Production & Supply Chain
Modeling Porosity Distribution Strategies in PEM Water Electrolyzers: A Comparative Analytical and Numerical Study
Jun 2025
Publication
Proton exchange membrane water electrolyzers (PEMWEs) are a promising technology for green hydrogen production. However the adoption of PEMWE-based hydrogen production systems remains limited due to several challenges including high material costs limited performance and durability and difficulties in scaling the technology. Computational modeling serves as a powerful tool to address these challenges by optimizing system design improving material performance and reducing overall costs thereby accelerating the commercial rollout of PEMWE technology. Despite this conventional models often oversimplify key components such as porous transport and catalyst layers by assuming constant porosity and neglecting the spatial heterogeneity found in real electrodes. This simplification can significantly impact the accuracy of performance predictions and the overall efficiency of electrolyzers. This study develops a mathematical framework for modeling variable porosity distributions—including constant linearly graded and stepwise profiles—and derives analytical expressions for permeability effective diffusivity and electrical conductivity. These functions are integrated into a three-dimensional multi-domain COMSOL simulation to assess their impact on electrochemical performance and transport behavior. The results reveal that although porosity variations have minimal effect on polarization at low voltages they significantly influence internal pressure species distribution and gas evacuation at higher loads. A notable finding is that reversing stepwise porosity—placing high porosity near the membrane rather than the channel—can alleviate oxygen accumulation and improve current density. A multi-factor comparison highlights this reversed configuration as the most favorable among the tested strategies. The proposed modeling approach effectively connects porous media theory and systemlevel electrochemical analysis offering a flexible platform for the future design of porous electrodes in PEMWE and other energy conversion systems.
Green Hydrogen Generation by Water Photoelectrolysis: Economic and Environmental Analysis
Mar 2025
Publication
Water photoelectrolysis cells based on photoelectrochemical water splitting seem to be an interesting alternative to other traditional green hydrogen generation processes (e.g. water electrolysis). Unfortunately the practical application of this technology is currently hindered by several difficulties: low solar-to-hydrogen (STH) efficiency expensive electrode materials etc. A novel concept based on a tandem photoelectrolysis cell configuration with an anion-conducting membrane separating the photoanode from the photocathode has already been proposed in the literature. This approach allows the use of low-cost metal oxide electrodes and nickel-based co-catalysts. In this paper we conducted a study to evaluate the economic and environmental sustainability of this technology using the environmental life cycle cost. Preliminary results have revealed two main interesting aspects: the negligible percentage of externalities in the total cost.
Assessment of Carbon-abatement Pricing to Maximize the Value of Electrolytic Hydrogen in Emissions-intensive Power Sectors
Aug 2025
Publication
Electrolytic hydrogen can support the decarbonization of the power sector. Achieving cost-effective power-to-gas-to-power (PGP) integration through targeted emissions pricing can accelerate the adoption of electrolytic hydrogen in greenhouse gas-intensive power sectors. This study develops a framework for assessing the economic viability of electrolytic hydrogen-based PGP systems in fossil fuel-dependent grids while considering the competing objectives of the electricity system operator a risk-averse investor and the government. Here we show that given the risk-averse investor’s inherent pursuit of profit maximization a break-even carbon abatement cost of at least 57 Canadian Dollars per tonne of CO₂ by 2030 from the government with a shift in electricity market dispatch rules from sole system marginal pricereduction to system-wide emissions reduction is essential to stimulate price discovery for low-cost hydrogen production and contingency reserve provision by the PGP system. This work can help policymakers capture and incentivize the role of electrolytic hydrogen in low-carbon power sector planning.
Retrofitted Production of Bio-hydrogen. Large-scale Biowaste Valorization via Solar-based Gasification
Aug 2025
Publication
Hydrogen production from gasification of biowaste generates large volumes of CO2 due to endothermic biowaste decomposition. Alternatively the Sun can provide that energy. To evaluate the yield and performance of solarbased gasifiers at country scale a multi-scale approach is required. First the operation of a solar gasifier is analyzed by developing a two-phase model validated and scaled to industrial level. Next the performance and yield of such technology as a function of the radiation received is studied taking Spain as a case study. The results were promising obtaining a syngas rich in H2. However tar and char were not reduced due to insufficient temperature. Scale-up studies revealed energy losses to the environment in the industrial-scale gasifier which suggested the use of segmented heating. In turn diameters no larger than 0.8 m and biomass feeding rates below 0.85 kg/s highlight the deployment of a modular design due to particle size limitations. Finally the large-scale waste valorization showed that the gasifier can only operate in Spain in the summer months. It can run over 180 h/month and more than 250 days/year only in C´ adiz and Santa Cruz de Tenerife which also showed the highest yearly production capacities.
