Production & Supply Chain
Carbon-negative Hydrogen Production (HyBECCS): An Exemplary Techno-economic and Environmental Assessment
Sep 2023
Publication
An exemplary techno-economic and environmental assessment of carbon-negative hydrogen (H2) production is carried out in this work. It is based on the so-called “dark photosynthesis” with carbon dioxide (CO2) capture and geological storage. As a special feature of the assessment the economic consequences due to the impact on the global climate are taken into account. The results indicate that the example project would be capable of generating negative GHG emissions under the assumptions made. The amount is estimated to be 17.72 kgCO2 to be removed from the atmosphere per kilogram of H2 produced. The levelized costs of carbon-negative hydrogen are obtained considering the economic impact of greenhouse gas emissions and removals. They are estimated to be 0.013 EUR/kWhH2. Compared to grey hydrogen from natural gas (0.12 EUR/kWhH2) and green hydrogen from electrolysis using renewable electricity (0.18 EUR/kWhH2) this shows a potential environmental-economic advantage of the considered example. Even without internalization of GHG impacts an economic advantage of the project (0.12 EUR/kWhH2) over green hydrogen (0.17 EUR/kWhH2) is indicated. Compared to other NETs the GHG removal efficiency is at the lower end of both BECCS and DACCS approaches.
Premier, Progress and Prospects in Renewable Hydrogen Generation: A Review
May 2023
Publication
Renewable hydrogen production has an opportunity to reduce carbon emissions in the transportation and industrial sectors. This method generates hydrogen utilizing renewable energy sources such as the sun wind and hydropower lowering the number of greenhouse gases released into the environment. In recent years considerable progress has been made in the production of sustainable hydrogen particularly in the disciplines of electrolysis biomass gasification and photoelectrochemical water splitting. This review article figures out the capacity efficiency and cost-effectiveness of hydrogen production from renewable sources effectively comparing the conventionally used technologies with the latest techniques which are getting better day by day with the implementation of the technological advancements. Governments investors and industry players are increasingly interested in manufacturing renewable hydrogen and the global need for clean energy is expanding. It is projected that facilities for manufacturing renewable hydrogen as well as infrastructure to support this development would expand hastening the transition to an environment-friendly and low-carbon economy
Elevating the Prospects of Green Hydrogen (H2) Production Through Solar-powered Water Splitting Devices: A Systematic Review
May 2024
Publication
As the commercialisation of two contrasting solar-powered water splitting devices with lower TRLs of proton exchange membrane (PEM) electrolyser systems and photoelectrochemical (PEC) systems gains momentum the path towards a sustainable H2 economy is taking shape. Ongoing pilot projects and demonstration plants are proving the feasibility and potential of these technologies in real-world applications. However to ensure their success we must confront the critical challenges of cost reduction and efficiency enhancement making green H2 economically competitive with traditional production methods. To achieve this a collaborative effort among academia industry and policymakers is paramount. This comprehensive review begins by examining traditional water electrolysis methods focusing on the production of green H2 through electrochemical splitting. It delves into crucial components and advancements in the PEM systems addressing challenges related to catalysts membranes gas diffusion layers and bipolar plates. The review also explores solar-driven PEC water splitting emphasizing the significance of efficient photoelectrodes and reactor design. Additionally it discusses the integration of photovoltaic cells with electrochemical or PEC systems for higher H2 yield. Commercialisation is underway and this endeavour necessitates a collaborative approach with active involvement from academia industry and policymakers. This collective effort not only propels us towards greener and more sustainable energy solutions but also represents a transformative step in the global journey towards a sustainable and environmentally conscious economy.
