Production & Supply Chain
Generation of Hydrogen and Oxygen from Water by Solar Energy Conversion
Dec 2021
Publication
Photosynthesis is considered to be one of the promising areas of cheap and environmentally friendly energy. Photosynthesis involves the process of water oxidation with the formation of molecular oxygen and hydrogen as byproducts. The aim of the present article is to review the energy (light) phase of photosynthesis based on the published X-ray studies of photosystems I and II (PS-I and PS-II). Using modern ideas about semiconductors and biological semiconductor structures the mechanisms of H+ O2↑ e− generation from water are described. At the initial stage PS II produces hydrogen peroxide from water as a result of the photoenzymatic reaction which is oxidized in the active center of PS-II on the Mn4CaO5 cluster to form O2↑ H+ e−. Mn4+ is reduced to Mn2+ and then oxidized to Mn4+ with the transfer of reducing the equivalents of PS-I. The electrons formed are transported to PS-I (P 700) where the electrochemical reaction of water decomposition takes place in a two-electrode electrolysis system with the formation of gaseous oxygen and hydrogen. The proposed functioning mechanisms of PS-I and PS-II can be used in the development of environmentally friendly technologies for the production of molecular hydrogen.
Kinetic Modeling and Quantum Yields: Hydrogen Production via Pd‐TiO2 Photocatalytic Water Splitting under Near‐UV and Visible Light
Jan 2022
Publication
A palladium (Pd) doped mesoporous titanium dioxide (TiO2) photocatalyst was used to produce hydrogen (H2) via water splitting under both near‐UV and visible light. Experiments were carried out in the Photo‐CREC Water‐II Reactor (PCW‐II) using a 0.25 wt% Pd‐TiO2 photocatalyst initial pH = 4 and 2.0 v/v% ethanol as an organic scavenger. After 6 h of near‐UV irradiation this photocatalyst yielded 113 cm3 STP of hydrogen (H2). Furthermore after 1 h of near‐UV photoreduc‐ tion followed by 5 h of visible light the 0.25 wt% Pd‐TiO2 photocatalyst yielded 5.25 cm3 STP of H2. The same photocatalyst photoreduced for 24 h under near‐UV and subsequently exposed to 5 h of visible light yielded 29 cm3 STP of H2. It was observed that the promoted redox reactions led to the production of hydrogen and by‐products such as methane ethane ethylene acetaldehyde carbon monoxide carbon dioxide and hydrogen peroxide. These redox reactions could be modeled using an “in series‐parallel” reaction network and Langmuir Hinshelwood based kinetics. The proposed rate equations were validated using statistical analysis for the experimental data and calculated kinetic parameters. Furthermore Quantum yields (QYୌ%) based on the H produced were also established at promising levels: (a) 34.8% under near‐UV light and 1.00 g L−1 photocatalyst concen‐ tration; (b) 8.8% under visible light and 0.15 g L−1. photocatalyst concentration following 24 h of near‐UV.
Electrocatalyst Derived from NiCu–MOF Arrays on Graphene Oxide Modified Carbon Cloth for Water Splitting
Apr 2022
Publication
Electrocatalysts are capable of transforming water into hydrogen oxygen and therefore into energy in an environmentally friendly and sustainable manner. However the limitations in the research of high performance catalysts act as an obstructer in the development of using water as green energy. Here we report on a delicate method to prepare novel bimetallic metal organic framework derived electrocatalysts (C–NiCu–BDC–GO–CC) using graphene oxide (GO) modified carbon cloth as a 3D flexible and conductive substrate. The resultant electrocatalyst C–NiCu–BDC– GO–CC exhibited very low electron transfer resistance which benefited from its extremely thin 3D sponge-like morphology. Furthermore it showed excellent oxygen evolution reaction (OER) activity achieving 10 mA/cm2 at a low overpotential of 390 mV in 1 M KOH electrolyte with a remarkable durability of 10 h.
Recent Progress and Approaches on Transition Metal Chalcogenides for Hydrogen Production
Dec 2021
Publication
Development of efficient and affordable photocatalysts is of great significance for energy production and environmental sustainability. Transition metal chalcogenides (TMCs) with particle sizes in the 1–100 nm have been used for various applications such as photocatalysis photovoltaic and energy storage due to their quantum confinement effect optoelectronic behavior and their stability. In particular TMCs and their heterostructures have great potential as an emerging inexpensive and sustainable alternative to metal-based catalysts for hydrogen evolution. Herein the methods used for the fabrication of TMCs characterization techniques employed and the different methods of solar hydrogen production by using different TMCs as photocatalyst are reviewed. This review provides a summary of TMC photocatalysts for hydrogen production.