Wetting of the Microporous Layer at the Cathode of an Anion Exchange Membrane Water Electrolyzer
Aug 2025
Publication
Water management is crucial for the performance of anion exchange membrane water electrolyzers (AEM-WEs) to maintain membrane hydration and enable phase separation between hydrogen gas and liquid water. Therefore careful material selection for the anode and cathode is essential to enhance reactant/product transport and optimize water management under ‘dry cathode’ conditions. This study investigates the wetting characteristics of two commercially available porous transport layers (PTLs) used in AEM-WE: carbon paper and carbon paper with a microporous layer (MPL). Wettability was measured under static quasi-static and dynamic conditions to assess the effect of water and electrolytes (NaOH KOH K2CO3) across concentrations (up to 1 M) and operational temperatures (20 °C to 92 °C). Carbon paper exhibits mild hydrophobicity (advancing contact angles of ∼120° however with receding contact angle ∼0°) whereas carbon paper with MPL demonstrates superhydrophobicity (advancing and receding contact angles >145° and low contact angle hysteresis) maintaining a stable Cassie-Baxter wetting state. Dynamic wetting experiments confirmed the robustness of the superhydrophobicity in carbon paper with MPL facilitating phase separation between hydrogen gas and liquid water. The presence of supporting electrolytes did not significantly affect wettability and the materials retained hydrophobic properties across different temperatures. These findings highlight the importance of MPLs in optimizing water transport and gas rejection within AEM-WEs ensuring efficient and stable operation under “dry cathode” conditions. These PTLs (with and without the addition of the MPL) were integrated into AEM-WE and polarization curves were run. Preliminary data in a specific condition suggested the presence of the MPL within the PTL enhance AEM-WE performance.
Stimulating Efficiency for Proton Exchange Membrane Water Splitting Electrolyzers: From Material Design to Electrode Engineering
Jun 2025
Publication
Proton exchange membrane water electrolyzers (PEMWEs) are a promising technology for large-scale hydrogen production yet their industrial deployment is hindered by the harsh acidic conditions and sluggish oxygen evolution reaction (OER) kinetics. This review provides a comprehensive analysis of recent advances in iridium-based electrocatalysts (IBEs) emphasizing novel optimization strategies to enhance both catalytic activity and durability. Specifically we critically examine the mechanistic insights into OER under acidic conditions revealing key degradation pathways of Ir species. We further highlight innovative approaches for IBE design including (i) morphology and support engineering to improve stability (ii) structure and phase modulation to enhance catalytic efficiency and (iii) electronic structure tuning for optimizing interactions with reaction intermediates. Additionally we assess emerging electrode engineering strategies and explore the potential of non-precious metal-based alternatives. Finally we propose future research directions focusing on rational catalyst design mechanistic clarity and scalable fabrication for industrial applications. By integrating these insights this review provides a strategic framework for advancing PEMWE technology through highly efficient and durable OER catalysts.
Can Hydrogen Be Produced Cost-Effectively from Heavy Oil Reservoirs?
Oct 2025
Publication
The potential for hydrogen production from heavy oil reservoirs has gained significant attention as a dual-benefit process for both enhanced oil recovery and low-carbon energy generation. This study investigates the technical and economic feasibility of producing hydrogen from heavy oil reservoirs using two primary in situ combustion gasification strategies: cyclic steam/air and CO2 + O2 injection. Through a comprehensive analysis of technical barriers economic drivers and market conditions we assess the hydrogen production potential of each method. While both strategies show promise they face considerable challenges: the high energy demands associated with steam generation in the steam/air strategy and the complexities of CO2 procurement capture and storage in the CO2 + O2 method. The novelty of this work lies in combining CMG-STARS reservoir simulations with GoldSim techno-economic modeling to quantify hydrogen yields production costs and oil–hydrogen revenue trade-offs under realistic field conditions. The analysis reveals that under current technological and market conditions the cost of hydrogen production significantly exceeds the market price rendering the process economically uncompetitive. Furthermore the dominance of oil production as the primary revenue source in both methods limits the economic viability of hydrogen production. Unless substantial advancements are made in technology or a more cost-efficient production strategy is developed hydrogen production from heavy oil reservoirs is unlikely to become commercially viable in the near term. This study provides crucial insights into the challenges that must be addressed for hydrogen production from heavy oil reservoirs to be considered a competitive energy source.