Energy Performance Assessment of a Solar-driven Thermochemical Cycle Device for Green Hydrogen Production
Sep 2023
Publication
This paper presents a novel dynamic simulation model for assessing the energy performance of solar-driven systems employed in green hydrogen production. The system consists of a parabolic dish collector that focuses solar radiation on two cerium-based thermochemical reactors. The model is based on a transient finitedifference method to simulate the thermal behaviour of the system and it integrates a theoretical analysis of materials and operating principles. Different empirical data were considered for experimentally validating it: a good agreement between experimental and simulated results was obtained for the temperatures calculated inside the thermochemical reactor (R2 = 0.99 MAPE = 6.3%) and the hourly flow rates of hydrogen oxygen and carbon monoxide (R2 = 0.96 MAPE = 10%) inside the thermochemical reactor. The model was implemented in a MatLab tool for the system dynamic analysis under different boundary conditions. Subsequently to explore the capability of this approach the developed tool was used for analysing the examined device operating in twelve different weather zones. The obtained results comprise heat maps of specific crucial instants and hourly dynamic trends showing redox reaction cycles occurring into the thermochemical reactors. The yearly hydrogen production ranges from 1.19 m3 /y to 1.64 m3 /y according to the hourly incident solar radiations outdoor air temperatures and wind speeds. New graphic tools for rapid feasibility studies are presented. The developed tools and the obtained results can be useful to the basic design of this technology and for the multi-objective optimization of its layout and main design/operating parameters.
Designing Off-grid Green Hydrogen Plants Using Dynamic Polymer Electrolyte Membrane Electrolyzers to Minimize the Hydrogen Production Cost
Oct 2023
Publication
Hydrogen produced from electrolysis is an attractive carbon-free fuel and feedstock but potential benefits depend on the carbon intensity of electricity production. This study uses technoeconomic modeling to analyze the benefits of producing zero-carbon hydrogen through dynamically operated polymer electrolyte membrane electrolyzers connected to photovoltaic and wind variable renewable energy (VRE) sources. Dynamic operation is considered for current densities between 0 and 6 A cm2 and compared to a constant current density of 2 A cm2 for different combinations of VRE to electrolysis (VRE:E) capacity ratios and compositions of photovoltaic and wind energy in four locations across the United States. For optimal VRE:E and wind:photovoltaic capacity ratios dynamic operation is found to reduce the levelized cost of hydrogen by 5%–9% while increasing hydrogen production by 134%–173% and decreasing excess electrical power by 82%–95%. The framework herein may be used to determine the optimal VRE:E capacity and VRE mix for dynamically operated green hydrogen systems.
Investigation of Performance of Anion Exchange Membrane (AEM) Electrolysis with Different Operating Conditions
Mar 2023
Publication
In this work the performance of anion exchange membrane (AEM) electrolysis is evaluated. A parametric study is conducted focusing on the effects of various operating parameters on the AEM efficiency. The following parameters—potassium hydroxide (KOH electrolyte concentration (0.5–2.0 M) electrolyte flow rate (1–9 mL/min) and operating temperature (30–60 ◦C)—were varied to understand their relationship to AEM performance. The performance of the electrolysis unit is measured by its hydrogen production and energy efficiency using the AEM electrolysis unit. Based on the findings the operating parameters greatly influence the performance of AEM electrolysis. The highest hydrogen production was achieved with the operational parameters of 2.0 M electrolyte concentration 60 ◦C operating temperature and 9 mL/min electrolyte flow at 2.38 V applied voltage. Hydrogen production of 61.13 mL/min was achieved with an energy consumption of 48.25 kW·h/kg and an energy efficiency of 69.64%.
Assessment of Greenhouse Gas Emissions from Hydrogen Production Processes: Turquoise Hydrogen vs. Steam Methane Reforming
Nov 2022
Publication
Hydrogen has received substantial attention because of its diverse application in the energy sector. Steam methane reforming (SMR) dominates the current hydrogen production and is the least expensive endothermic reaction to produce grey hydrogen. This technology provides the advantages of low cost and high energy efficiency; however it emits an enormous amount of CO2. Carbon capture storage (CCS) technology helps reduce these emissions by 47% to 53% producing blue hydrogen. Methane pyrolysis is an alternative to SMR that produces (ideally) CO2-free turquoise hydrogen. In practice methane pyrolysis reduces CO2 emissions by 71% compared to grey hydrogen and 46% compared to blue hydrogen. While carbon dioxide emissions decrease with CCS fugitive methane emissions (FMEs) for blue and turquoise hydrogen are higher than those for grey hydrogen because of the increased use of natural gas to power carbon capture. We undertake FMEs of 3.6% of natural gas consumption for individual processes. In this study we also explore the utilization of biogas as a feedstock and additional Boudouard reactions for efficient utilization of solid carbon from methane pyrolysis and carbon dioxide from biogas. The present study focuses on possible ways to reduce overall emissions from turquoise hydrogen to provide solutions for a sustainable low-CO2 energy source.
