Production & Supply Chain
Carbon-Negative Hydrogen Production (HyBECCS) from Organic Waste Materials in Germany: How to Estimate Bioenergy and Greenhouse Gas Mitigation Potential
Nov 2021
Publication
Hydrogen derived from biomass feedstock (biohydrogen) can play a significant role in Germany’s hydrogen economy. However the bioenergy potential and environmental benefits of biohydrogen production are still largely unknown. Additionally there are no uniform evaluation methods present for these emerging technologies. Therefore this paper presents a methodological approach for the evaluation of bioenergy potentials and the attainable environmental impacts of these processes in terms of their carbon footprints. A procedure for determining bioenergy potentials is presented which provides information on the amount of usable energy after conversion when applied. Therefore it elaborates a four-step methodical conduct dealing with available waste materials uncertainties of early-stage processes and calculation aspects. The bioenergy to be generated can result in carbon emission savings by substituting fossil energy carriers as well as in negative emissions by applying biohydrogen production with carbon capture and storage (HyBECCS). Hence a procedure for determining the negative emissions potential is also presented. Moreover the developed approach can also serve as a guideline for decision makers in research industry and politics and might also serve as a basis for further investigations such as implementation strategies or quantification of the benefits of biohydrogen production from organic waste material in Germany
Design and Analysis of Photovoltaic/wind Operations at MPPT for Hydrogen Production using a PEM Electrolyzer: Towards Innovations in Green Technology
Jul 2023
Publication
In recent times renewable energy systems (RESs) such as Photovoltaic (PV) and wind turbine (WT) are being employed to produce hydrogen. This paper aims to compare the efficiency and performance of PV and WT as sources of RESs to power polymer electrolyte membrane electrolyzer (PEMEL) under different conditions. The study assessed the input/ output power of PV and WT the efficiency of the MPPT controller the calculation of the green hydrogen production rate and the efficiency of each system separately. The study analyzed variable irradiance from 600 to 1000 W/m2 for a PV system and a fixed temperature of 25˚C while for the WT system it considered variable wind speed from 10 to 14 m/s and zero fixed pitch angle. The study demonstrated that the applied controllers were effective fast low computational and highly accurate. The obtained results showed that WT produces twice the PEMEL capacity while the PV system is designed to be equal to the PEMEL capacity. The study serves as a reference for designing PV or WT to feed an electrolyzer. The MATLAB program validated the proposed configurations with their control schemes.
Modelling and Experimental Analysis of a Polymer Electrolyte Membrane Water Electrolysis Cell at Different Operating Temperatures
Nov 2018
Publication
In this paper a simplified model of a Polymer Electrolyte Membrane (PEM) water electrolysis cell is presented and compared with experimental data at 60 ◦C and 80 ◦C. The model utilizes the same modelling approach used in previous work where the electrolyzer cell is divided in four subsections: cathode anode membrane and voltage. The model of the electrodes includes key electrochemical reactions and gas transport mechanism (i.e. H2 O2 and H2O) whereas the model of the membrane includes physical mechanisms such as water diffusion electro osmotic drag and hydraulic pressure. Voltage was modelled including main overpotentials (i.e. activation ohmic concentration). First and second law efficiencies were defined. Key empirical parameters depending on temperature were identified in the activation and ohmic overpotentials. The electrodes reference exchange current densities and change transfer coefficients were related to activation overpotentials whereas hydrogen ion diffusion to Ohmic overvoltages. These model parameters were empirically fitted so that polarization curve obtained by the model predicted well the voltage at different current found by the experimental results. Finally from the efficiency calculation it was shown that at low current densities the electrolyzer cell absorbs heat from the surroundings. The model is not able to describe the transients involved during the cell electrochemical reactions however these processes are assumed relatively fast. For this reason the model can be implemented in system dynamic modelling for hydrogen production and storage where components dynamic is generally slower compared to the cell electrochemical reactions dynamics.
