously. However some remaining challenges still limit PEC water splitting to operate sustainably. These limitations need to be evaluated before the scaling up and implementation. A prospective life cycle assessment (LCA) has been used to elucidate a positive performance scenario in which the so-called super-green H2 or photo-H2 could be a sustainable alternative to electro-H2. The study has defined future scenarios by conducting a set of sensitivity assessments determining the figures of operating parameters such as i) the energy to produce the cell; ii) solar-to-hydrogen efficiency (STH); and iii) lifetime. These parameters have been evaluated based on two impact categories: i) Global Warming Potential (GWP); and ii) fossil Abiotic Depletion Potentials (fADP). The mature water electrolysis was used for benchmarking in order to elucidate the target performance in which PEC technology could be positively implemented at large-scale. Efficiencies over 10% (STH) and 7 years of lifetime are compulsory in the coming developments to achieve a positive scaling-up.
A Review of Alternative Processes for Green Hydrogen Production Focused on Generating Hydrogen from Biomass
Apr 2024
Publication
Hydrogen plays a leading role in achieving a future with net zero greenhouse gas emissions. The present challenge is producing green hydrogen to cover the fuel demands of transportation and industry to gain independence from fossil fuels. This review’s goal is to critically demonstrate the existing methods of biomass treatment and assess their ability to scale up. Biomass is an excellent hydrogen carrier and biomass-derived processes are the main target for hydrogen production as they provide an innovative pathway to green hydrogen production. Comparing the existing processes thermochemical treatment is found to be far more evolved than biological or electrochemical treatment especially with regard to scaling prospects.
Blue, Green, and Turquoise Pathways for Minimizing Hydrogen Production Costs from Steam Methane Reforming with CO2 Capture
Nov 2022
Publication
Rising climate change ambitions require large-scale clean hydrogen production in the near term. “Blue” hydrogen from conventional steam methane reforming (SMR) with pre-combustion CO2 capture can fulfil this role. This study therefore presents techno-economic assessments of a range of SMR process configurations to minimize hydrogen production costs. Results showed that pre-combustion capture can avoid up to 80% of CO2 emissions cheaply at 35 €/ton but the final 20% of CO2 capture is much more expensive at a marginal CO2 avoidance cost around 150 €/ton. Thus post-combustion CO2 capture should be a better solution for avoiding the final 20% of CO2. Furthermore an advanced heat integration scheme that recovers most of the steam condensation enthalpy before the CO2 capture unit can reduce hydrogen production costs by about 6%. Two hybrid hydrogen production options were also assessed. First a “blue-green” hydrogen plant that uses clean electricity to heat the reformer achieved similar hydrogen production costs to the pure blue configuration. Second a “blue turquoise” configuration that replaces the pre-reformer with molten salt pyrolysis for converting higher hydrocarbons to a pure carbon product can significantly reduce costs if carbon has a similar value to hydrogen. In conclusion conventional pre-combustion CO2 capture from SMR is confirmed as a good solution for kickstarting the hydrogen economy and it can be tailored to various market conditions with respect to CO2 electricity and pure carbon prices.
Critical Challenges in Biohydrogen Production Processes from the Organic Feedstocks
Aug 2020
Publication
The ever-increasing world energy demand drives the need for new and sustainable renewable fuel to mitigate problems associated with greenhouse gas emissions such as climate change. This helps in the development toward decarbonisation. Thus in recent years hydrogen has been seen as a promising candidate in global renewable energy agendas where the production of biohydrogen gains more attention compared with fossil-based hydrogen. In this review biohydrogen production using organic waste materials through fermentation biophotolysis microbial electrolysis cell and gasification are discussed and analysed from a technological perspective. The main focus herein is to summarise and criticise through bibliometric analysis and put forward the guidelines for the potential future routes of biohydrogen production from biomass and especially organic waste materials. This research review claims that substantial efforts currently and in the future should focus on biohydrogen production from integrated technology of processes of (i) dark and photofermentation (ii) microbial electrolysis cell (MEC) and (iii) gasification of combined different biowastes. Furthermore bibliometric mapping shows that hydrogen production from biomethanol and the modelling process are growing areas in the biohydrogen research that lead to zero-carbon energy soon.