Optimal Parameter Determination of Membrane Bioreactor to Boost Biohydrogen Production-Based Integration of ANFIS Modeling and Honey Badger Algorithm
Jan 2023
Publication
Hydrogen is a new promising energy source. Three operating parameters including inlet gas flow rate pH and impeller speed mainly determine the biohydrogen production from membrane bioreactor. The work aims to boost biohydrogen production by determining the optimal values of the control parameters. The proposed methodology contains two parts: modeling and parameter estimation. A robust ANIFS model to simulate a membrane bioreactor has been constructed for the modeling stage. Compared with RMS thanks to ANFIS the RMSE decreased from 2.89 using ANOVA to 0.0183 using ANFIS. Capturing the proper correlation between the inputs and output of the membrane bioreactor process system encourages the constructed ANFIS model to predict the output performance exactly. Then the optimal operating parameters were identified using the honey badger algorithm. During the optimization process inlet gas flow rate pH and impeller speed are used as decision variables whereas the biohydrogen production is the objective function required to be maximum. The integration between ANFIS and HBA boosted the hydrogen production yield from 23.8 L to 25.52 L increasing by 7.22%.
The Origin and Occurrence of Natural Hydrogen
Mar 2023
Publication
Hydrogen is an attractive clean sustainable energy source primarily produced via industry. At present most reviews on hydrogen mainly focus on the preparation and storage of hydrogen while the development and utilization of natural hydrogen will greatly reduce its cost. Natural hydrogen has been discovered in many geological environments. Therefore based on extensive literature research in this study the distribution and sources of natural hydrogen were systematically sorted and the identification method and occurrence state of natural hydrogen were examined and summarized. The results of this research show that hydrogen has been discovered in oceanic spreading centers transform faults passive margins convergent margins and intraplate settings. The primary sources of the hydrogen include alterations in Fe(II)-containing rocks the radiolysis of water degassed magma and the reaction of water- and silica-containing rocks during the mechanical fracturing. Hydrogen can appear in free gas it can be adsorbed and trapped in inclusions. Currently natural hydrogen exploration is in its infancy. This systematic review helps to understand the origin distribution and occurrence pattern of natural hydrogen. In addition it facilitates the exploration and development of natural hydrogen deposits thus enabling the production of low-cost hydrogen.
Fuelling the Transition Podcast: The Future of Electrolysers and Hydrogen in the UK
Nov 2021
Publication
ITM Power is a leading electrolyser manufacturer and is a globally recognised expert in hydrogen technologies. In this episode Graham Cooley Chief Executive Officer at ITM Power and John Williams Head of Hydrogen Expertise Cluster at AFRY Management Consulting join us to discuss ITM’s recent announcements. This includes raising £250 million to scale up its electrolyser manufacturing capacity to 5GW per annum by 2024 and forming a partnership with Linde to halve electrolyser manufacturing costs within five years. The episode also explores the UK hydrogen strategy how blue hydrogen compares with green hydrogen the role of electrolysers in hydrogen production and providing flexibility to power grids.
The podcast can be found on their website.
The podcast can be found on their website.
Economic and Environmental Assessment of Hydrogen Production from Brazilian Energy Grid
Apr 2023
Publication
The Brazilian energy grid is considered as one of the cleanest in the world because it is composed of more than 80% of renewable energy sources. This work aimed to apply the levelized costs (LCOH) and environmental cost accounting techniques to demonstrate the feasibility of producing hydrogen (H2 ) by alkaline electrolysis powered by the Brazilian energy grid. A project of hydrogen production with a lifetime of 20 years had been evaluated by economical and sensitivity analysis. The production capacity (8.89 to 46.67 kg H2/h) production volume (25 to 100%) hydrogen sale price (1 to 5 USD/kg H2 ) and the MAR rate were varied. Results showed that at 2 USD/kg H2 all H2 production plant sizes are economically viable. On this condition a payback of fewer than 4 years an IRR greater than 31 a break-even point between 56 and 68% of the production volume and a ROI above 400% were found. The sensitivity analysis showed that the best economic condition was found at 35.56 kg H2/h of the plant size which generated a net present value of USD 10.4 million. The cost of hydrogen varied between 1.26 and 1.64 USD/kg and a LCOH of 37.76 to 48.71 USD/MWh. LCA analysis showed that the hydrogen production project mitigated from 26 to 131 thousand tons of CO2 under the conditions studied.
