Production & Supply Chain
Biomass Potential for Producing Power via Green Hydrogen
Dec 2021
Publication
Hydrogen (H2 ) has become an important energy vector for mitigating the effects of climate change since it can be obtained from renewable sources and can be fed to fuel cells for producing power. Bioethanol can become a green H2 source via Ethanol Steam Reforming (ESR) but several variables influence the power production in the fuel cell. Herein we explored and optimized the main variables that affect this power production. The process includes biomass fermentation bioethanol purification H2 production via ESR syngas cleaning by a CO-removal reactor and power production in a high temperature proton exchange membrane fuel cell (HT-PEMFC). Among the explored variables the steam-to-ethanol molar ratio (S/E) employed in the ESR has the strongest influence on power production process efficiency and energy consumption. This effect is followed by other variables such as the inlet ethanol concentration and the ESR temperature. Although the CO-removal reactor did not show a significant effect on power production it is key to increase the voltage on the fuel cell and consequently the power production. Optimization was carried out by the response surface methodology (RSM) and showed a maximum power of 0.07 kWh kg−1 of bioethanol with an efficiency of 17% when ESR temperature is 700 ◦C. These values can be reached from different bioethanol sources as the S/E and CO-removal temperature are changed accordingly with the inlet ethanol concentration. Because there is a linear correlation between S/E and ethanol concentration it is possible to select a proper S/E and CO-removal temperature to maximize the power generation in the HT-PEMFC via ESR. This study serves as a starting point to diversify the sources for producing H2 and moving towards a H2 -economy.
Recent Progress in the Steam Reforming of Bio-Oil for Hydrogen Production: A Review of Operating Parameters, Catalytic Systems and Technological Innovations
Dec 2021
Publication
The present review focuses on the production of renewable hydrogen through the catalytic steam reforming of bio-oil the liquid product of the fast pyrolysis of biomass. Although in theory the process is capable of producing high yields of hydrogen in practice certain technological issues require radical improvements before its commercialization. Herein we illustrate the fundamental knowledge behind the technology of the steam reforming of bio-oil and critically discuss the major factors influencing the reforming process such as the feedstock composition the reactor design the reaction temperature and pressure the steam to carbon ratio and the hour space velocity. We also emphasize the latest research for the best suited reforming catalysts among the specific groups of noble metal transition metal bimetallic and perovskite type catalysts. The effect of the catalyst preparation method and the technological obstacle of catalytic deactivation due to coke deposition metal sintering metal oxidation and sulfur poisoning are addressed. Finally various novel modified steam reforming techniques which are under development are discussed such as the in-line two-stage pyrolysis and steam reforming the sorption enhanced steam reforming (SESR) and the chemical looping steam reforming (CLSR). Moreover we argue that while the majority of research studies examine hydrogen generation using different model compounds much work must be done to optimally treat the raw or aqueous bio-oil mixtures for efficient practical use. Moreover further research is also required on the reaction mechanisms and kinetics of the process as these have not yet been fully understood.
Kinetic Modeling and Quantum Yields: Hydrogen Production via Pd‐TiO2 Photocatalytic Water Splitting under Near‐UV and Visible Light
Jan 2022
Publication
A palladium (Pd) doped mesoporous titanium dioxide (TiO2) photocatalyst was used to produce hydrogen (H2) via water splitting under both near‐UV and visible light. Experiments were carried out in the Photo‐CREC Water‐II Reactor (PCW‐II) using a 0.25 wt% Pd‐TiO2 photocatalyst initial pH = 4 and 2.0 v/v% ethanol as an organic scavenger. After 6 h of near‐UV irradiation this photocatalyst yielded 113 cm3 STP of hydrogen (H2). Furthermore after 1 h of near‐UV photoreduc‐ tion followed by 5 h of visible light the 0.25 wt% Pd‐TiO2 photocatalyst yielded 5.25 cm3 STP of H2. The same photocatalyst photoreduced for 24 h under near‐UV and subsequently exposed to 5 h of visible light yielded 29 cm3 STP of H2. It was observed that the promoted redox reactions led to the production of hydrogen and by‐products such as methane ethane ethylene acetaldehyde carbon monoxide carbon dioxide and hydrogen peroxide. These redox reactions could be modeled using an “in series‐parallel” reaction network and Langmuir Hinshelwood based kinetics. The proposed rate equations were validated using statistical analysis for the experimental data and calculated kinetic parameters. Furthermore Quantum yields (QYୌ%) based on the H produced were also established at promising levels: (a) 34.8% under near‐UV light and 1.00 g L−1 photocatalyst concen‐ tration; (b) 8.8% under visible light and 0.15 g L−1. photocatalyst concentration following 24 h of near‐UV.