Decommissioning Platforms to Offshore Solar System: Road to Green Hydrogen Production from Seawater
May 2023
Publication
With more than 140 offshore platforms identified in Malaysian water to be decommissioned within 10 years it is critical for the Oil and Gas operators to re-evaluate the overall decommissioning strategies for a more sustainable approach. A revision to the current decommissioning options with inclusion of green decommissioning plan to the overall decision tree will assist in accelerating sustainable decision making. Using the advantage of the available 3D modelling from Naviswork and convert to PVSyst software for solar analysis to the one of the shortlisted offshore gas complexes in Malaysia three solar powered generation scenario was evaluated with aimed to establish the best integrated system on a modified decommissioned unmanned processing platform to generate cleaner energy. Financial assessment inclusive of Levelized Cost of Electricity as well as environmental assessment for each scenario are evaluated together. From the study optimum tilt angle was determined resulted to best annual solar yield of 257MWh with performance ratio (PR) of 87% for on-grid scenario 1. Off-grid scenario 3 is used to understand the estimated green hydrogen production. A desktop investigation conducted to three (3) type of electrolysers resulted to 8.6 kg to 18 kg of green hydrogen based on the average daily solar yield produced in scenario 3. Using Proton Electron Membrane electrolyser to simulate the PV solar-to-hydrogen offshore system it is observed that 98% of annual solar fraction can be achieved with annual performance ratio of 74.5% with levelized cost of Hydrogen (LCOH) of $10.95 per kg. From financial assessment this study justifies platforms repurpose to renewable energy concept to be an attractive option since cost to decommission the identified complex was observed to be 11 times greater compared to investing for this proposed concept.
Dynamic Investigation and Optimization of a Solar‐Based Unit for Power and Green Hydrogen Production: A Case Study of the Greek Island, Kythnos
Nov 2022
Publication
The aim of the present work is the analysis of a solar‐driven unit that is located on the non‐interconnected island of Kythnos Greece that can produce electricity and green hydrogen. More specifically solar energy is exploited by parabolic trough collectors and the produced heat is stored in a thermal energy storage tank. Additionally an organic Rankine unit is incorporated to generate electricity which contributes to covering the island’s demand in a clean and renewable way. When the power cannot be absorbed by the local grid it can be provided to a water electrolyzer; therefore the excess electricity is stored in the form of hydrogen. The produced hydrogen amount is compressed afterward stored in tanks and then finally can be utilized as a fuel to meet other important needs such as powering vehicles or ferries. The installation is simulated parametrically and optimized on dynamic conditions in terms of energy exergy and finance. According to the results considering a base electrical load of 75 kW the annual energy and exergy efficiencies are found at 14.52% and 15.48% respectively while the payback period of the system is deter‐ mined at 6.73 years and the net present value is equal to EUR 1073384.
Recent Research in Solar-Driven Hydrogen Production
Mar 2024
Publication
Climate concerns require immediate actions to reduce the global average temperature increase. Renewable electricity and renewable energy-based fuels and chemicals are crucial for progressive de-fossilization. Hydrogen will be part of the solution. The main issues to be considered are the growing market for H2 and the “green” feedstock and energy that should be used to produce H2 . The electrolysis of water using surplus renewable energy is considered an important development. Alternative H2 production routes should be using “green” feedstock to replace fossil fuels. We firstly investigated these alternative routes through using bio-based methanol or ethanol or ammonia from digesting agro-industrial or domestic waste. The catalytic conversion of CH4 to C and H2 was examined as a possible option for decarbonizing the natural gas grid. Secondly water splitting by reversible redox reactions was examined but using a renewable energy supply was deemed necessary. The application of renewable heat or power was therefore investigated with a special focus on using concentrated solar tower (CST) technology. We finally assessed valorization data to provide a tentative view of the scale-up potential and economic aspects of the systems and determine the needs for future research and developments.