The Case for High-pressure PEM Water Electrolysis
Apr 2022
Publication
Hydrogen compression is a key part of the green hydrogen supply chain but mechanical compressors are prone to failure and add system complexity and cost. High-pressure water electrolysis can alleviate this problem through electrochemical compression of the gas internally in the electrolyzer and thereby eliminating the need for an external hydrogen compressor. In this work a detailed techno-economic assessment of high-pressure proton exchange membrane-based water electrolysis (PEMEL) systems was carried out. Electrolyzers operating at 80 200 350 and 700 bar were compared to state-of-the-art systems operating at 30 bar in combination with a mechanical compressor. The results show that it is possible to achieve economically viable solutions with high-pressure PEMEL-systems operating up to 200 bar. These pressure levels fit well with the requirements in existing and future industrial applications such as e-fuel production (30–120 bar) injection of hydrogen into natural gas grids (70 bar) hydrogen gas storage (≥200 bar) and ammonia production (200–300 bar). A sensitivity analysis also showed that if the cost of electricity is sufficiently low (
Review of Renewable Energy-based Hydrogen Production Processes for Sustainable Energy Innovation
Dec 2019
Publication
In this review we primarily analyze the hydrogen production technologies based on water and biomass including the economic technological and environmental impacts of different types of hydrogen production technologies based on these materials and comprehensively compare them. Our analyses indicate that all renewable energy-based approaches for hydrogen production are more environmentally friendly than fossil-based hydrogen generation approaches. However the technical ease and economic efficiency of hydrogen production from renewable sources of energy needs to be further improved in order to be applied on a large scale. Compared with other renewable energy-based methods hydrogen production via biomass electrolysis has several advantages including the ease of directly using raw biomass. Furthermore its environmental impact is smaller than other approaches. Moreover using a noble metal catalyst-free anode for this approach can ensure a considerably low power consumption which makes it a promising candidate for clean and efficient hydrogen production in the future.
Study of the Co-production of Butanol and Hydrogen by Immobilizing Clostridium Acetobutylicum CICC8012
Mar 2019
Publication
Three kinds of carrier materials activated carbon bagasse and brick were used as immobilizing carriers during fermentation by Clostridium acetobutylicum CICC8012. Compared with cell suspended fermentation enhanced fermentation performance was achieved during immobilizing cell fermentation with shorter fermentation time required. During the experiments hydrogen and butanol appear to be competitive events. The best fermentation performance of butanol was obtained in the case of bagasse as immobilizing carrier (5.804g/L of butanol production 0.22g/g of yield and 0.44g/L/h of productivity) while the hydrogen yield was just 1.41 mol/mol. The highest hydrogen productivity (402mL/L/h) and yield (1.808mol/mol glucose) could be obtained in the case of brick as immobilizing carrier while the butanol yield was 0.18 g/g. The highest hydrogen concentration of 66.76 % was obtained in the case of activated carbon as immobilizing carrier.
Decarbonising the UK’s Gas Network - Realising the Green Power-to-hydrogen Opportunity in the East Network
Aug 2020
Publication
Although the UK has done a great job of decarbonising electricity generation to get to net zero we need to tackle harder-to-decarbonise sectors like heat transport and industry. Decarbonised gas – biogases hydrogen and the deployment of carbon capture usage and storage (CCUS) – can make our manufacturing more sustainable minimise disruption to families and deliver negative emissions.
Developing the capability to produce hydrogen at scale is one of the key challenges in the race to meet the UK’s ambitious net zero targets. Using the East Neuk of Fife - with its abundant on- and offshore renewables resource and well-developed electricity and gas networks – as a test bed we investigated the use of surplus electricity generated by renewables to produce green hydrogen which could then be used to heat homes and businesses carbon-free.
Aims
The study focused on answering a number of important questions around bringing power-to-hydrogen to Fife including:
How much low-cost low-carbon electricity would be available to a power-to-hydrogen operator in Fife and how much hydrogen could be produced today and in 2040? How much hydrogen storage would be required to meet demand under three end-use cases: injection into the natural gas grid; use in a dedicated hydrogen grid for heating; and use as transport fuel for a small fleet of vehicles? What if any network upgrades could be avoided by implementing power-to-hydrogen? Which hydrogen end-use markets would be most attractive for a power-to-hydrogen operator? What are the regulatory legislative or market barriers to be overcome to realise large-scale deployment of power-to-hydrogen?
