Production & Supply Chain
CCS Industrial Clusters: Building a Social License to Operate
Jun 2022
Publication
This paper explores the opportunities for and progress in establishing a social licence to operate (SLO) for CCS in industrial clusters in the UK focusing on the perspectives of key stakeholders. The evolution of narratives and networks relating to geographical clusters as niches for CCS in industrial decarbonisation is evaluated in relation to seven pillars supporting SLO. Evidence is drawn from a combination of cluster mapping documentary analysis and stakeholder interviews to identify the wider contexts underpinning industrial decarbonisation stakeholder networks interaction and communication critical narratives the conditions for establishing trust and confidence different scales of social licence and maintaining a SLO. The delivery of a sustainable industrial decarbonisation strategy will depend on multiple layers of social licence involving discourses at different scales and potentially for different systems (heat transport different industrial processes). Despite setbacks as a result of funding cancellations and changes to government policy the UK is positioned to be at the forefront of CCS deployment. While there is a high ambition and a strong narrative from government of the urgency to accelerate projects involving CCS clear coordinated strategy and funding frameworks are necessary to build confidence that UK policy is both compatible with net zero and economically viable.
Integrative Approach to Hydrothermal Gasification of Food Waste for Hydrogen Production: Experimental Validation, Techno-economic Assessment, and Mathematical Modeling
Jun 2025
Publication
This study conducts a techno-economic and environmental analysis to assess the viability and benefits of H2 production from food waste via hydrothermal gasification (HTG). Experimental results were used to examine the effects of critical parameters including temperature reaction time and catalyst use on H2 yield. Response surface methodology (RSM) was employed to explore the relationships among operational factors and to develop a mathematical model that forecasts various experimental outcomes. Fourier Transform Infrared Spectroscopy (FTIR) was utilized to analyse the chemical properties of bio-oil. The most favourable parameters for this process are 350 °C and 18 MPa resulting in a maximum yield of 796 mL after 90 min. Sodium hydroxide (NaOH) significantly enhances H2 production to approximately 800 cc surpassing the performance of other catalysts. FTIR analysis reveals the chemical complexity of biooil which presents promising prospects for sustainable fuel. Replacing 1.9 Mt of coal 1.3 Mt of diesel and 1.19 Mt of natural gas with H2 can result in a cost savings of M$ 228 by 2023. This comprehensive study offers a comprehensive perspective on implementing H2 energy through HTG technology.
Solar-Driven Hydrogen Production: Recent Advances, Challenges, and Future Perspectives
Feb 2022
Publication
Solar H2 production is considered as a potentially promising way to utilizesolar energy and tackle climate change stemming from the combustion of fossil fuels.Photocatalytic photoelectrochemical photovoltaic−electrochemical solar thermochem-ical photothermal catalytic and photobiological technologies are the most intensivelystudied routes for solar H2 production. In this Focus Review we provide a comprehensivereview of these technologies. After a brief introduction of the principles and mechanisms ofthese technologies the recent achievements in solar H2 production are summarized with aparticular focus on the high solar-to-H 2 (STH) conversion efficiency achieved by eachroute. We then comparatively analyze and evaluate these technologies based on the metricsof STH efficiency durability economic viability and environmental sustainability aimingto assess the commercial feasibility of these solar technologies compared with currentindustrial H 2 production processes. Finally the challenges and prospects of future researchon solar H2 production technologies are presented.
Green Hydrogen Energy Production: Current Status and Potential
Jan 2024
Publication
The technique of producing hydrogen by utilizing green and renewable energy sources is called green hydrogen production. Therefore by implementing this technique hydrogen will become a sustainable and clean energy source by lowering greenhouse gas emissions and reducing our reliance on fossil fuels. The key beneft of producing green hydrogen by utilizing green energy is that no harmful pollutants or greenhouse gases are directly released throughout the process. Hence to guarantee all of the environmental advantages it is crucial to consider the entire hydrogen supply chain involving storage transportation and end users. Hydrogen is a promising clean energy source and targets plan pathways towards decarbonization and net-zero emissions by 2050. This paper has highlighted the techniques for generating green hydrogen that are needed for a clean environment and sustainable energy solutions. Moreover it summarizes an overview outlook and energy transient of green hydrogen production. Consequently its perspective provides new insights and research directions in order to accelerate the development and identify the potential of green hydrogen production.