Combining Renewable Sources Towards Negative Carbon Emission Hydrogen
Apr 2023
Publication
Multi-energy systems that combine different energy sources and carriers to improve the overall technical economic and environmental performance can boost the energy transition. In this paper we posit an innovative multi-energy system for green hydrogen production that achieves negative carbon emissions by combining bio-fuel membraneintegrated steam reforming and renewable electricity electrolysis. The system produces green hydrogen and carbon dioxide both at high purity. We use thermo-chemical models to determine the system performance and optimal working parameters. Specifically we focus on its ability to achieve negative carbon emissions. The results show that in optimal operating conditions the system can capture up to 14.1 g of CO2 per MJ of stored hydrogen and achieves up to 70% storage efficiency. Therefore we prove that a multi-energy system may reach the same efficiency of an average electrolyzer while implementing carbon capture. In the same optimal operating conditions the system converts 7.8 kg of biogas in 1 kg of hydrogen using 3.2 kg of oxygen coming from the production of 6.4 kg of hydrogen through the electrolyzer. With such ratios we estimate that the conversion of all the biogas produced in Europe with our system could result in the installation of additional dedicated 800 GWp - 1280 GWp of photovoltaic power or of 266 GWp - 532 GWp of wind power without affecting the distribution grid and covering yearly the 45% of the worldwide hydrogen demand while removing from the atmosphere more than 2% of the European carbon dioxide emissions.
Exploring Key Operational Factors for Improving Hydrogen Production in a Pilot-scale Microbial Electrolysis Cell Treating Urban Wastewater
Jun 2023
Publication
Bioelectrochemical systems (BES) are becoming popular technologies with a plethora of applications in the environmental field. However research on the scale-up of these systems is scarce. To understand the limiting factors of hydrogen production in microbial electrolysis cell (MEC) at pilot scale a 135 L MEC was operated for six months under a wide range of operational conditions: applied potential [0.8-1.1 V] hydraulic residence time [1.1-3.9 d] and temperature [18-30 ºC] using three types of wastewater; synthetic (900 mg CODs L-1) raw urban wastewater (200 mg CODs L-1) and urban wastewater amended with acetate (1000 mg CODs L-1). The synthetic wastewater yielded the maximum current density (1.23 A m-2) and hydrogen production (0.1 m3 m-3 d-1) ever reported in a pilot scale MEC with a cathodic recovery of 70% and a coulombic efficiency of 27%. In contrast the use of low COD urban wastewater limited the plant performance. Interestingly it was possible to improve hydrogen production by reducing the hydraulic residence time finding the optimal applied potential or increasing the temperature. Further the pilot plant demonstrated a robust capacity to remove the organic matter present in the wastewater under different conditions with removal efficiencies above 70%. This study shows improved results compared to similar MEC pilot plants treating domestic wastewater in terms of hydrogen production and treatment efficiency and also compares its performance against conventional activated sludge processes.
Blue Hydrogen Production from Natural Gas Reservoirs: A Review of Application and Feasibility
Feb 2023
Publication
Recently interest in developing H2 strategies with carbon capture and storage (CCS) technologies has surged. Considering that this paper reviews recent literature on blue H2 a potential low-carbon short-term solution during the H2 transition period. Three key aspects were the focus of this paper. First it presents the processes used for blue H2 production. Second it presents a detailed comparison between blue H2 and natural gas as fuels and energy carriers. The third aspect focuses on CO2 sequestration in depleted natural gas reservoirs an essential step for implementing blue H2. Globally ~ 75% of H2 is produced using steam methane reforming which requires CCS to obtain blue H2. Currently blue H2 needs to compete with other advancing technologies such as green H2 solar power battery storage etc. Compared to natural gas and liquefied natural gas blue H2 gas results in lower CO2 emissions since CCS is applied. However transporting liquefied and compressed blue H2 entails higher energy economic and environmental costs. CCS must be appropriately implemented to produce blue H2 successfully. Due to their established capacity to trap hydrocarbons over geologic time scales depleted natural gas reservoirs are regarded as a viable option for CCS. Such a conclusion is supported by several simulation studies and field projects in many countries. Additionally there is much field experience and knowledge on the injection and production performance of natural gas reservoirs. Therefore using the existing site infrastructure converting these formations into storage reservoirs is undemanding.
Genesis and Energy Significance of Natural Hydrogen
Jan 2023
Publication
H2 is clean energy and an important component of natural gas. Moreover it plays an irreplaceable role in improving the hydrocarbon generation rate of organic matter and activating ancient source rocks to generate hydrocarbon in Fischer-Tropsch (FT) synthesis and catalytic hydrogenation. Compared with hydrocarbon reservoir system a complete hydrogen (H2) accumulation system consists of H2 source,reservoirs and seal. In nature the four main sources of H2 are hydrolysis organic matter degradation the decomposition of substances such as methane and ammonia and deep mantle degassing. Because the complex tectonic activities the H2 produced in a geological environment is generally a mixture of various sources. Compared with the genetic mechanisms of H2 the migration and preservation of H2 especially the H2 trapping are rarely studied. A necessary condition for large-scale H2 accumulation is that the speed of H2 charge is much faster than diffusion loss. Dense cap rock and continuous H2 supply are favorable for H2 accumulation. Moreover H2O in the cap rock pores may provide favorable conditions for short-term H2 accumulation.