Theoretical Insights into the Hydrogen Evolution Reaction on the Ni3N Electrocatalyst
Jun 2021
Publication
Ni-based catalysts are attractive alternatives to noble metal electrocatalysts for the hydrogen evolution reaction (HER). Herein we present a dispersion-corrected density functional theory (DFT-D3) insight into HER activity on the (111) (110) (001) and (100) surfaces of metallic nickel nitride (Ni3N). A combination of water and hydrogen adsorption was used to model the electrode interactions within the water splitting cell. Surface energies were used to characterise the stabilities of the Ni3N surfaces along with adsorption energies to determine preferable sites for adsorbate interactions. The surface stability order was found to be (111) < (100) < (001) < (110) with calculated surface energies of 2.10 2.27 2.37 and 2.38 Jm−2 respectively. Water adsorption was found to be exothermic at all surfaces and most favourable on the (111) surface with Eads = −0.79 eV followed closely by the (100) (110) and (001) surfaces at −0.66 −0.65 and −0.56 eV respectively. The water splitting reaction was investigated at each surface to determine the rate determining Volmer step and the activation energies (Ea) for alkaline HER which has thus far not been studied in detail for Ni3N. The Ea values for water splitting on the Ni3N surfaces were predicted in the order (001) < (111) < (110) < (100) which were 0.17 0.73 1.11 and 1.60 eV respectively overall showing the (001) surface to be most active for the Volmer step of water dissociation. Active hydrogen adsorption sites are also presented for acidic HER evaluated through the ΔGH descriptor. The (110) surface was shown to have an extremely active Ni–N bridging site with ΔGH = −0.05 eV.
Dynamic modelling of a direct internal reforming solid oxide fuel cell stack based on single cell experiments
May 2018
Publication
Direct internal reforming enables optimal heat integration and reduced complexity in solid oxide fuel cell (SOFC) systems but thermal stresses induced by the increased temperature gradients may inflict damage to the stack. Therefore the development of adequate control strategies requires models that can accurately predict the temperature profiles in the stack. A 1D dynamic modelling platform is developed in this study and used to simulate SOFCs in both single cell and stack configurations. The single cell model is used to validate power law and Hougen-Watson reforming kinetics derived from experiments in previous work. The stack model based on the same type of cells accounts for heat transfer in the inactive area and to the environment and is validated with data reported by the manufacturer. The reforming kinetics are then implemented in the stack model to simulate operation with direct internal reforming. Although there are differences between the temperature profiles predicted by the two kinetic models both are more realistic than assuming chemical equilibrium. The results highlight the need to identify rate limiting steps for the reforming and hydrogen oxidation reactions on anodes of functional SOFC assemblies. The modelling approach can be used to study off-design conditions transient operation and system integration as well as to develop adequate energy management and control strategies.
Effects of CO2 sequestration on lipid and biomass productivity in microalgal biomass production
Mar 2017
Publication
The study is focused on the technology and manipulation of production strategies for the cultivation of biomass from four strains of microalgae. Species of microalgae studied are: Chlorella vulgaris Dunaliella Scenedesmus quadricauda and Synechococcus spp. The effects of the rate and amount of CO2 removal from the atmosphere and sequestration with dissolved oxygen on lipid production from accumulated biomass were studied. Also the rate of sequestration of both total and dissolved carbon was investigated. Daily measurements of total organic and inorganic carbon sequestrated optical densities proximate analysis and kinetic parameters of the growing and cultivated microalga were monitored and carried out during the two phases of cultivation: dark and light phases. The values of maximum rate of carbon (IV) oxide removed rmax varied from 11.73 mg L -1 min -1 to 18.84 mg L -1 min -1 from Chlorella vulgaris to Synechoccocus spp. Important parameters such as biomass productivity maximum pH values obtained at cultivation lipid content of the produced biomass and the hydraulic detection time for all four strains of microalgae were considered and presented in comparison and with their individual and collective effects. The ratios of the rate of CO2 absorption constant and the constant for the CO2 desorption rate (k1/k2) occurred highest in Dunaliella suggesting that with a high uptake of CO2 the algal strain is more effective in CO2 CO2 sequestration. The best biomass producer in this study was the C. vulgaris (Xmax = 5400 mg L-1 and Px = 35.1 mg L h -1) where biomass productivity is Px and the maximum cellular concentration is Xmax. C. vulgaris has the highest lipids productivity of 27% while Synechoccocus has the least (11.72%). In general biomass productivity may be inversely related; this fact may be explained by greater metabolic involvement of lipid biosynthesis. This pioneer study may be advanced further to developing models for strategic manipulation and optimisation approach in micro algal biomass cultivation.