Hydrogen Production Power Supply with Low Current Ripple Based on Virtual Impedance Technology Suitable for Offshore Wind–Solar–Storage System
Oct 2025
Publication
Hydrogen production from water electrolysis can not only reduce greenhouse gas emissions but also has abundant raw materials which is one of the ideal ways to produce hydrogen from new energy. The hydrogen production power supply is the core component of the new energy electrolytic water hydrogen production device and its characteristics have a significant impact on the efficiency and purity of hydrogen production and the service life of the electrolytic cell. In essence the DC/DC converter provides the large current required for hydrogen production. For the converter its input still needs the support of a DC power supply. Given the maturity and technical characteristics of new energy power generation integrating energy storage into offshore energy systems enables stable power supply. This configuration not only mitigates energy fluctuations from renewable sources but also further reduces electrolysis costs providing a feasible pathway for large-scale commercialization of green hydrogen production. First this paper performs a simulation analysis on the wind–solar hybrid energy storage power generation system to demonstrate that the wind–solar–storage system can provide stable power support. It places particular emphasis on the significance of hydrogen production power supply design—this focus stems primarily from the fact that electrolyzers impose specific requirements on high operating current levels and low current ripple which exert a direct impact on the electrolyzer’s service life hydrogen production efficiency and operational safety. To suppress the current ripple induced by high switching frequency and high output current traditional approaches typically involve increasing the output inductor. However this method substantially increases the volume and weight of the device reduces the rate of current change and ultimately results in a degradation of the system’s dynamic response performance. To this end this paper focuses on developing a virtual impedance control technology aiming to reduce the ripple amplitude while avoiding an increase in the filter inductor. Owing to constraints in current experimental conditions this research temporarily relies on simulation data. Specifically a programmable power supply is employed to simulate the voltage output of the wind–solar–storage hybrid system thereby bringing the simulation as close as possible to the actual operating conditions of the wind–solar–storage hydrogen production system. The experimental results demonstrate that the proposed method can effectively suppress the ripple amplitude maintain high operating efficiency and ultimately meet the expected research objectives. That makes it particularly suitable as a high-quality power supply for offshore hydrogen production systems that have strict requirements on volume and weight.
Advancing Hydrogen Sustainability in Alberta: Life Cycle Sustainability Assessment of Hydrogen Production Pathways
Oct 2025
Publication
This study conducts a Life Cycle Sustainability Assessment (LCSA) of hydrogen production pathways in Alberta Canada evaluating environmental economic and social dimensions. Eight pathways are analyzed: steam methane reforming (SMR) with and without carbon capture and storage (CCS) autothermal reforming (ATR) with and without CCS and with and without grid electricity as well as alkaline electrolysis using grid and wind electricity. While alkaline electrolysis with wind electricity shows the best performance under the climate change and ozone depletion categories ATR + CCS (CO2 capture rate of 91 % no-grid electricity) demonstrates the strongest performance in seven of nine environmental impact categories being the worst performer in none and having the lowest social risks. Economically SMR and ATR without CCS exhibit the lowest levelized cost of hydrogen followed by ATR + CCS (CO2 capture rate of 91 % no-grid electricity). ATR + CCS (CO2 capture rate of 91 % no-grid electricity) emerges as a promising pathway offering an overall balance of sustainability under the current study’s assumptions. The results suggest that a blue hydrogen to electricity scenario where ATR + CCS with 100 % on-site hydrogen-fueled power generation replaces grid electricity may be the most suitable pathway for hydrogen production in Alberta. Key recommendations include optimizing environmental performance in climate change and ozone depletion impacts reducing costs and mitigating social risks in ATR pathways. This LCSA supports policies and investments to advance hydrogen’s role in Alberta’s decarbonization and energy transition.
Highly Selective Production of ‘‘Jadeite Hydrogen” from the Catalytic Decomposition of Diesel
Mar 2025
Publication
Clean hydrogen (H2) is highly desirable for the sustainable development of society in the era of carbon neutrality. However the current capability of water electrolysis and steam methane (CH4) reforming to produce green and blue H2 is very limited mainly due to the high production cost difficult scale-up technology or operational risk. Here we propose the direct catalytic decomposition of diesel using a nano-Fe-based catalyst to produce the so-called ‘‘jadeite H2” while simultaneously fixing the carbon from the diesel in the form of carbon nanotubes (CNTs). Efforts are made to understand the suppression mechanism of the CH4 byproduct such as by tuning the catalyst type space velocity and reaction time. The optimal green index (GI)—that is the molar ratio of H2/carbon in a gaseous state—of the proposed technology exceeds 42 which is far higher than those of any previously reported chemical vapor deposition (CVD) method. Moreover the carbon footprint (CFP) of the proposed technology is far lower than those of grey H2 blue H2 and other dehydrogenation technologies. Compared with most of the technologies mentioned above the energy consumption (per mole of H2) and reactor amplification of the proposed technology validate its high efficiency and great practical feasibility.
Recent Advances in MXene-based Nanocomposites for Photocatalytic Wastewater Treatment, Carbon Dioxide Reduction, and Hydrogen Production: A Comprehensive Review
Oct 2025
Publication
This review critically examines recent advancements in MXene-based nanocomposites and their roles in photocatalytic applications for environmental remediation and renewable energy. MXenes two-dimensional transition metal carbides nitrides and carbonitrides (Mn+1XnTx where M = transition metal X = C/N Tx = surface terminations such as –O –OH –F) exhibit high electrical conductivity tunable band structures hydrophilic surfaces and large specific surface areas. These properties make them highly effective in enhancing photocatalytic activity when incorporated into composite systems. The review summarizes synthesis methods structural modifications and the mechanisms underlying photocatalytic performance highlighting their efficiency in degrading organic inorganic and microbial pollutants converting CO₂ into value-added chemicals and generating H₂ via water splitting. Key challenges including stability oxidation and scalability are analyzed along with strategies such as surface passivation heterojunction formation and hybridization with antioxidant materials to improve performance. Future research should focus on developing green synthesis methods improving long-term stability and exploring scalable production to facilitate practical deployment. These insights provide a comprehensive understanding of MXene nanocomposites supporting their advancement as multifunctional photocatalysts for a clean and sustainable energy future.