The study
Our expert researchers used a high-level model of the European electricity system and established wholesale prices generation volumes by generation type and constrained generation in Fife. Considering both the present day and a 2040 picture based on National Grid’s Two Degrees Future Energy Scenarios our team explored a number of configurations of power generation and hydrogen end-use to assess the value associated with producing hydrogen.
Alongside this modelling our team conducted a comprehensive review of power-to-hydrogen legislation and regulation and reports and academic papers to identify the current characteristics and direction of the sector observe where most progress had been made and identify lessons learned.
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
Developing the capability to produce hydrogen at scale is one of the key challenges in the race to meet the UK’s ambitious net zero targets. Using the East Neuk of Fife - with its abundant on- and offshore renewables resource and well-developed electricity and gas networks – as a test bed we investigated the use of surplus electricity generated by renewables to produce green hydrogen which could then be used to heat homes and businesses carbon-free.
Aims
The study focused on answering a number of important questions around bringing power-to-hydrogen to Fife including:
How much low-cost low-carbon electricity would be available to a power-to-hydrogen operator in Fife and how much hydrogen could be produced today and in 2040? How much hydrogen storage would be required to meet demand under three end-use cases: injection into the natural gas grid; use in a dedicated hydrogen grid for heating; and use as transport fuel for a small fleet of vehicles? What if any network upgrades could be avoided by implementing power-to-hydrogen? Which hydrogen end-use markets would be most attractive for a power-to-hydrogen operator? What are the regulatory legislative or market barriers to be overcome to realise large-scale deployment of power-to-hydrogen?
The study
Our expert researchers used a high-level model of the European electricity system and established wholesale prices generation volumes by generation type and constrained generation in Fife. Considering both the present day and a 2040 picture based on National Grid’s Two Degrees Future Energy Scenarios our team explored a number of configurations of power generation and hydrogen end-use to assess the value associated with producing hydrogen.
Alongside this modelling our team conducted a comprehensive review of power-to-hydrogen legislation and regulation and reports and academic papers to identify the current characteristics and direction of the sector observe where most progress had been made and identify lessons learned.
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
Simulations of Hydrogen Production by Methanol Steam Reforming
Jan 2019
Publication
Methanol is regarded as an important feedstock for hydrogen production due to its high energy density and superior transportability. A tubular packed-bed reactor performing the methanol steam reforming (MSR) process was modeled by adopting computational fluid dynamics (CFD) software to analyze its performance. Kinetic parameters of the reactions were adjusted according to the literatures and our previous experimental results. The methanol conversion the hydrogen production rate and the CO concentration in the produced mixture were evaluated by considering different levels of the length and temperature of the catalyst bed the steam-to-carbon ratio and the space velocity of the feedstocks. Moreover the correlation between the dimensionless parameter Damköhler number and the methanol conversion was also investigated.
Review of Power-to-Gas Projects in Europe
Nov 2018
Publication
Core of the Power-to-Gas (PtG) concept is the utilization of renewable electricity to produce hydrogen via water electrolysis. This hydrogen can be used directly as final energy carrier or can be converted to e.g. methane synthesis gas liquid fuels electricity or chemicals. To integrate PtG into energy systems technical demonstration and systems integration is of mayor importance. In total 128 PtG research and demonstration projects are realized or already finished in Europe to analyze these issues by May 2018. Key of the review is the identification and assessment of relevant projects regarding their field of application applied processes and technologies for electrolysis type of methanation capacity location and year of commissioning. So far main application for PtX is the injection of hydrogen or methane into the natural gas grid for storing electricity from variable renewable energy sources. Producing fuels for transport is another important application of PtX. In future PtX gets more important for refineries to lower the carbon food print of the products.