High-stability, High-capacity Oxygen Carriers: Iron Oxide-perovskite Composite Materials for Hydrogen Production by Chemical Looping
Jun 2015
Publication
Iron oxide has been widely used as an oxygen carrier material (OCM) for hydrogen production by chemical looping due to its favourable thermodynamic properties. In spite of this iron oxide loses much of its activity after redox cycling mainly due to sintering and agglomeration. Perovskites such as La0.7Sr0.3FeO3-d (LSF731) have been suggested as potential candidate OCMs for hydrogen production due to their excellent oxygen transport properties and stability under cycling. However hydrogen production per cycle for a similar carrier weight is lower than with iron oxide. This work proposes the use of composite OCMs made of iron oxide clusters embedded in an LSF731 matrix. The perovskite matrix facilitates oxygen transport to the iron oxide clusters while preventing agglomeration. Two preparation methods mechanical mixing and a modified Pechini method were used to obtain composite materials with different iron oxide weight fractions 11 and 30 wt.%. The reactivity of these OCMs was studied in a thermogravimetric analyser. Hydrogen production and carrier stability were investigated in a microreactor over 25 redox cycles while periodically feeding carbon monoxide and water in order to produce carbon dioxide and hydrogen in separate streams. Hydrogen production was stable over 25 cycles for LSF731 and the composite OCM with 30 wt.% iron oxide produced by the modified Pechini method but iron oxide particles alone underwent a decrease in the hydrogen production with cycling. The hydrogen production during the 25th cycle was eight times higher for the composite material than for iron oxide alone and four times higher than for LSF731. The hydrogen production was therefore also higher than that expected from a simple combination of the iron oxide and LSF731 alone indicating a synergetic effect whereby the LSF731 may have a higher effective oxygen capacity when in the form of the composite material.
Electrochemical and Mechanical Stability of Catalyst Layers in Anion Exchange Membrane Water Electrolysis
Dec 2021
Publication
Anion exchange membrane (AEM) water electrolysis is considered a promising solution to future cost reduction of electrochemically produced hydrogen. We present an AEM water electrolyzer with CuCoOx as the anode catalyst and Aemion as membrane and electrode binder. Full cell experiments in pure water and 0.1 M KOH revealed that the optimum binder content depended on the type of electrolyte employed. Online dissolution measurements suggested that Aemion alone was not sufficient to establish an alkaline environment for thermodynamically stabilizing the synthesized CuCoOx in a neutral electrolyte feed. A feed of base is thus indispensable to ensure the thermodynamic stability of such non-noble catalyst materials. Particle loss and delamination of the catalyst layer during MEA operation could be reduced by employing a heat treatment step after electrode fabrication. This work summarizes possible degradation pathways for low-cost anodes in AEMWE and mitigation strategies for enhanced system durability and performance.
Challenges and Important Considerations When Benchmarking Single-cell Alkaline Electrolyzers
Nov 2021
Publication
This study outlines an approach to identifying the difficulties associated with the bench-marking of alkaline single cells under real electrolyzer conditions. A challenging task in the testing and comparison of different catalysts is obtaining reliable and meaningful benchmarks for these conditions. Negative effects on reproducibility were observed due to the reduction in conditioning time. On the anode side a stable passivation layer of NiO can be formed by annealing of the Ni foams which is even stable during long-term operation. Electrical contact resistance and impedance measurements showed that most of the contact resistance derived from the annealed Ni foam. Additionally analysis of various overvoltages indicated that most of the total overvoltage comes from the anode and cathode activation overpotential. Different morphologies of the substrate material exhibited an influence on the performance of the alkaline single cell based on an increase in the ohmic resistance.