Solar-powered Hydrogen Production: Modelling PEM Electrolyser Systems for Optimal Integration with Solar Energy
Oct 2025
Publication
This study presents an experimental approach to modelling PEM electrolysers for green hydrogen production using solar energy. The objective is to implement a temperature steady-state electrolyser model to assess the optimal coupling configuration with a photovoltaic plant and estimate the yearly hydrogen production capacity. The research focuses on the energy consumption of ancillary systems under different load conditions developing a steady-state operational model that improves hydrogen production predictions by accounting for these consumptions. The model based on polynomial equations captures the non-linear variation in energy costs under partial load conditions. PEM electrolysers produce hydrogen above 3.0 quality (99.9% purity) and it is feasible to integrate purification processes to reach 5.0 quality (99.999% purity). While small-scale systems include purification large-scale facilities separate it enabling process optimisation. Two models are introduced to estimate hydrogen mass flow depending on purity: a base-purity model and a high-purity model that includes drying and pressure swing adsorption. Both are based on experimental data from a five-year-old small-scale electrolyser and are applicable to large-scale systems at partial load. Due to test conditions the model applied to large-scale facilities underestimates hydrogen production affected by energy losses from a non-optimised purification process and electrolyser degradation. Model validation with large-scale operational data from the literature shows the model captures plant behaviour well despite the consistent underestimation described above. The model is applied to several European locations to identify optimal photovoltaic-to-electrolyser ratios. Oversizing factors between 1.4 and 2 are needed to cover ancillary consumption. The levelised cost remains comparable for both purity levels despite higher energy demands for high-purity hydrogen due to the greater cost of the electrolyser over the photovoltaic plant.
Optimization of Novel Variable-Channel-Width Solid Oxide Electrolysis Cell (SOEC) Design for Enhanced Hydrogen Production
Oct 2025
Publication
This study presents a novel solid oxide electrolysis cell (SOEC) design with variable channel widths to optimize thermal management and electrochemical performance for enhanced hydrogen production. Using high-fidelity computational modeling in COMSOL Multiphysics 6.1 five distinct channel width configurations were analyzed with a baseline model validated against experimental data. The simulations showed that modifying the channel geometry particularly in Scenario 2 significantly improved hydrogen production rates by 6.8% to 29% compared to a uniform channel design with the effect becoming more pronounced at higher voltages. The performance enhancement was found to be primarily due to improved fluid velocity regulation which increased reactant residence time and enhanced mass transport rather than a significant thermal effect as temperature distribution remained largely uniform across the cell. Additionally the inclusion of a dedicated heat transfer channel was shown to improve current density and overall efficiency particularly at lower voltages. While a small increase in voltage raised internal cell pressure the variable-width designs especially those with widening channels led to greater hydrogen output albeit with a corresponding increase in system energy consumption due to higher pressure. Overall the findings demonstrate that strategically designed variable-width channels offer a promising approach to optimizing SOEC performance for industrial-scale hydrogen production.
Techno-Economic Analysis of Green Hydrogen Energy Production in West Africa
Nov 2025
Publication
The United Nations has set a global vision towards emissions reduction and green growth through the Sustainable Development Goals (SDGs). Towards the realisation of SDGS 7 9 and 13 we focus on green hydrogen production as a potential pathway to achievement. Green hydrogen produced via water electrolysis powered by renewable energy sources represents a pivotal solution towards climate change mitigation. Energy access in West Africa remains a challenge and dependency on fossil fuels persists. So green hydrogen offers an opportunity to harness abundant solar resources reduce carbon emissions and foster economic development. This study evaluates the techno-economic feasibility of green hydrogen production in five West African countries: Ghana Nigeria Mali Niger and Senegal. The analyses cover the solar energy potential hydrogen production capacities and economic viability using the Levelised Cost of Hydrogen (LCOH) and Net Present Value (NPV). Results indicate substantial annual hydrogen production potential with LCOH values competitive with global benchmarks amidst the EU’s Carbon Border Adjustment Mechanism (CBAM). Despite this potential several barriers exist including high initial capital costs policy and regulatory gaps limited technical capacity and water resource constraints. We recommend targeted strategies for strengthening policy frameworks fostering international partnerships enhancing regional infrastructure integration and investing in capacity-building initiatives. By addressing these barriers West Africa can be a key player in the global green hydrogen market.