Tracking the Evolution of a Single Composite Particle During Redox Cycling for Application in H2 Production
Mar 2020
Publication
Composite materials consisting of metal and metal oxide phases are being researched intensively for application in various energy conversion and storage technologies. In these applications composites are often expected to operate under redox conditions at elevated temperature. The understanding of the dynamics of composite phase and morphology evolution during redox cycling is still very limited yet critical to maximising performance and increasing durability. Here we track the microstructural evolution of a single composite particle over 200 redox cycles for hydrogen production by chemical looping using multi-length scale X-ray computed tomography. We show that redox cycling triggers a centrifugal redispersion of the metal phase and a centripetal clustering of porosity both seemingly driven by the asymmetric nature of oxygen exchange in composites. We show that initially the particle develops a large amount of internal porosity which boosts activity but on the long term this facilitates structural and compositional reorganisation and eventually degradation. We also correlate the microstructural data with phase and activity analysis to identify structure-property correlations which not only provide valuable insight into the evolution of composite materials under redox conditions but also for the design of new composite materials with enhanced durability.
Techno-economic Analysis on Renewable Energy Via Hydrogen, Views from Macro and Micro Scopes
Mar 2019
Publication
This paper addresses from both macro- and micro- areal coverage in introducing hydrogen system in terms of cost and performance where the produced hydrogen from surplus photovoltaic (PV) power is stored. Feed-in tariff in Japan had successful achievement for great expansion of renewable energy systems (RES) causing problematic operation due to excess power by overcapacity of RES. One of the candidate approaches to overcome this surplus energy by RES is Power to gas (P2G) system using electrolysis cells (ECs) fuel cells (FCs) or co-firing in gas turbines both for energy conversion as well as power balancing. Numerous studies had been investigated on P2G however within our knowledge no study had been addressed the system from both coverages with different capacity and scales. We investigate micro level (zero emission building in our university) and macro level (Kyushu one of big regions in Japan). We describe for macro side preliminary result on economic analysis of using surplus power of RES via production and storage of hydrogen while for micro side research design.
Effect of TiO2 on Electrocatalytic Behavior of Ni-Mo Alloy Coating for Hydrogen Energy
Jun 2018
Publication
Ni-Mo-TiO2 composite coating has been developed through electrodeposition method by depositing titanium dioxide (TiO2) nanoparticles parallel to the process of Ni-Mo alloy coating. The experimental results explaining the increased electrocatalytic activity of Ni-Mo alloy coating on incorporation of TiO2 nanoparticles into its alloy matrix is reported here. The effect of addition of TiO2 on composition morphology and phase structure of TiO2 – composite coating is studied with special emphasis on its electrocatalytic activity for hydrogen evolution reaction (HER) in 1.0 M KOH solution. The electrocatalytic activity of alloy coatings were validated using cyclic voltammetry (CV) and chronopotentiometry (CP) techniques. Under optimal condition TiO2 – composite alloy coating represented as (Ni-Mo-TiO2)2.0 A dm 2 is found to exhibit the highest electrocatalytic activity for HER compared to its binary alloy counterpart. The increased electrocatalytic activity of (Ni-Mo-TiO2)2.0 A dm 2 composite coating was attributed to the increased Mo content porosity and roughness of coating affected due to addition of TiO2 nanoparticles supported by SEM EDX XRD and AFM study. The increased electrocatalytic activity of (Ni-Mo-TiO2)2.0 A dm 2 coating was found due to decreased Rct and increased Cdl values demonstrated by EIS study. Better electrocatalytic activity of (Ni-Mo-TiO2)2.0 A dm 2 coating compared to (Ni-Mo)2.0 A dm 2 coating has been explained through mechanism. Experimental study revealed that (Ni-Mo-TiO2)2.0 A dm 2 composite coating follows Volmer-Heyrovsky mechanism compared to Tafel mechanism in case of (Ni-Mo-TiO2)2.0 A dm 2 coating assessed on the basis of Tafel slopes.
Magnetron Sputter Deposited NiCu Alloy Catalysts for Production of Hydrogen Through Electrolysis in Alkaline Water
Jul 2018
Publication
NiCu alloy catalysts with varying composition for electrolysis in alkaline water have been prepared by DC magnetron co-sputtering under Ar gas environment at substrate bias of 60 V. Nanocrystallinity lattice parameters and grain size of the NiCu alloys have been measured by grazing incidence X-ray diffraction (GIXRD). Elemental and microstructural analysis of the NiCu alloy have been done by field emission scanning electron microscopy (FESEM) as well as transmission electron microscopy (TEM). To analyze the NiCu alloys activity towards hydrogen evolution reaction (HER) cyclic voltammetry measurements have been done in a 6 M KOH at room temperature and further HER activities have been correlated with the varying Cu concentration in NiCu alloy catalysts.