Cyclic Voltammetry of a Cobaloxime Catalyst
Jul 2019
Publication
<br/>Cyclic Voltammetry Measurements performed on a Cobaloxime Catalyst designed for photochemical hydrogen production.
Laser Powder Bed Fusion of WE43 in Hydrogen-argon-gas Atmosphere
Sep 2020
Publication
Growing demand for individual and especially complex parts with emphasis on biomedical or lightweight applications enhances the importance of laser powder bed fusion. Magnesium alloys offer both biocompatibility and low density but feature a very high melting point of oxide layers while the evaporation temperature of pure magnesium is much lower. This impedes adequate part quality and process reproducibility. To weaken this oxide layer and enhance processability a 2 %-hydrogen-argon-gas atmosphere was investigated. A machine system was modified to the use of the novel inert gas to determine the influence of gas atmosphere on hollow cuboids and solid cubes. While processing a 20.3 % decrease in structure width and 20.6 % reduction in standard deviation of the cuboids was determined. There was no significate influence on relative density of solid cubes although eight of the ten highest density specimen were fabricated with the hydrogen addition.
Multi-Tubular Reactor for Hydrogen Production CFD Thermal Design and Experimental Testing
Jan 2019
Publication
This study presents the Computational Fluid Dynamics (CFD) thermal design and experimental tests results for a multi-tubular solar reactor for hydrogen production based on the ferrite thermochemical cycle in a pilot plant in the Plataforma Solar de Almería (PSA). The methodology followed for the solar reactor design is described as well as the experimental tests carried out during the testing campaign and characterization of the reactor. The CFD model developed for the thermal design of the solar reactor has been validated against the experimental measurements with a temperature error ranging from 1% to around 10% depending on the location within the reactor. The thermal balance in the reactor (cavity and tubes) has been also solved by the CFD model showing a 7.9% thermal efficiency of the reactor. CFD results also show the percentage of reacting media inside the tubes which achieve the required temperature for the endothermic reaction process with 90% of the ferrite pellets inside the tubes above the required temperature of 900 °C. The multi-tubular solar reactor designed with aid of CFD modelling and simulations has been built and operated successfully
Techno-economic calculations of small-scale hydrogen supply systems for zero emission transport in Norway
Jun 2019
Publication
In Norway where nearly 100% of the power is hydroelectric it is natural to consider water electrolysis as the main production method of hydrogen for zero-emission transport. In a start-up market with low demand for hydrogen one may find that small-scale WE-based hydrogen production is more cost-efficient than large-scale production because of the potential to reach a high number of operating hours at rated capacity and high overall system utilization rate. Two case studies addressing the levelized costs of hydrogen in local supply systems have been evaluated in the present work: (1) Hydrogen production at a small-scale hydroelectric power plant (with and without on-site refuelling) and (2) Small hydrogen refuelling station for trucks (with and without on-site hydrogen production). The techno-economic calculations of the two case studies show that the levelized hydrogen refuelling cost at the small-scale hydroelectric power plant (with a local station) will be 141 NOK/kg while a fleet of 5 fuel cell trucks will be able to refuel hydrogen at a cost of 58 NOK/kg at a station with on-site production or 71 NOK/kg at a station based on delivered hydrogen. The study shows that there is a relatively good business case for local water electrolysis and supply of hydrogen to captive fleets of trucks in Norway particularly if the size of the fleet is sufficiently large to justify the installation of a relatively large water electrolyzer system (economies of scale). The ideal concept would be a large fleet of heavy-duty vehicles (with a high total hydrogen demand) and a refuelling station with nearly 100% utilization of the installed hydrogen production capacity.