Batteries and Hydrogen Technology: Keys for a Clean Energy Future
May 2020
Publication
As governments focus on dealing with the Covid-19 health emergency they are increasingly turning their attention to the impact of shutting down their economies and how to revive them quickly through stimulus measures. Economic recovery packages offer a unique opportunity to create jobs while supporting clean energy transitions around the world.
Energy efficiency and renewable energy like wind and solar PV – the cornerstones of any clean energy transition – are good places to start. Those industries employ millions of people across their value chains and offer environmentally sustainable ways to create jobs and help revitalise the global economy.
But more than just renewables and efficiency will be required to put the world on track to meet climate goals and other sustainability objectives. IEA analysis has repeatedly shown that a broad portfolio of clean energy technologies will be needed to decarbonise all parts of the economy. Batteries and hydrogen-producing electrolysers stand out as two important technologies thanks to their ability to convert electricity into chemical energy and vice versa. This is why they also deserve a place in any economic stimulus packages being discussed today.
Link to Document on IEA Website
Energy efficiency and renewable energy like wind and solar PV – the cornerstones of any clean energy transition – are good places to start. Those industries employ millions of people across their value chains and offer environmentally sustainable ways to create jobs and help revitalise the global economy.
But more than just renewables and efficiency will be required to put the world on track to meet climate goals and other sustainability objectives. IEA analysis has repeatedly shown that a broad portfolio of clean energy technologies will be needed to decarbonise all parts of the economy. Batteries and hydrogen-producing electrolysers stand out as two important technologies thanks to their ability to convert electricity into chemical energy and vice versa. This is why they also deserve a place in any economic stimulus packages being discussed today.
Link to Document on IEA Website
Flexible Electricity Dispatch of an Integrated Solar Combined Cycle through Thermal Energy Storage and Hydrogen Production
Jun 2021
Publication
In this work the flexible operation of an Integrated Solar Combined Cycle (ISCC) power plant has been optimized considering two different energy storage approaches. The objective of this proposal is to meet variable users’ grid demand for an extended period at the lowest cost of electricity. Medium temperature thermal energy storage (TES) and hydrogen generation configurations have been analyzed from a techno-economic point of view. Results found from annual solar plant performance indicate that molten salts storage solution is preferable based on the lower levelized cost of electricity (0.122 USD/kWh compared to 0.158 USD/kWh from the hydrogen generation case) due to the lower conversion efficiencies of hydrogen plant components. However the hydrogen plant configuration exceeded in terms of plant availability and grid demand coverage as fewer design constraints resulted in a total demand coverage of 2155 h per year. It was also found that grid demand curves from industrial countries limit the deployment of medium-temperature TES systems coupled to ISCC power plants since their typical demand curves are characterized by lower power demand around solar noon when solar radiation is higher. In such scenarios the Brayton turbine design is constrained by noon grid demand which limits the solar field and receiver thermal power design. View Full-Text
Using Solar Power Regulation to Electrochemically Capture Carbon Dioxide: Process Integration and Case Studies
Mar 2022
Publication
This work focuses on the use of solar photovoltaic energy to capture carbon dioxide by means of a combined electrolyzer–absorption system and compares operating results obtained in two cases studies (operation during one clear and one cloudy day in March) in which real integration of solar photovoltaics electrolyzer and absorption technologies is made at the bench-scale. The system is a part of a larger process (so-called EDEN⃝R Electrochemically-based Decarbonizing ENergy) which aims to regulate solar photovoltaic energy using a reversible chloralkaline electrochemical cell. Results demonstrate the feasibility of the sequestering technology which can produce chlorine and hydrogen but also the sequestration of CO2 and its transformation into a mixture of sodium chloride bicarbonate and carbonate useful as raw matter. Efficiencies over 70% for chlorine 60% for hydrogen and 90% for sodium hydroxide were obtained. The sequestration of carbon dioxide reached 24.4 mmol CO2/Ah with an average use of 1.6 mmol NaOH/mmol CO2. Important differences are found between the performance of the system in a clear and a cloudy day which point out the necessity of regulating the dosing of the electrochemically produced sodium hydroxide to optimize the sequestration of CO2.