Recent Progress on Rational Design of Catalysts for Fermentative Hydrogen Production
May 2022
Publication
The increasingly severe energy crisis has strengthened the determination todevelop environmentally friendly energy. And hydrogen has emerged as a candi-date for clean energy. Among many hydrogen generation methods biohydrogenstands out due to its environmental sustainability simple operating environ-ment and cost advantages. This review focuses on the rational design of catalystsfor fermentative hydrogen production. The principles of microbial dark fermen-tation and photo-fermentation are elucidated exhaustively. Various strategiesto increase the efficiency of fermentative hydrogen production are summa-rized and some recent representative works from microbial dark fermentationand photo-fermentation are described. Meanwhile perspectives and discussionson the rational design of catalysts for fermentative hydrogen production areprovided.
Energy Sustainability Analysis (ESA) of Energy-Producing Processes: A Case Study on Distributed H2 Production
Sep 2019
Publication
In the sustainability context the performance of energy-producing technologies using different energy sources needs to be scored and compared. The selective criterion of a higher level of useful energy to feed an ever-increasing demand of energy to satisfy a wide range of endo- and exosomatic human needs seems adequate. In fact surplus energy is able to cover energy services only after compensating for the energy expenses incurred to build and to run the technology itself. This paper proposes an energy sustainability analysis (ESA) methodology based on the internal and external energy use of a given technology considering the entire energy trajectory from energy sources to useful energy. ESA analysis is conducted at two levels: (i) short-term by the use of the energy sustainability index (ESI) which is the first step to establish whether the energy produced is able to cover the direct energy expenses needed to run the technology and (ii) long-term by which all the indirect energy-quotas are considered i.e. all the additional energy requirements of the technology including the energy amortization quota necessary for the replacement of the technology at the end of its operative life. The long-term level of analysis is conducted by the evaluation of two indicators: the energy return per unit of energy invested (EROI) over the operative life and the energy payback-time (EPT) as the minimum lapse at which all energy expenditures for the production of materials and their construction can be repaid to society. The ESA methodology has been applied to the case study of H2 production at small-scale (10–15 kWH2) comparing three different technologies: (i) steam-methane reforming (SMR) (ii) solar-powered water electrolysis (SPWE) and (iii) two-stage anaerobic digestion (TSAD) in order to score the technologies from an energy sustainability perspective.
Recent Developments in Methane Decomposition over Heterogenous Catalysts: An Overview
Apr 2020
Publication
The production of hydrogen to be used as an alternative renewable energy has been widely explored. Among various methods for producing hydrogen from hydrocarbons methane decomposition is suitable for generating hydrogen with zero greenhouse gas emissions. The use of high temperatures as a result of strong carbon and hydrogen (C–H) bonds may be reduced by utilizing a suitable catalyst with appropriate catalyst support. Catalysts based on transition metals are preferable in terms of their activeness handling and low cost in comparison with noble metals. Further development of catalysts in methane decomposition has been investigated. In this review the recent progress on methane decomposition in terms of catalytic materials preparation method the physicochemical properties of the catalysts and their performance in methane decomposition were presented. The formation of carbon as part of the reaction was also discussed.
Techno-economic Investigation of Electricity and Hydrogen Production from Wind Energy in Casablanca, Morocco
Dec 2018
Publication
The aim of this study is to investigate the technical and economic potential of electricity and hydrogen production in Casablanca Morocco. For this reason we simulated the performance of a 4.2 MWp wind turbine if installed in Casablanca. The results show that the electricity and hydrogen production varies greatly through the year due to the high fluctuation in wind speed. The annual electricity and hydrogen production is 29.16 GWh and 555 Tons respectively. As for the levelized cost of production the LCOE was found to be 0.24 $/kWh and the H2 LCO were equal to 13.52 $/Kg.