Pathways to Low-cost Clean Hydrogen Production with Gas Switching Reforming
Feb 2020
Publication
Gas switching reforming (GSR) is a promising technology for natural gas reforming with inherent CO2 capture. Like conventional steam methane reforming (SMR) GSR can be integrated with CO2 -gas shift and pressure swing adsorption units for pure hydrogen production. The resulting GSR-H2 process concept was techno-economically assessed in this study. Results showed that GSR-H2 can achieve 96% CO2 capture at a CO2 avoidance cost of 15 $/ton (including CO2 transport and storage). Most components of the GSR-H2 process are proven technologies but long-term oxygen carrier stability presents an important technical uncertainty that can adversely affect competitiveness when the material lifetime drops below one year. Relative to the SMR benchmark GSR-H2 replaces some fuel consumption with electricity consumption making it more suitable to regions with higher natural gas prices and lower electricity prices. Some minor alterations to the process configuration can adjust the balance between fuel and electricity consumption to match local market conditions. The most attractive commercialization pathway for the GSR-H2 technology is initial construction without CO2 capture followed by simple retrofitting for CO2 capture when CO2 taxes rise and CO2 transport and storage infrastructure becomes available. These features make the GSR-H2 technology robust to almost any future energy market scenario.
Evaluation of Sorbents for High Temperature Removal of Tars, Hydrogen Sulphide, Hydrogen Chloride and Ammonia from Biomass-derived Syngas by Using Aspen Plus
Jan 2020
Publication
Biomass gasification is a promising technology to produce secondary fuels or heat and power offering considerable advantages over fossil fuels. An important aspect in the usage of producer gas is the removal of harmful contaminants from the raw syngas. Thus the object of this study is the development of a simulation model for a gasifier including gas clean-up for which a fluidized-bed gasifier for biomass-derived syngas production was considered based on a quasi-equilibrium approach through Gibbs free energy minimisation and including an innovative hot gas cleaning constituted by a combination of catalyst sorbents inside the gasification reactor catalysts in the freeboard and subsequent sorbent reactors by using Aspen Plus software. The gas cleaning chain simulates the raw syngas clean-up for several organic and inorganic contaminants i.e. toluene benzene naphthalene hydrogen sulphide hydrogen chloride and ammonia. The tar and inorganic contaminants final values achieved are under 1 g/Nm3 and 1 ppm respectively.
Hydrogen Production Using Solar Energy - Technical Analysis
Mar 2019
Publication
This paper presents a case study concerning a plant for hydrogen production and storage having a daily capacity of 100kg. The plant is located in Cluj-Napoca Romania. It produces hydrogen by means of water electrolysis while the energy is provided using solar energy. We performed the calculations for four different technical solutions used for the hydrogen production and storage plant and also we considered three scenarios regarding the sub-systems of the hydrogen production and storage plant efficiency. The conclusion of this study is that one can maximize the conversion of solar radiation into chemical energy in the form of hydrogen by hybridizing the solar hydrogen production system namely using both electrical energy as well as thermal energy in the form of steam.