Methanol Reforming Processes for Fuel Cell Applications
Dec 2021
Publication
Hydrogen production through methanol reforming processes has been stimulated over the years due to increasing interest in fuel cell technology and clean energy production. Among different types of methanol reforming the steam reforming of methanol has attracted great interest as reformate gas stream where high concentration of hydrogen is produced with a negligible amount of carbon monoxide. In this review recent progress of the main reforming processes of methanol towards hydrogen production is summarized. Different catalytic systems are reviewed for the steam reforming of methanol: mainly copper- and group 8–10-based catalysts highlighting the catalytic key properties while the promoting effect of the latter group in copper activity and selectivity is also discussed. The effect of different preparation methods different promoters/stabilizers and the formation mechanism is analyzed. Moreover the integration of methanol steam reforming process and the high temperature–polymer electrolyte membrane fuel cells (HT-PEMFCs) for the development of clean energy production is discussed.
Massive H2 Production With Nuclear Heating, Safety Approach For Coupling A VHTR With An Iodine Sulfur Process Cycle
Sep 2005
Publication
In the frame of a sustainable development investigations dealing with massive Hydrogen production by means of nuclear heating are carried out at CEA. For nuclear safety thermodynamic efficiency and waste minimization purposes the technological solution privileged is the coupling of a gas cooled Very High Temperature Reactor (VHTR) with a plant producing Hydrogen from an Iodine/Sulfur (I/S) thermochemical cycle. Each of the aforementioned facilities presents different risks resulting from the operation of a nuclear reactor (VHTR) and from a chemical plant including Hydrogen other flammable and/or explosible substances as well as toxic ones. Due to these various risks the safety approach is an important concern. Therefore this paper deals with the preliminary CEA investigations on the safety issues devoted to the whole plant focusing on the safety questions related to the coupling between the nuclear reactor and the Hydrogen production facility. Actually the H2 production process and the energy distribution network between the plants are currently at a preliminary design stage. A general safety approach is proposed based on a Defence In Depth (DID) principle permitting to analyze all the system configurations successively in normal incidental and accidental expected operating conditions. More precisely the dynamic answer of an installation to a perturbation affecting the other one during the previous conditions as well as the potential aggressions of the chemical plant towards the nuclear reactor have to be considered. The methodology presented in this paper is intended to help the designer to take into account the coupling safety constraints and to provide some recommendations on the global architecture of both plants especially on their coupling system. As a result the design of a VHTR combined to a H2 production process will require an iterative process between design and safety requirements.
Recent Progress in the Steam Reforming of Bio-Oil for Hydrogen Production: A Review of Operating Parameters, Catalytic Systems and Technological Innovations
Dec 2021
Publication
The present review focuses on the production of renewable hydrogen through the catalytic steam reforming of bio-oil the liquid product of the fast pyrolysis of biomass. Although in theory the process is capable of producing high yields of hydrogen in practice certain technological issues require radical improvements before its commercialization. Herein we illustrate the fundamental knowledge behind the technology of the steam reforming of bio-oil and critically discuss the major factors influencing the reforming process such as the feedstock composition the reactor design the reaction temperature and pressure the steam to carbon ratio and the hour space velocity. We also emphasize the latest research for the best suited reforming catalysts among the specific groups of noble metal transition metal bimetallic and perovskite type catalysts. The effect of the catalyst preparation method and the technological obstacle of catalytic deactivation due to coke deposition metal sintering metal oxidation and sulfur poisoning are addressed. Finally various novel modified steam reforming techniques which are under development are discussed such as the in-line two-stage pyrolysis and steam reforming the sorption enhanced steam reforming (SESR) and the chemical looping steam reforming (CLSR). Moreover we argue that while the majority of research studies examine hydrogen generation using different model compounds much work must be done to optimally treat the raw or aqueous bio-oil mixtures for efficient practical use. Moreover further research is also required on the reaction mechanisms and kinetics of the process as these have not yet been fully understood.