Photoelectrochemical Green Hydrogen Production Utilizing ZnO Nanostructured Photoelectrodes
May 2023
Publication
One of the emerging and environmentally friendly technologies is the photoelectrochemical generation of green hydrogen; however the cheap cost of production and the need for customizing photoelectrode properties are thought to be the main obstacles to the widespread adoption of this technology. The primary players in hydrogen production by photoelectrochemical (PEC) water splitting which is becoming more common on a worldwide basis are solar renewable energy and widely available metal oxide based PEC electrodes. This study attempts to prepare nanoparticulate and nanorod-arrayed films to better understand how nanomorphology can impact structural optical and PEC hydrogen production efficiency as well as electrode stability. Chemical bath deposition (CBD) and spray pyrolysis are used to create ZnO nanostructured photoelectrodes. Various characterization methods are used to investigate morphologies structures elemental analysis and optical characteristics. The crystallite size of the wurtzite hexagonal nanorod arrayed film was 100.8 nm for the (002) orientation while the crystallite size of nanoparticulate ZnO was 42.1 nm for the favored (101) orientation. The lowest dislocation values for (101) nanoparticulate orientation and (002) nanorod orientation are 5.6 × 10−4 and 1.0 × 10−4 dislocation/nm2 respectively. By changing the surface morphology from nanoparticulate to hexagonal nanorod arrangement the band gap is decreased to 2.99 eV. Under white and monochromatic light irradiation the PEC generation of H2 is investigated using the proposed photoelectrodes. The solar-to-hydrogen conversion rate of ZnO nanorod-arrayed electrodes was 3.72% and 3.12% respectively under 390 and 405 nm monochromatic light which is higher than previously reported values for other ZnO nanostructures. The output H2 generation rates for white light and 390 nm monochromatic illuminations were 28.43 and 26.11 mmol.h−1 cm−2 respectively. The nanorod-arrayed photoelectrode retains 96.6% of its original photocurrent after 10 reusability cycles compared to 87.4% for the nanoparticulate ZnO photoelectrode. The computation of conversion efficiencies H2 output rates Tafel slope and corrosion current as well as the application of low-cost design methods for the photoelectrodes show how the nanorod-arrayed morphology offers low-cost high-quality PEC performance and durability.
Overview of Hydrogen Production Technologies for Fuel Cell Utilization
Jun 2023
Publication
With rapidly depleting fossil fuels and growing environmental alarms due to their usage hydrogen as an energy vector provides a clean and sustainable solution. However the challenge lies in replacing mature fossil fuel technology with efficient and economical hydrogen production. This paper provides a technoeconomic and environmental overview of H2 production technologies. Reforming of fossil fuels is still considered as the backbone of large-scale H2 production. Whereas renewable hydrogen has technically advanced and improved its cost remains an area of concern. Finding alternative catalytic materials would reduce such costs for renewable hydrogen production. Taking a mid-term timeframe a viable scenario is replacing fossil fuels with solar hydrogen production integrated with water splitting methods or from biomass gasification. Gasification of biomass is the preferred option as it is carbon neutral and costeffective producing hydrogen at 1.77 – 2.77 $/kg of H2. Among other uses of hydrogen in industrial applications the most viable approach is to use it in hydrogen fuel cells for generating electricity. Commercialization of fuel cell technology is hindered by a lack of hydrogen infrastructure. Fuel cells and hydrogen production units should be integrated to achieve desired results. Case studies of different fuel cells and hydrogen production technologies are presented at the end of this paper depicting a viable and environmentally acceptable approach compared with fossil fuels.