Assessment of Hydrogen Direct Reduction for Fossil-free Steelmaking
Aug 2018
Publication
Climate policy objectives require zero emissions across all sectors including steelmaking. The fundamental process changes needed for reaching this target are yet relatively unexplored. In this paper we propose and assess a potential design for a fossil-free steelmaking process based on direct reduction of iron ore with hydrogen. We show that hydrogen direct reduction steelmaking needs 3.48 MWh of electricity per tonne of liquid steel mainly for the electrolyser hydrogen production. If renewable electricity is used the process will have essentially zero emissions. Total production costs are in the range of 361–640 EUR per tonne of steel and are highly sensitive to the electricity price and the amount of scrap used. Hydrogen direct reduction becomes cost competitive with an integrated steel plant at a carbon price of 34–68 EUR per tonne CO2 and electricity costs of 40 EUR/MWh. A key feature of the process is flexibility in production and electricity demand which allows for grid balancing through storage of hydrogen and hot-briquetted iron or variations in the share of scrap used.
Bioanode and Biocathode Performance in a Microbial Electrolysis Cell
Jan 2017
Publication
The bioanode is important for a microbial electrolysis cell (MEC) and its robustness to maintain its catalytic activity affects the performance of the whole system. Bioanodes enriched at a potential of +0.2 V (vs. standard hydrogen electrode) were able to sustain their oxidation activity when the anode potential was varied from 0.3 up to +1.0 V. Chronoamperometric test revealed that the bioanode produced peak current density of 0.36 A/m2 and 0.37 A/m2 at applied potential 0 and +0.6 V respectively. Meanwhile hydrogen production at the biocathode was proportional to the applied potential in the range from 0.5 to 1.0 V. The highest production rate was 7.4 L H2/(m2 cathode area)/day at 1.0 V cathode potential. A limited current output at the bioanode could halt the biocathode capability to generate hydrogen. Therefore maximum applied potential that can be applied to the biocathode was calculated as 0.84 V without overloading the bioanode
A Numerical Performance Study of a Fixed-bed Reactor for Methanol Synthesis by CO2 Hydrogenation
Mar 2021
Publication
Synthetic fuels are needed to replace their fossil counterparts for clean transport. Presently their production is still inefficient and costly. To enhance the process of methanol production from CO2 and H2 and reduce its cost a particle-resolved numerical simulation tool is presented. A global surface reaction model based on the Langmuir-Hinshelwood-Hougen-Watson kinetics is utilized. The approach is first validated against standard benchmark problems for non-reacting and reacting cases. Next the method is applied to study the performance of methanol production in a 2D fixed-bed reactor under a range of parameters. It is found that methanol yield enhances with pressure catalyst loading reactant ratio and packing density. The yield diminishes with temperature at adiabatic conditions while it shows non-monotonic change for the studied isothermal cases. Overall the staggered and the random catalyst configurations are found to outperform the in-line system.
Modelling and Optimization of a Flexible Hydrogen-fueled Pressurized PEMFC Power Plant for Grid Balancing Purposes
Feb 2021
Publication
In a scenario characterized by an increasing penetration of non-dispatchable renewable energy sources and the need of fast-ramping grid-balancing power plants the EU project GRASSHOPPER aims to setup and demonstrate a highly flexible PEMFC Power Plant hydrogen fueled and scalable to MW-size designed to provide grid support.<br/>In this work different layouts proposed for the innovative MW-scale plant are simulated to optimize design and off-design operation. The simulation model details the main BoP components performances and includes a customized PEMFC model validated through dedicated experiments.<br/>The system may operate at atmospheric or mild pressurized conditions: pressurization to 0.7 barg allows significantly higher net system efficiency despite the increasing BoP consumptions. The additional energy recovery from the cathode exhaust with an expander gives higher net power and net efficiency adding up to 2%pt and reaching values between 47%LHV and 55%LHV for currents between 100% and 20% of the nominal value.