Cost-Optimal Design of a Stand-Alone PV-Driven Hydrogen Production and Refueling Station Using Genetic Algorithms
Nov 2025
Publication
Driven by the growing availability of funding opportunities electrolyzers have become increasingly accessible unlocking significant potential for large-scale green hydrogen production. The goal of this investigation is to develop a techno-economic optimization framework for the design of a stand-alone photovoltaic (PV)-driven hydrogen production and refueling station with the explicit objective of minimizing the levelized cost of hydrogen (LCOH). The system integrates PV generation a proton-exchange-membrane electrolyzer battery energy storage compression and high-pressure hydrogen storage to meet the daily demand of a fleet of fuel cell buses. Results show that the optimal configuration achieves an LCOH of 11 €/kg when only fleet demand is considered whereas if surplus hydrogen sales are accounted for the LCOH reduces to 7.98 €/kg. The analysis highlights that more than 75% of total investment costs are attributable to PV and electrolysis underscoring the importance of capital incentives. Financial modeling indicates that a subsidy of about 58.4% of initial CAPEX is required to ensure a 10% internal rate of return under EU market conditions. The proposed methodology provides a reproducible decision-support tool for optimizing off-grid hydrogen refueling infrastructure and assessing policy instruments to accelerate hydrogen adoption in heavy-duty transport.
Modeling and Experimental Approach of Membrane and Diaphragm Sono-electrolytic Production of Hydrogen
Oct 2025
Publication
This study evaluates the performance of three anion-exchange membranes (FAS-50 AMX Fujifilm-AEM) and a diaphragm separator (Zirfon® UTP 500) in alkaline water sono-electrolysis using a 25 % KOH electrolyte at ambient temperature. Energy efficiency hydrogen production kinetics and membrane stability were assessed experimentally and through modeling. Among the tested separators Zirfon achieved the highest energy efficiency outperforming AEM AMX and FAS-50. Hydrogen production rates under silent conditions ranged from 2.55 µg/s (AEM) to 2.92 µg/s (FAS-50) while sonication (40 kHz 60 W) increased rates by 0.03–0.12 µg/s with the strongest relative effect observed for FAS-50 (≈4.0 % increase). By contrast Zirfon and AEM showed slight efficiency reductions (0.5–2 %) under ultrasound due to their higher structural resistance. Ion-exchange capacity tests confirmed significant degradation of polymeric membranes (IEC losses of 60–90 %) while Zirfon maintained stability in 25 % KOH. Modeling results showed that the diaphragm resistance was dominated by the ohmic losses (55–86 %) with ultrasound reducing bubble coverage and associated resistance only marginally (<0.02 V). Overall Zirfon demonstrated superior stability and efficiency for long-term operation while ultrasound primarily enhanced hydrogen evolution kinetics in mechanically weaker polymeric membranes.
Enhanced Performance of TiO2 Composites for Solar Cells and Photocatalytic Hydrogen Production
Oct 2025
Publication
Titanium dioxide (TiO2) is widely used in solar cells and photocatalysts given its excellent photoactivity low cost and high structural electronic and optical stability. Here a novel TiO2 composite was prepared by coating TiO2 inverse opal (IO) with TiO2 nanorods (NRs). With a porous three-dimensional network structure the composite exhibited higher light absorption; enhanced the separation of the electron–hole pairs; deepened the infiltration of the electrolyte; better transported and collected charge carriers; and greatly improved the power conversion efficiency (PCE) of the quantum-dot sensitized solar cells (QDSSCs) based on it while also boosting its own photocatalytic hydrogen generation efficiency. A very high PCE of 12.24% was achieved by QDSSCs utilizing CdS/CdSe sensitizer. Furthermore the TiO2 composite exhibited high photocatalytic activity with a H2 release rate of 1080.2 µ mol h−1 g −1 several times that of bare TiO2 IO or TiO2 NRs.
Transient Analysis of Solar Driven Hydrogen Generation System Using Industrial Waste Water
Oct 2025
Publication
This study investigates an integrated solar-powered system for wastewater treatment and hydrogen production combining solar PV a humidification–dehumidification (HDH) system solar thermal collectors and electrolysis. The objective is to evaluate the feasibility of utilizing industrial wastewater for both clean water production and green hydrogen generation. A transient analysis is conducted using TRNSYS and EES software modeling a system designed to process 4000 kg of wastewater daily. The results indicate that the HDH system produces 300 kg of clean water per hour while the electrolyzer generates approximately 66.5 kg of hydrogen per hour. The solar PV system operates under the weather conditions of Kohat Pakistan. This integrated approach demonstrates significant potential for sustainable wastewater treatment and renewable energy production offering a promising solution for industrial applications.