Kilowatt-scale Solar Hydrogen Production System Using a Concentrated Integrated Photoelectrochemical Device
Apr 2023
Publication
The production of synthetic fuels and chemicals from solar energy and abundant reagents offers a promising pathway to a sustainable fuel economy and chemical industry. For the production of hydrogen photoelectrochemical or integrated photovoltaic and electrolysis devices have demonstrated outstanding performance at the lab scale but there remains a lack of larger-scale on-sun demonstrations (>100 W). Here we present the successful scaling of a thermally integrated photoelectrochemical device—utilizing concentrated solar irradiation— to a kW-scale pilot plant capable of co-generation of hydrogen and heat. A solar-to-hydrogen device-level efficiency of greater than 20% at an H2 production rate of >2.0 kW (>0.8 g min−1) is achieved. A validated model-based optimization highlights the dominant energetic losses and predicts straightforward strategies to improve the system-level efficiency of >5.5% towards the device-level efficiency. We identify solutions to the key technological challenges control and operation strategies and discuss the future outlook of this emerging technology.
Bio-Hydrogen Production from Wastewater: A Comparative Study of Low Energy Intensive Production Processes
Feb 2021
Publication
Billions of litres of wastewater are produced daily from domestic and industrial areas and whilst wastewater is often perceived as a problem it has the potential to be viewed as a rich source for resources and energy. Wastewater contains between four and five times more energy than is required to treat it and is a potential source of bio-hydrogen—a clean energy vector a feedstock chemical and a fuel widely recognised to have a role in the decarbonisation of the future energy system. This paper investigates sustainable low-energy intensive routes for hydrogen production from wastewater critically analysing five technologies namely photo-fermentation dark fermentation photocatalysis microbial photo electrochemical processes and microbial electrolysis cells (MECs). The paper compares key parameters influencing H2 production yield such as pH temperature and reactor design summarises the state of the art in each area and highlights the scale-up technical challenges. In addition to H2 production these processes can be used for partial wastewater remediation providing at least 45% reduction in chemical oxygen demand (COD) and are suitable for integration into existing wastewater treatment plants. Key advancements in lab-based research are included highlighting the potential for each technology to contribute to the development of clean energy. Whilst there have been efforts to scale dark fermentation electro and photo chemical technologies are still at the early stages of development (Technology Readiness Levels below 4); therefore pilot plants and demonstrators sited at wastewater treatment facilities are needed to assess commercial viability. As such a multidisciplinary approach is needed to overcome the current barriers to implementation integrating expertise in engineering chemistry and microbiology with the commercial experience of both water and energy sectors. The review concludes by highlighting MECs as a promising technology due to excellent system modularity good hydrogen yield (3.6–7.9 L/L/d from synthetic wastewater) and the potential to remove up to 80% COD from influent streams.
Technology for Green Hydrogen Production: Desk Analysis
Sep 2024
Publication
The use of green hydrogen as a high-energy fuel of the future may be an opportunity to balance the unstable energy system which still relies on renewable energy sources. This work is a comprehensive review of recent advancements in green hydrogen production. This review outlines the current energy consumption trends. It presents the tasks and challenges of the hydrogen economy towards green hydrogen including production purification transportation storage and conversion into electricity. This work presents the main types of water electrolyzers: alkaline electrolyzers proton exchange membrane electrolyzers solid oxide electrolyzers and anion exchange membrane electrolyzers. Despite the higher production costs of green hydrogen compared to grey hydrogen this review suggests that as renewable energy technologies become cheaper and more efficient the cost of green hydrogen is expected to decrease. The review highlights the need for cost-effective and efficient electrode materials for large-scale applications. It concludes by comparing the operating parameters and cost considerations of the different electrolyzer technologies. It sets targets for 2050 to improve the efficiency durability and scalability of electrolyzers. The review underscores the importance of ongoing research and development to address the limitations of current electrolyzer technology and to make green hydrogen production more competitive with fossil fuels.