Techno-economic Analysis of High-power Solid Oxide Electrolysis Cell System
Jan 2023
Publication
Water electrolysis using solid oxide electrolysis cells is a promising method for hydrogen production because it is highly efficient clean and scalable. Recently a lot of researches focusing on development of high-power stack system have been introduced. However there are very few studies of economic analysis for this promising system. Consequently this study proposed 20-kW-scale high-power solid oxide electrolysis cells system config urations then conducted economic analysis. Especially the economic context was in South Korea. For com parison a low-power system with similar design was used as a reference; the levelized cost of hydrogen of each system was calculated based on the revenue requirement method. Furthermore a sensitivity analysis was also performed to identify how the economic variables affect the hydrogen production cost in a specific context. The results show that a high-power system is superior to a low-power system from an economic perspective. The stack cost is the dominant component of the capital cost but the electricity cost is the factor that contributes the most to the hydrogen cost. In the first case study it was found that if a high-power system can be installed inside a nuclear power plant the cost of hydrogen produced can reach $3.65/kg when the electricity cost is 3.28¢/kWh and the stack cost is assumed to be $574/kW. The second case study indicated that the hydrogen cost can decrease by 24% if the system is scaled up to a 2-MW scale.
CFD Modeling and Experimental Validation of an Alkaline Water Electrolysis Cell for Hydrogen Production
Dec 2020
Publication
Although alkaline water electrolysis (AWE) is the most widespread technology for hydrogen production by electrolysis its electrochemical and fluid dynamic optimization has rarely been addressed simultaneously using Computational Fluid Dynamics (CFD) simulation. In this regard a two-dimensional (2D) CFD model of an AWE cell has been developed using COMSOL® software and then experimentally validated. The model involves transport equations for both liquid and gas phases as well as equations for the electric current conservation. This multiphysics approach allows the model to simultaneously analyze the fluid dynamic and electrochemical phenomena involved in an electrolysis cell. The electrical response was evaluated in terms of polarization curve (voltage vs. current density) at different operating conditions: temperature electrolyte conductivity and electrode-diaphragm distance. For all cases the model fits very well with the experimental data with an error of less than 1% for the polarization curves. Moreover the model successfully simulates the changes on gas profiles along the cell according to current density electrolyte flow rate and electrode-diaphragm distance. The combination of electrochemical and fluid dynamics studies provides comprehensive information and makes the model a promising tool for electrolysis cell design.
Anion Exchange Membrane Water Electrolyzer: Electrode Design, Lab-scaled Testing System and Performance Evaluation
Aug 2022
Publication
Green hydrogen produced by water electrolysis is one of the most promising technologies to realize the efficient utilization of intermittent renewable energy and the decarbonizing future. Among various electrolysis technologies the emerging anion-exchange membrane water electrolysis (AEMWE) shows the most potential for producing green hydrogen at a competitive price. In this review we demonstrate a comprehensive introduction to AEMWE including the advanced electrode design the lab-scaled testing system establishment and the electrochemical performance evaluation. Specifically recent progress in developing high activity transition metal-based powder electrocatalysts and self-supporting electrodes for AEMWE is summarized. To improve the synergistic transfer behaviors between electron charge water and gas inside the gas diffusion electrode (GDE) two optimizing strategies are concluded by regulating the pore structure and interfacial chemistry. Moreover we provide a detailed guideline for establishing the AEMWE testing system and selecting the electrolyzer components. The influences of the membrane electrode assembly (MEA) technologies and operation conditions on cell performance are also discussed. Besides diverse electrochemical methods to evaluate the activity and stability implement the failure analyses and realize the in-situ characterizations are elaborated. In end some perspectives about the optimization of interfacial environment and cost assessments have been proposed for the development of advanced and durable AEMWE.
No more items...