Durable Pt-Decorated NiFe-LDH for High-Current-Density Electrocatalytic Water Splitting Under Alkaline Conditions
Nov 2025
Publication
The development of durable and efficient catalysts capable of driving both hydrogen and oxygen evolution reactions is essential for advancing sustainable hydrogen production through overall water electrolysis. In this study we developed a corrosion-mediated approach where Ni ions originate from the self-corrosion of the nickel foam (NF) substrate to construct Pt-modified NiFe layered double hydroxide (Pt-NiFeOxHy@NiFe-LDH) under ambient conditions. The obtained catalyst exhibits a hierarchical architecture with abundant defect sites which favor the uniform distribution of Pt clusters and optimized electronic configuration. The Pt-NiFeOxHy@NiFe-LDH catalyst constructed through the interaction between Pt sites and defective NiFe layered double hydroxide (NiFe-LDH) demonstrates remarkable hydrogen evolution reaction (HER) activity delivering an overpotential as low as 29 mV at a current density of 10 mA·cm−2 and exhibiting a small tafel slope of 34.23 mV·dec−1 in 1 M KOH together with excellent oxygen evolution reaction (OER) performance requiring only 252 mV to reach 100 mA·cm−2 . Moreover the catalyst demonstrates outstanding activity and durability in alkaline seawater maintaining stable operation over long-term tests. The Pt-NiFeOxHy@NiFe-LDH electrode when integrated into a two-electrode system demonstrates operating voltages as low as 1.42 and 1.51 V for current densities of 10 and 100 mA·cm−2 respectively and retains outstanding stability under concentrated alkaline conditions (6 M KOH 70 ◦C). Overall this work establishes a scalable and economically viable pathway toward high-efficiency bifunctional electrocatalysts and deepens the understanding of Pt-LDH interfacial synergy in promoting water-splitting catalysis.
High‑Entropy Amorphous Catalysts for Water Electrolysis: A New Frontier
Sep 2025
Publication
High‐entropy amorphous catalysts (HEACs) integrate multielement synergy with structural disorder making them promising candidates for water splitting. Their distinctive features—including flexible coordination environments tunable electronic structures abundant unsaturated active sites and dynamic structural reassembly—collectively enhance electrochemical activity and durability under operating conditions. This review summarizes recent advances in HEACs for hydrogen evolution oxygen evolution and overall water splitting highlighting their disorder-driven advantages over crystalline counterparts. Catalytic performance benchmarks are presented and mechanistic insights are discussed focusing on how multimetallic synergy amorphization effect and in‐situ reconstruction cooperatively regulate reaction pathways. These insights provide guidance for the rational design of next‐generation amorphous high‐entropy electrocatalysts with improved efficiency and durability.
Decarbonised H2 Recovery and CO2 Capture Using a Cost-effective Membrane Plant: A Step Towards Energy Transition
Oct 2025
Publication
Separation of H2 from CO2 is crucial in industry since they are the products of water gas shift reaction. In addition the demand for pure H2 as well as the potential reuse of CO2 as reactant are increasing as a consequence of the transition from fossil fuels to decarbonization processes. In this scenario this work aims to propose a possible solution to get simultaneously pure H2 and CO2 meeting the world’s requirements in terms of reduction of CO2 emissions and transition to cleaner energy. A simulated plant combining Pd-based and SAPO-34 membrane modules is able to provide pure H2 with a final recovery higher than 97%. In addition the entire CO2 fed to SAPO-34 unit is recovered in the permeate stream with a concentration of 97.7%. A cost analysis shows that feed gas gives a higher contribution than compression heat exchange and membranes (e.g. 70 20 3 and 7% respectively). Net profit and net present value are positive within a specific feed gas price range (e.g. net profit up to 0.10 and 0.155 $/Nm3 depending on the labour cost set) showing that the process can be cost-effective and profitable. H2 purification cost ranges between 2.6 and 7.8 $/kg.
Hydrothermal Treatment of Kitchen Waste as a Strategy for Dark Fermentation Biohydrogen Production
Nov 2025
Publication
This study presents an innovative approach to the production of hydrogen from liquids following hydrothermal treatment of biowaste offering a potential solution for renewable energy generation and waste management. By combining biological and hydrothermal processes the efficiency of H2 production can be significantly improved contributing to a reduced carbon footprint and lower reliance on fossil fuels. The inoculum used was fermented sludge from a wastewater treatment plant which had been thermally pretreated to enhance microbial activity towards hydrogen production. Kitchen waste consisting mainly of plant-derived materials (vegetable matter) was used as a substrate. The process was conducted in batch 1-L bioreactors. The results showed that higher pretreatment temperatures (up to 180 ◦C) increased the hydrolysis of compounds and enhanced H2 production. However temperatures above 180 ◦C resulted in the formation of toxic compounds such as catechol and hydroquinone which inhibited H2 production. The highest hydrogen production was achieved at 180 ◦C (approximately 66 mL H2/gTVSKW). The standard Gompertz model was applied to describe the process kinetics and demonstrated an excellent fit with the experimental data (R2 = 0.99) confirming the model’s suitability for optimizing H2 production. This work highlights the potential of combining hydrothermal and biological processes to contribute to the development of sustainable energy systems within the circular economy.