Chitosan Flocculation Associated with Biofilms of C. Saccharolyticus and C. Owensensis Enhances Biomass Retention in a CSTR
Jun 2021
Publication
Cell immobilization and co-culture techniques have gained attention due to its potential to obtain high volumetric hydrogen productivities (QH2). Chitosan retained biomass in the fermentation of co-cultures of Caldicellulosiruptor saccharolyticus and C. owensensis efficiently up to a maximum dilution rate (D) of 0.9 h−1. Without chitosan wash out of the co-culture occurred earlier accompanied with approximately 50% drop in QH2 (D > 0.4 h−1). However butyl rubber did not show as much potential as carrier material; it did neither improve QH2 nor biomass retention in continuous culture. The population dynamics revealed that C. owensensis was the dominant species (95%) in the presence of chitosan whereas C. saccharolyticus was the predominant (99%) during cultivation without chitosan. In contrast the co-culture with rubber as carrier maintained the relative population ratios around 1:1. This study highlighted chitosan as an effective potential carrier for immobilization thereby paving the way for cost – effective hydrogen production.
PEM Fuel Cell Performance with Solar Air Preheating
Feb 2020
Publication
Proton Exchange Membrane Fuel Cells (PEMFC) have proven to be a promising energy conversion technology in various power applications and since it was developed it has been a potential alternative over fossil fuel-based engines and power plants all of which produce harmful by-products. The inlet air coolant and reactants have an important effect on the performance degradation of the PEMFC and certain power outputs. In this work a theoretical model of a PEM fuel cell with solar air heating system for the preheating hydrogen of PEM fuel cell to mitigate the performance degradation when the fuel cell operates in cold environment is proposed and evaluated by using energy analysis. Considering these heating and energy losses of heat generation by hydrogen fuel cells the idea of using transpired solar collectors (TSC) for air preheating to increase the inlet air temperature of the low-temperature fuel cell could be a potential development. The aim of the current article is applying solar air preheating for the hydrogen fuel cells system by applying TSC and analyzing system performance. Results aim to attention fellow scholars as well as industrial engineers in the deployment of solar air heating together with hydrogen fuel cell systems that could be useful for coping with fossil fuel-based power supply systems.
On Capital Utilization in the Hydrogen Economy: The Quest to Minimize Idle Capacity in Renewables-rich Energy Systems
Oct 2020
Publication
The hydrogen economy is currently experiencing a surge in attention partly due to the possibility of absorbing variable renewable energy (VRE) production peaks through electrolysis. A fundamental challenge with this approach is low utilization rates of various parts of the integrated electricity-hydrogen system. To assess the importance of capacity utilization this paper introduces a novel stylized numerical energy system model incorporating the major elements of electricity and hydrogen generation transmission and storage including both “green” hydrogen from electrolysis and “blue” hydrogen from natural gas reforming with CO2 capture and storage (CCS). Concurrent optimization of all major system elements revealed that balancing VRE with electrolysis involves substantial additional costs beyond reduced electrolyzer capacity factors. Depending on the location of electrolyzers greater capital expenditures are also required for hydrogen pipelines and storage infrastructure (to handle intermittent hydrogen production) or electricity transmission networks (to transmit VRE peaks to electrolyzers). Blue hydrogen scenarios face similar constraints. High VRE shares impose low utilization rates of CO2 capture transport and storage infrastructure for conventional CCS and of hydrogen transmission and storage infrastructure for a novel process (gas switching reforming) that enables flexible power and hydrogen production. In conclusion all major system elements must be considered to accurately reflect the costs of using hydrogen to integrate higher VRE shares.