Experimental Study on the Impact of Flow Rate Strategies on the Mass Transfer Impedance of PEM Electrolyzers
May 2025
Publication
The flow rate strategies of deionized water have a significant impact on the mass transfer process of proton exchange membrane (PEM) electrolyzers which are critical for the efficient and safe operation of hydrogen production systems. Electrochemical impedance spectroscopy is an effective tool for distinguishing different kinetic processes within the electrolyzer. In this study three different Ti-felt porous transport layers (PTLs) are tested with two flow rate modes constant flow (50 mL/min) and periodic cycling flow (10 mL/min–50 mL/min–10 mL/min) to investigate the influence of flow rate strategies on the mass transfer impedance of the electrolyzer. The following observations were made: (1) For PTL with better performance the flow rate of the periodic cycling flow has little effect on its mass transfer impedance and the mass transfer impedance of the periodic circulation flow mode is not much different from that of the constant flow. (2) For PTL with poorer performance in the periodic cycling mode the mass transfer impedance at 10 mL/min is smaller than that at 50 mL/min but both are higher than the impedance under constant flow. The conclusions of this study provide a theoretical basis for the flow management of PEM electrolytic hydrogen production systems.
Electrolytic Hydrogen Production: How Green Must Green Be?
Jan 2025
Publication
Electrolytic hydrogen from renewable sources is central to many nations' net-zero emission strategies serving as a low-carbon alternative for traditional uses and enabling decarbonisation across multiple sectors. Current stringent policies in the EU and US are set to soon require hourly time-matching of renewable electricity generation used by electrolysers aimed at ensuring that hydrogen production does not cause significant direct or indirect emissions. Whilst such requirements enhance the “green credentials” of hydrogen they also increase its production costs. A modest relaxation of these requirements offers a practicable route for scaling up low-carbon hydrogen production optimising both costs and emission reductions. Moreover in jurisdictions with credible and near-to-medium-term decarbonisation targets immediate production of electrolytic hydrogen utilising grid electricity would have a lifetime carbon intensity comparable to or even below blue hydrogen and very significantly less than that of diesel emphasising the need to prioritise rapid grid decarbonisation of the broader grid.
An Insight into the Application and Progress of Artificial Intelligence in the Hydrogen Production Industry: A Review
Mar 2025
Publication
The urgent need for low carbon emissions in hydrogen production has become increasingly critical as global energy demands rise highlighting the inefficiencies in traditional methods and the industry’s challenges in meeting evolving environmental standards. This review aims to provide a comprehensive overview of these challenges and opportunities. The current review discusses the use of artificial intelligence (AI) technologies especially machine learning (ML) and deep learning (DL) algorithms for process optimization in hydrogen production and associated power systems. The current study analyzes data from several important industry case studies and recently published studied evidence by using a review methodology in order to critically evaluate the effectiveness of AI applications. Key findings show how AI greatly improves operational efficiency through optimized production conditions and forecasted energy use. The review indicates that real-time data processing by AI helps to quickly detect anomalies for timely correction minimizing downtimes and maximizing reliability. Integrating AI with energy management solutions not only optimizes hydrogen production but also supports a transition to sustainable energy systems. Thus the current review recommends strategic investments in AI technologies and comprehensive training programs to harness their full potential ultimately contributing to a more sustainable energy future.
Catalytic Innovations for High-Yield Biohydrogen Production in Integrated Dark Fermentation and Microbial Electrolysis Systems
Sep 2025
Publication
Biohydrogen a low-carbon footprint technology can play a significant role in decarbonizing the energy system. It uses existing infrastructure is easily transportable and produces no greenhouse gas emissions. Four technologies can be used to produce biohydrogen: photosynthetic biohydrogen dark fermentation (DF) photo-fermentation and microbial electrolysis cells (MECs). DF produces more biohydrogen and is flexible with organic substrates making it a sustainable method of waste repurposing. However low achievable biohydrogen yields are a common issue. To overcome this catalytic mechanisms including enzymatic systems such as [Fe-Fe]- and [Ni-Fe]-hydrogenases in DF and electroactive microbial consortia in MECs alongside advanced electrode catalysts which collectively surmount thermodynamic and kinetic constraints and the two stage system such as DF connection to photo-fermentation and anaerobic digestion (AD) to microbial electrolysis cells (MECs) have been investigated. MECs can generate biohydrogen at better yields by using sugars or organic acids and combining DF and MEC technologies could improve biohydrogen production. As such this review highlights the challenges and possible solutions for coupling DF–MEC while also offering knowledge regarding the technical and microbiological aspects.