Dual S-Scheme Heterojunction Nanocomposite-chrge Transport for Photocatalytic Green Energy Production and Environmental Implementations - Where to Go?
Sep 2025
Publication
Dating back to more than one century ago the photocatalysis process has demonstrated great promise in addressing environmental problems and the energy crisis. Nevertheless some single or binary composite materials cannot meet the requirements of large-scale implementations owing to their limited photocatalytic efficiencies. Since 2021 dual S-scheme heterojunctionbased nanocomposites have been undertaken as highly efficient photoactive materials for green energy production and environmental applications in order to overcome limitations faced in traditional photocatalysts. Herein state-of-the-art protocols designed for the synthesis of dual S-scheme heterojunctions are described. How the combined three semiconductors in dual S-scheme heterojunctions can benefit from one another to achieve high energy production and efficient oxidative removal of various pollutants is deeply explained. Photocatalytic reaction mechanisms by paying special attention to the creation of Fermi levels (Ef ) and charge carriers transfer between the three semiconductors in dual S-scheme heterojunctions are discussed. An entire section has been dedicated to some examples of preparation and applications of double S-scheme heterojunction-based nanocomposites for several photocatalytic applications such as soluble pollutants photodegradation bacteria disinfection artificial photosynthesis H2 generation H2O2 production CO2 reduction and ammonia synthesis. Lastly the current challenges of dual S-scheme heterojunctions are presented and future research directions are presented. To sum up dual S-scheme heterojunction nanocomposites are promising photocatalytic materials in the pursuit of sustainable energy production and environmental remediation. In the future dual S-scheme heterojunctions are highly recommended for photoreactors engineering instead of single or binary photocatalysts to drive forward photocatalysis processes for practical green energy production and environmental protection.
High-resolution AI-based Forecasting and Techno-economic Assessment of Green Hydrogen Production from a Hybrid PV/Wind System at the Regional Scale
Oct 2025
Publication
This study presents a comprehensive framework that integrates high-resolution energy forecasting and technoeconomic modeling to assess green hydrogen production potential in Flanders Belgium. Using 15-min interval data from the Elia Group four deep learning models (LSTM BiLSTM GRU and CNN-LSTM) were developed to forecast regional photovoltaic (PV) and onshore wind energy generation. These forecasts informed the estimation of hydrogen yields and the evaluation of the levelized cost of hydrogen (LCOH) under different configurations. Results show that wind-powered hydrogen production achieves the lowest LCOH (6.63 €/kg) due to higher annual operating hours. Among electrolysis technologies alkaline electrolysis (AEL) offers the lowest cost while proton exchange membrane (PEMEL) provides greater flexibility for intermittent power sources. The hybrid PVwind system demonstrated seasonal complementarity increasing annual hydrogen yield and improving production stability. The proposed framework supports regional planning and highlights strategic investment opportunities for cost-effective green hydrogen deployment.
Machine Learning-aided Multi-objective Optimisation of Tesla Valve-based Membraneless Electrolyzer Efficiency
Oct 2025
Publication
Hydrogen (H2) is an attractive fuel due to its high specific energy and zero direct carbon emissions. Membraneless electrolyzers (MEs) offer a lower-cost route to hydrogen production but their operation is complex and current efficiencies are modest. Although multi-objective optimization is widely used its heavy compute demands and weak integration with modern learning methods limit scalability and adaptability. We introduce a practical ML-guided way to design Tesla-valve (TV) membraneless electrolyzers by building diodicity (Di) directly into the geometry search. Using multilayer-perceptron surrogates trained on 150 high-fidelity simulations (R2 > 0.95) we link four design knobs (We Wc Wd Di) to pressure drop (Δp) and ohmic loss. A Genetic Algorithm (GA)-based multi-objective search over realistic ranges delivers 60 Pareto-optimal designs that make the Δp–ohmic trade-off explicit; TOPSIS then selects a balanced geometry (We = 1.708 mm Wc = 0.200 mm Wd = 1.012 mm Di = 1.618) with ohmic loss 4.069 V and Δp 6.169 Pa. The approach delivers faster lower-cost design maps and is supported by experimental checks pointing to an actionable route for scalable interpretable optimization of sustainable hydrogen production.