Life-cycle Assessment of Hydrogen Technologies with the Focus on EU Critical Raw Materials and End-of-life Strategies
Aug 2020
Publication
We present the results of a life-cycle assessment (LCA) for the manufacturing and end-of-life (EoL) phases of the following fuel-cell and hydrogen (FCH) technologies: alkaline water electrolyser (AWE) polymer-electrolyte-membrane water electrolyser (PEMWE) high-temperature (HT) and low-temperature (LT) polymer-electrolyte-membrane fuel cells (PEMFCs) together with the balance-of-plant components. New life-cycle inventories (LCIs) i.e. material inputs for the AWE PEMWE and HT PEMFC are developed whereas the existing LCI for the LT PEMFC is adopted from a previous EU-funded project. The LCA models for all four FCH technologies are created by modelling the manufacturing phase followed by defining the EoL strategies and processes used and finally by assessing the effects of the EoL approach using environmental indicators. The effects are analysed with a stepwise approach where the CML2001 assessment method is used to evaluate the environmental impacts. The results show that the environmental impacts of the manufacturing phase can be substantially reduced by using the proposed EoL strategies (i.e. recycled materials being used in the manufacturing phase and replacing some of the virgin materials). To point out the importance of critical materials (in this case the platinum-group metals or PGMs) and their recycling strategies further analyses were made. By comparing the EoL phase with and without the recycling of PGMs an increase in the environmental impacts is observed which is much greater in the case of both fuel-cell systems because they contain a larger quantity of PGMs.
Methane Pyrolysis in a Molten Gallium Bubble Column Reactor for Sustainable Hydrogen Production: Proof of Concept & Techno-economic Assessment
Dec 2020
Publication
Nowadays nearly 50% of the hydrogen produced worldwide comes from Steam Methane Reforming (SMR) at an environmental burden of 10.5 tCO2 eq/tH2 accelerating the consequences of global warming. One way to produce clean hydrogen is via methane pyrolysis using melts of metals and salts. Compared to SMR significant less CO2 is produced due to conversion of methane into hydrogen and carbon making this route more sustainable to generate hydrogen. Hydrogen is produced with high purity and solid carbon is segregated and deposited on the molten bath. Carbon may be sold as valuable co-product making industrial scale promising. In this work methane pyrolysis was performed in a quartz bubble column using molten gallium as heat transfer agent and catalyst. A maximum conversion of 91% was achieved at 1119 °C and ambient pressure with a residence time of the bubbles in the liquid of 0.5 s. Based on in-depth analysis of the carbon it can be characterized as carbon black. Techno-economic and sensitivity analyses of the industrial concept were done for different scenarios. The results showed that if co-product carbon is saleable and a CO2 tax of 50 euro per tonne is imposed to the processes the molten metal technology can be competitive with SMR.
Decarbonization Synergies From Joint Planning of Electricity and Hydrogen Production: A Texas Case Study
Oct 2020
Publication
Hydrogen (H2) shows promise as an energy carrier in contributing to emissions reductions from sectors which have been difficult to decarbonize like industry and transportation. At the same time flexible H2 production via electrolysis can also support cost-effective integration of high shares of variable renewable energy (VRE) in the power system. In this work we develop a least-cost investment planning model to co-optimize investments in electricity and H2 infrastructure to serve electricity and H2 demands under various low-carbon scenarios. Applying the model to a case study of Texas in 2050 we find that H2 is produced in approximately equal amounts from electricity and natural gas under the least-cost expansion plan with a CO2 price of $30–60/tonne. An increasing CO2 price favors electrolysis while increasing H2 demand favors H2 production from Steam Methane Reforming (SMR) of natural gas. H2 production is found to be a cost effective solution to reduce emissions in the electric power system as it provides flexibility otherwise provided by natural gas power plants and enables high shares of VRE with less battery storage. Additionally the availability of flexible electricity demand via electrolysis makes carbon capture and storage (CCS) deployment for SMR cost-effective at lower CO2 prices ($90/tonne CO2) than for power generation ($180/tonne CO2 ). The total emissions attributable to H2 production is found to be dependent on the H2 demand. The marginal emissions from H2 production increase with the H2 demand for CO2 prices less than $90/tonne CO2 due to shift in supply from electrolysis to SMR. For a CO2 price of $60/tonne we estimate the production weighted-average H2 price to be between $1.30–1.66/kg across three H2 demand scenarios. These findings indicate the importance of joint planning of electricity and H2 infrastructure for cost-effective energy system decarbonization.
No more items...