Hydrogen‐Rich Gas Production from Two‐Stage Catalytic Pyrolysis of Pine Sawdust with Calcined Dolomite
Jan 2022
Publication
Tao Xu,
Jue Xu and
Yongping Wu
The potential of catalytic pyrolysis of biomass for hydrogen and bio‐oil production has drawn great attention due to the concern of clean energy utilization and decarbonization. In this paper the catalytic pyrolysis of pine sawdust with calcined dolomite was carried out in a novel moving bed reactor with a two‐stage screw feeder. The effects of pyrolysis temperature (700–900 °C) and catalytic temperature (500–800 °C) on pyrolysis performance were investigated in product distribution gas composition and gas properties. The results showed that with the temperature increased pyrolysis gas yield in‐ creased but the yield of solid and liquid products decreased. With the increase in temperature the CO and H2 content increased significantly while the CO2 and CH4 decreased correspondingly. The calcined dolomite can remove the tar by 44% and increased syngas yield by 52.9%. With the increasing catalytic temperature the catalytic effect of calcined dolomite was also enhanced.
Cross-regional Drivers for CCUS Deployment
Jul 2020
Publication
CO2 capture utilization and storage (CCUS) is recognized as a uniquely important option in global efforts to control anthropogenic greenhouse-gas (GHG) emissions. Despite significant progress globally in advancing the maturity of the various component technologies and their assembly into full-chain demonstrations a gap remains on the path to widespread deployment in many countries. In this paper we focus on the importance of business models adapted to the unique technical features and sociopolitical drivers in different regions as a necessary component of commercial scale-up and how lessons might be shared across borders. We identify three archetypes for CCUS development—resource recovery green growth and low-carbon grids—each with different near-term issues that if addressed will enhance the prospect of successful commercial deployment. These archetypes provide a framing mechanism that can help to translate experience in one region or context to other locations by clarifying the most important technical issues and policy requirements. Going forward the archetype framework also provides guidance on how different regions can converge on the most effective use of CCUS as part of global deep-decarbonization efforts over the long term.
Operational Challenges for Low and High Temperature Electrolyzers Exploiting Curtailed Wind Energy for Hydrogen Production
Jan 2021
Publication
Understanding the system performance of different electrolyzers could aid potential investors achieve maximum return on their investment. To realize this system response characteristics to 4 different summarized data sets of curtailed renewable energy is obtained from the Irish network and was investigated using models of both a Low Temperature Electrolyzer (LTE) and a High Temperature Electrolyzer (HTE). The results indicate that statistical parameters intrinsic to the method of data extraction along with the thermal response time of the electrolyzers influence the hydrogen output. A maximum hydrogen production of 5.97 kTonne/year is generated by a 0.5 MW HTE when the electrical current is sent as a yearly average. Additionally the high thermal response time in a HTE causes a maximum change in the overall flowrate of 65.7% between the 4 scenarios when compared to 7.7% in the LTE. This evaluation of electrolyzer performance will aid investors in determining scenario specific application of P2G for maximizing hydrogen production.
Techno-economic Analysis of In-situ Production by Electrolysis, Biomass Gasification and Delivery Systems for Hydrogen Refuelling Stations: Rome Case Study
Oct 2018
Publication
Starting from the Rome Hydrogen Refuelling Station demand of 65 kg/day techno-economics of production systems and balance of plant for small scale stations have been analysed. A sensitivity analysis has been done on Levelised Cost of Hydrogen (LCOH) in the range of 0 to 400 kg/day varying capacity factor and availability hours or travel distance for alkaline electrolysers biomass gasification and hydrogen delivery. As expected minimum LCOH for electrolyser and gasifier is found at 400 kg/day and 24 h/day equal to 12.71 €/kg and 5.99 €/kg however for operating hours over 12 and 10 h/day the differential cost reaches a plateau (below 5%) for electrolyser and gasifier respectively. For the Rome station design 160 kWe of electrolysers 24 h/day and 100 kWth gasifier at 8 h/day LCOH (11.85 €/kg) was calculated considering the modification of the cost structure due to the existing equipment which is convenient respect the use of a single technology except for 24 h/day gasification.