Design of a Flexible, Modular, Scalable Infrastructure to Inland Intake of Offshore Hydrogen Production
May 2025
Publication
Hydrogen is one of the energy vectors that are called to play a key role in a decarbonised energy future. On the other hand offshore energy is one of the options to increase renewable energy generation either electricity or other vectors as hydrogen. At this respect the OCEANH2 project aims to design a plant for the generation storage and distribution of modular flexible and intelligent offshore green hydrogen hybridizing floating wind and photovoltaic technology produced in locations at Gran Canarias and Carboneras (Spain) 1250 and 700 m to the coast. The intake of hydrogen to land is one of the bottlenecks of such project impacting in the whole economy of the levelized cost of hydrogen that is produced. From the analysis that is presented it is concluded that the practical alternatives in the framework of the OCEANH2 project are mainly by dedicated carbon steel pipelines due to the existing uncertainties on the utilization of non-metallic pipes and the low distance to the intake facilities at the port in the project. We have evaluated as well the implementation of hydrogen refuelling stations and truck loading stations for short-distance hydrogen delivery based on compressed hydrogen with a capital cost of 1.7 and 7 M€ for a hydrogen management of 100 kg/day. Hydrogen transport by vessel when produced hydrogen offshore has been discarded for the particular case of OCEANH2.
Thermodynamic Analysis and Optimization of a Regenerative Heat Exchange System for Solid Oxide Electrolyzer-Based Hydrogen Production
Aug 2025
Publication
The article discusses a regenerative heat exchange system for a solid oxide electrolyzer cell (SOEC) used in the production of green hydrogen. The heating system comprises four heat exchangers one condenser heat exchanger and a mixer evaporator. A pump and two throttle valves have been added to separate the hydrogen at an elevated steam condensation temperature. Assuming steady flow a thermodynamic analysis was performed to validate the design and to predict the main parameters of the heating system. Numerical optimization was then used to determine the optimal temperature distribution ensuring the lowest possible additional external energy requirement for the regenerative system. The proportions of energy gained through heat exchange were determined and their distribution analyzed. The calculated thermal efficiency of the regenerative system is 75% while its exergy efficiency is 73%. These results can be applied to optimize the design of heat exchangers for hydrogen production systems using SOECs.
Production of Hydrogen from Packaging Wastes by Two-stage Pyrolysis
Aug 2025
Publication
Plastic waste continues to increasingly pollute the environment. Currently a significant portion of this waste is either landfilled or incinerated to generate energy which leads to substantial CO2 emissions. However thermochemical processing is a potential solution to create a circular economy with pyrolysis combined with the subsequent high-temperature treatment of the vapour-gas mixture being a method preferable to incineration. This study investigated the optimal conditions for the two-stage pyrolysis of non-recyclable plastic waste. The process involved a low-temperature treatment of feedstock followed by high-temperature exposure of the vapour-gas mixture in the presence of a carbon matrix. The final products of the two-stage pyrolysis were: synthesis gas mainly consisting of hydrogen and carbon monoxide; solid pyrolysis residue obtained in the first stage and high-carbon material during the second stage was obtained. The first stage of the two-stage pyrolysis was carried out at various temperatures ranging from 460 to 540 ◦C followed by cracking at 600 to 1000 ◦C with different ratios of packaging waste to wood charcoal (1:2 1:4 1:6). The conditions for obtaining more than 70 vol% hydrogen in the synthesis gas from packaging waste were determined the effect of changing the process parameters was studied. The decomposition kinetics of packaging waste showed activation energies of the first and second steps: 165 and 255 kJ/mol (Ozawa–Flynn–Wall method) 164 and 259 kJ/mol (Kissinger–Akahira–Sunose method) respectively. This work contributes to the study of efficient recycling methods for non-recyclable packaging waste and promotes advancements in sustainable waste management practices.