Development of a High-performance Electrolyzer for Efficient Hydrogen Production via Electrode Modification with a Commercial Catalyst
Oct 2025
Publication
A potential strategy to promote the use of clean energy is the development of catalyst-coated cathodic electrodes that are economical effective and sustainable to enhance the generation of hydrogen (H2) through the electrolysis process. This study investigates the unique design and use of stainless steel (SS) coated with a CuNiZnFeOx catalyst as both anode and cathode electrodes in the alkaline electrolysis process. The electrode exhibits an improved electrochemical behavior achieving a current density of 92 mA/cm2 at an applied voltage of 2.5 V with a surface area of 36 cm2 in 1 M KOH electrolyte at 25 ◦C. Furthermore the H2 production is systematically investigated by varying electrolyte concentration applied voltage and temperature. The results demonstrate that H2 production increases significantly with enhanced electrolyte concentration (3102 mL at 2 M KOH) applied voltage (3468 mL at 3.0 V) and temperature (3202 mL at 60 ◦C) over a 300 min electrolysis time. However optimal operating conditions are determined to be 1 M KOH 2.5 V and 25 ◦C balancing performance and energy efficiency. The improved performance is primarily attributed to enhanced ionic conductivity reduced internal resistance and the synergistic catalytic activity of the Cu-integrated NiZnFeOx coating.
Optimizing Green Hydrogen Cost with PV Energy and Storage
Oct 2025
Publication
This work develops a replicable method for designing the optimal renewable hydrogen production facility applicable to any site and based on technical parameters and actual equipment costs. The solution is based on the integration of photovoltaic (PV) energy with lithium-ion battery storage systems which maximizes electrolyzer operating hours and significantly reduces the Levelized Cost of Hydrogen (LCOH). This study shows that increasing the inclination of the photovoltaic modules reduces the need for storage optimizing operation and extending the electrolyzer’s annual operating hours. In the Seville case study with current costs and efficiencies a minimum LCOH of €4.43/kg was achieved a value well below market benchmarks opening the door to a potentially competitive industrial business. The analysis confirms that electrolyzer efficiency—particularly specific power consumption—is the most important factor in reducing costs while technological progress in photovoltaics storage and equipment promises further reductions in the coming years. Overall the proposed methodology offers a practical and scalable tool to accelerate the economic viability of green hydrogen in a variety of contexts.
Integrated Modeling of Steam Methane Reforming and Carbon Capture for Blue Hydrogen Production
Nov 2025
Publication
The increasing global demand for clean energy highlights hydrogen as a strategic energy carrier due to its high energy density and carbon-free utilization. Currently steam methane reforming (SMR) is the most widely applied method for hydrogen production; however its high CO2 emissions undermine the environmental benefits of hydrogen. Blue hydrogen production integrates carbon capture and storage (CCS) technologies to overcome this drawback in the SMR process significantly reducing greenhouse gas emissions. This study integrated a MATLAB-R2025b-based plug flow reactor (PFR) model for SMR kinetics with an Aspen HYSYS-based CCS system. The effects of reformer temperature (600–1000 ◦C) and steam-to-carbon (S/C) ratio (1–5) on hydrogen yield and CO2 emission intensity were investigated. Results show that hydrogen production increases with temperature reaching maximum conversion at 850–1000 ◦C while the optimum performance is achieved at S/C ratios of 2.5–3.0 balancing high hydrogen yield and minimized methane slip. Conventional SMR generates 9–12 kgCO2/kgH2 emissions whereas SMR + CCS reduces this to 2–3 kgCO2/kgH2 achieving more than 75% reduction. The findings demonstrate that SMR + CCS integration effectively mitigates emissions and provides a sustainable bridging technology for blue hydrogen production supporting the transition toward lowcarbon energy systems.
Production Technology of Blue Hydrogen with Low CO2 Emissions
Oct 2025
Publication
Blue hydrogen technology generated from natural gas through carbon capture and storage (CCS) technology is a promising solution to mitigate greenhouse gas emissions and meet the growing demand for clean energy. To improve the sustainability of blue hydrogen it is crucial to explore alternative feedstocks production methods and improve the efficiency and economics of carbon capture storage and utilization strategies. Two established technologies for hydrogen synthesis are Steam Methane Reforming (SMR) and Autothermal Reforming (ATR). The choice between SMR and ATR depends on project specifics including the infrastructure energy availability environmental goals and economic considerations. ATR-based facilities typically generate hydrogen at a lower cost than SMR-based facilities except in cases where electricity prices are elevated or the facility has reduced capacity. Both SMR and ATR are methods used for hydrogen production from methane but ATR offers an advantage in minimizing CO2 emissions per unit of hydrogen generated due to its enhanced energy efficiency and unique process characteristics. ATR provides enhanced utility and flexibility regarding energy sources due to its autothermal characteristics potentially facilitating integration with renewable energy sources. However SMR is easier to run but may lack flexibility compared to ATR necessitating meticulous management. Capital expenditures for SMR and ATR hydrogen reactors are similar at the lower end of the capacity spectrum but when plant capacity exceeds this threshold the capital costs of SMR-based hydrogen production surpass those of ATR-based facilities. The less profitably scaled-up SMR relative to the ATR reactor contributes to the cost disparity. Additionally individual train capacity constraints for SMR CO2 removal units and PSA units increase the expenses of the SMR-based hydrogen facility significantly.
No more items...