Biomass Potential for Producing Power via Green Hydrogen
Dec 2021
Publication
Hydrogen (H2 ) has become an important energy vector for mitigating the effects of climate change since it can be obtained from renewable sources and can be fed to fuel cells for producing power. Bioethanol can become a green H2 source via Ethanol Steam Reforming (ESR) but several variables influence the power production in the fuel cell. Herein we explored and optimized the main variables that affect this power production. The process includes biomass fermentation bioethanol purification H2 production via ESR syngas cleaning by a CO-removal reactor and power production in a high temperature proton exchange membrane fuel cell (HT-PEMFC). Among the explored variables the steam-to-ethanol molar ratio (S/E) employed in the ESR has the strongest influence on power production process efficiency and energy consumption. This effect is followed by other variables such as the inlet ethanol concentration and the ESR temperature. Although the CO-removal reactor did not show a significant effect on power production it is key to increase the voltage on the fuel cell and consequently the power production. Optimization was carried out by the response surface methodology (RSM) and showed a maximum power of 0.07 kWh kg−1 of bioethanol with an efficiency of 17% when ESR temperature is 700 ◦C. These values can be reached from different bioethanol sources as the S/E and CO-removal temperature are changed accordingly with the inlet ethanol concentration. Because there is a linear correlation between S/E and ethanol concentration it is possible to select a proper S/E and CO-removal temperature to maximize the power generation in the HT-PEMFC via ESR. This study serves as a starting point to diversify the sources for producing H2 and moving towards a H2 -economy.
Hybrid Water Electrolysis: A New Sustainable Avenue for Energy-Saving Hydrogen Production
Oct 2021
Publication
Developing renewable energy-driven water splitting for sustainable hydrogen production plays a key role in achieving the carbon neutrality goal. Nevertheless the efficiency of traditional pure water electrolysis is severely hampered by the anodic oxygen evolution reaction (OER) due to its sluggish kinetics. In this context replacing OER with thermodynamically more favorable oxidation reactions to produce hydrogen via hybrid water electrolysis becomes an energy-saving hydrogen production scheme. Here the recent advances in hybrid water electrolysis are critically reviewed. First the fundamentals of electrochemical oxidation of typical organic molecules such as urea hydrazine and biomass are presented. Then the recent achievements in electrocatalysts for hybrid water electrolysis are introduced with an emphasis on outlining catalyst design strategies and the correlation between catalyst structure and performance. Finally future perspectives in this field for a sustainable hydrogen economy are proposed.
Cost-competitive Green Hydrogen: How to Lower the Cost of Electrolysers?
Jan 2022
Publication
The higher cost of green hydrogen in comparison to its competitors is the most important barrier to its increased use. Although the cost of renewable electricity is considered to be the key obstacle challenges associated with electrolysers are another major issue that have important implications for the cost reduction of green hydrogen. This paper analyses the electrolysis process from technological economic and policy perspectives. It first provides a comparative analysis of the main existing electrolyser technologies and identifies key trade-offs in terms of cost scarcity of materials used technology readiness and the ability to operate in a flexible mode (which enables them to be coupled with variable renewables generation). The paper then identifies the main cost drivers for each of the most promising technologies and analyses the opportunities for cost reduction. It also draws upon the experience of solar and wind power generation technologies with respect to gradual cost reduction and evaluates development paths that each of the main electrolyser technology types could take in the future. Finally the paper elaborates on the policy mechanisms that could additionally foster cost reduction and the overall business development of electrolyser technologies.
The research paper can be found on their website
The research paper can be found on their website
Aqueous Phase Reforming in a Microchannel Reactor: The Effect of Mass Transfer on Hydrogen Selectivity
Aug 2013
Publication
Aqueous phase reforming of sorbitol was carried out in a 1.7 m long 320 mm ID microchannel reactor with a 5 mm Pt-based washcoated catalyst layer combined with nitrogen stripping. The performance of this microchannel reactor is correlated to the mass transfer properties reaction kinetics hydrogen selectivity and product distribution. Mass transfer does not affect the rate of sorbitol consumption which is limited by the kinetics of the reforming reaction. Mass transfer significantly affects the hydrogen selectivity and the product distribution. The rapid consumption of hydrogen in side reactions at the catalyst surface is prevented by a fast mass transfer of hydrogen from the catalyst site to the gas phase in the microchannel reactor. This results in a decrease of the concentration of hydrogen at the catalyst surface which was found to enhance the desired reforming reaction rate at the expense of the undesired hydrogen consuming reactions. Compared to a fixed bed reactor the selectivity to hydrogen in the microchannel reactor was increased by a factor of 2. The yield of side products (mainly C3 and heavier hydrodeoxygenated species) was suppressed while the yield of hydrogen was increased from 1.4 to 4 moles per mole of sorbitol fed.
No more items...