Optimizing Proton Exchange Membrane Electrolyzer Performance Through Dynamic Pressure and Temperature Control: A Mixed-integer Linear Programming Approach
Aug 2025
Publication
Hydrogen is a key energy carrier for decarbonizing multiple sectors particularly when produced via water electrolysis powered by renewable energy. Proton exchange membrane (PEM) electrolyzers are well suited for this application due to their ability to rapidly adjust to fluctuating power inputs. Despite being conventionally operated at high temperatures and pressures to reduce heating and compression needs recent studies suggest that under partial loads lower operating conditions may enhance efficiency. This study introduces a novel optimization framework for dynamically adjusting pressure and temperature in PEM electrolyzers. The model integrates an efficiency map within a Mixed-Integer Linear Programming (MILP) formulation and applies McCormick tightening to address nonlinearities. A one-week case study demonstrates operational cost reductions of up to 12.5 % through optimal control favoring lower temperatures and pressures at low current densities and higher temperatures near rated load while maintaining moderate pressures. The results show improved efficiency and reduced hydrogen crossover enhancing safety and enabling scalable application over extended time horizons. These insights are valuable for long-term planning and evaluation of hydrogen production and storage systems.
Silica Aerogels as a Promising Vehicle for Effective Water Splitting for Hydrogen Production
Mar 2025
Publication
This comprehensive review explores silica aerogels and their application in environmental remediation. Due to rapid growth in the consumption of energy and water resources the purification of contaminated resources for use by humankind should be considered important. The primary objectives of this review are to assess the evolving landscape of silica aerogels their preparation and drying techniques and to discuss the main findings from a wide range of empirical studies and theoretical perspectives. Based on a significant amount of research this review provides information about aerogels’ capabilities as an adsorbent and catalyst. The analysis spans a variety of contexts for the generation of hydrogen and the degradation of the dyes employed in industry showing better performance in environmental remediation. The implications of this review point to the need for well-informed policies innovative synthesis strategies and ongoing research to harness the full potential for environmental management.
Produced Water Use for Hydrogen Production: Feasibility Assessment in Wyoming, USA
May 2025
Publication
This study evaluates the feasibility of repurposing produced water—an abundant byproduct of hydrocarbon extraction—for green hydrogen production in Wyoming USA. Analysis of geospatial distribution and production volumes reveals that there are over 1 billion barrels of produced water annually from key basins with a general total of dissolved solids (TDS) ranging from 35000 to 150000 ppm though Wyoming’s sources are often at the lower end of this spectrum. Optimal locations for hydrogen production hubs have been identified particularly in high-yield areas like the Powder River Basin where the top 2% of fields contribute over 80% of the state’s produced water. Detailed water-quality analysis indicates that virtually all of the examined sources exceed direct electrolyzer feed requirements (e.g. 10% LCOH) are notable electricity pricing (50–70% LCOH) and electrolyzer CAPEX (20–40% LCOH) are dominant cost factors. While leveraging produced water could reduce freshwater consumption and enhance hydrogen production sustainability further research is required to optimize treatment processes and assess economic viability under real-world conditions. This study emphasizes the need for integrated approaches combining water treatment renewable energy and policy incentives to advance a circular economy model for hydrogen production.
From Waste to Hydrogen: Utilizing Waste as Feedstock or Catalysts for Hydrogen Generation
Sep 2025
Publication
With the world facing the twin pressures of a warming climate and an ever-increasing amount of waste it is becoming increasingly clear that we need to rethink the way we generate energy and use materials. Despite growing awareness our energy systems are still largely dependent on fossil fuels and characterized by a linear ‘take-make-dispose’ model. This leaves us vulnerable to supply disruptions rising greenhouse gas emissions and the depletion of critical raw materials. Hydrogen is emerging as a potential carbonfree energy vector that can overcome both challenges if it is produced sustainably from renewable sources. This study reviews hydrogen production from a circular economy perspective considering industrial agricultural and municipal solid waste as a resource rather than a burden. The focus is on the reuse of waste as a catalyst or catalyst support for hydrogen production. Firstly the role of hydrogen as a new energy carrier is explored along with possible routes of waste valorization in the process of hydrogen production. This is followed by an analysis of where and how catalysts from waste can be utilized within various hydrogen production processes namely those based on using fossil fuels as a source biomass as a source and electrocatalytic applications.
No more items...