Site Selection Methodology for the Wind-powered Hydrogen Refueling Station Based on AHP-GIS in Adrar, Algeria
May 2019
Publication
This paper deals with site selection problems for hydrogen production plants and aims to propose a structural procedure for determining the most feasible sites. The study area is Adrar province Algeria which has a promising wind potential. The methodology is mainly composed of two stages: the first stage is to evaluate and select the best locations for wind-powered hydrogen production using GIS and MCDM technique. the AHP is applied to weigh the criteria and compute a LSI to evaluate potential sites and the second stage is applying different filtration constraints to select the suitable petrol stations for such hydrogen refuelling station modification. The result map showed that the entire Adrar province is almost suitable for wind-powered hydrogen production with varying suitability index. The LSI model groups sites into three categories: High suitable areas Medium suitable areas and Low suitable. As a result 2.95 % (12808.97 km2) of the study area has high suitability 54.59 % (236320.16 km2) has medium suitability 1.12 %(4842.94 km2) has low suitability and 41.34 % (178950.35 km2) of the study area is not suitable for wind hydrogen production. By applying the constraints about 4 stations are suitable for wind-powered hydrogen refuelling system retrofitting in Adrar province.
Smart Designs of Mo Based Electrocatalysts for Hydrogen Evolution Reaction
Dec 2021
Publication
As a sustainable and clean energy source hydrogen can be generated by electrolytic water splitting (i.e. a hydrogen evolution reaction HER). Compared with conventional noble metal catalysts (e.g. Pt) Mo based materials have been deemed as a promising alternative with a relatively low cost and comparable catalytic performances. In this review we demonstrate a comprehensive summary of various Mo based materials such as MoO2 MoS2 and Mo2C. Moreover state of the art designs of the catalyst structures are presented to improve the activity and stability for hydrogen evolution including Mo based carbon composites heteroatom doping and heterostructure construction. The structure–performance relationships relating to the number of active sites electron/ion conductivity H/H2O binding and activation energy as well as hydrophilicity are discussed in depth. Finally conclusive remarks and future works are proposed.
Acid Acceleration of Hydrogen Generation Using Seawater as a Reactant
Jul 2016
Publication
The present study describes hydrogen generation from NaBH4 in the presence of acid accelerator boric oxide or B2O3 using seawater as a reactant. Reaction times and temperatures are adjusted using various delivery methods: bulk addition funnel and metering pump. It is found that the transition metal catalysts typically used to generate hydrogen gas are poisoned by seawater. B2O3 is not poisoned by seawater; in fact reaction times are considerably faster in seawater using B2O3. Reaction times and temperatures are compared for pure water and seawater for each delivery method. It is found that using B2O3 with pure water bulk addition is 97% complete in 3 min; pump metering provides a convenient method to extend the time to 27 min a factor of 9 increase above bulk addition. Using B2O3 with seawater as a reactant bulk addition is 97% complete in 1.35 min; pump metering extends the time to 23 min a factor of 17 increase above bulk. A second acid accelerator sodium bisulfate or NaHSO4 is investigated here for use with NaBH4 in seawater. Because it is non-reactive in seawater i.e. no spontaneous H2 generation NaHSO4 can be stored as a solution in seawater; because of its large solubility it is ready to be metered into NaBH4. With NaHSO4 in seawater pump metering increases the time to 97% completion from 3.4 min to 21 min. Metering allows the instantaneous flow rate of H2 and reaction times and temperatures to be tailored to a particular application. In one application the seawater hydrogen generator characterized here is ideal for supplying H2 gas directly to Proton Exchange Membrane fuel cells in sea surface or subsea environments where a reliable source of power is needed.
No more items...