Hydrogen Production from Low-temperature Geothermal Energy - A Review of Opportunities, Challenges, and Mitigating Solutions
Jun 2024
Publication
This study aims to provide a comprehensive review of the potential of geothermal energy for producing hydrogen with a focus on the Australian context where low-temperature geothermal reservoirs particularly hot sedimentary aquifers (HSAs) are prevalent. The work includes an overview of various geothermal technologies and hydrogen production routes and evaluates potential alternatives for hydrogen production in terms of energy and exergy efficiency economic performance and hydrogen production rate. Values for energy efficiency are reported in the literature to range from 3.51 to 47.04% 7.4–67.5% for exergy efficiency a cost ranging from 0.59 to 5.97 USD/kg of hydrogen produced and a hydrogen production rate ranging from 0.11 to 5857 kg/h. In addition the article suggests and evaluates multiple metrics to appraise the feasibility of HSAs geothermal reservoirs with results tailored to Australia but that can be extended to jurisdictions with similar conditions worldwide. Furthermore the performance of various hydrogen production systems is investigated by considering important operating conditions. Lastly the key factors and possible solutions associated with the hydrogeological and financial conditions that must be considered in developing hydrogen production using lowtemperature geothermal energy are summarised. This study shows that low-temperature HSAs (~100 ◦C) can still be used for hydrogen generation via supplying power to conventional electrolysis processes by implementing several improvements in heat source temperature and energy conversion efficiency of Organic Rankine Cycle (ORC) power plants. Geothermal production from depleted or even active oilfields can reduce the capital cost of a hydrogen production system by up to 50% due to the use of pre-existing wellbores under the right operating conditions. Thus the results of this study bring novel insights in terms of both the opportunities and the challenges in producing clean hydrogen from geothermal energy applicable not only to the hydro-geological and socio-economic conditions in Australia but also worldwide exploring the applicability of geothermal energy for clean hydrogen production with similar geothermal potential.
A Comprehensive Survey of Alkaline Electrolyzer Modeling: Electrical Domain and Specific Electrolyte Conductivity
May 2022
Publication
Alkaline electrolyzers are the most widespread technology due to their maturity low cost and large capacity in generating hydrogen. However compared to proton exchange membrane (PEM) electrolyzers they request the use of potassium hydroxide (KOH) or sodium hydroxide (NaOH) since the electrolyte relies on a liquid solution. For this reason the performances of alkaline electrolyzers are governed by the electrolyte concentration and operating temperature. Due to the growing development of the water electrolysis process based on alkaline electrolyzers to generate green hydrogen from renewable energy sources the main purpose of this paper is to carry out a comprehensive survey on alkaline electrolyzers and more specifically about their electrical domain and specific electrolytic conductivity. Besides this survey will allow emphasizing the remaining key issues from the modeling point of view.
Experimental Study on the Performance of Controllers for the Hydrogen Gas Production Demanded by an Internal Combustion Engine
Aug 2018
Publication
This work presents the design and application of two control techniques—a model predictive control (MPC) and a proportional integral derivative control (PID) both in combination with a multilayer perceptron neural network—to produce hydrogen gas on-demand in order to use it as an additive in a spark ignition internal combustion engine. For the design of the controllers a control-oriented model identified with the Hammerstein technique was used. For the implementation of both controllers only 1% of the overall air entering through the throttle valve reacted with hydrogen gas allowing maintenance of the hydrogen–air stoichiometric ratio at 34.3 and the air–gasoline ratio at 14.6. Experimental results showed that the average settling time of the MPC controller was 1 s faster than the settling time of the PID controller. Additionally MPC presented better reference tracking error rates and standard deviation of 1.03 × 10−7 and 1.06 × 10−14 and had a greater insensitivity to measurement noise resulting in greater robustness to disturbances. Finally with the use of hydrogen as an additive to gasoline there was an improvement in thermal and combustion efficiency of 4% and 0.6% respectively and an increase in power of 545 W translating into a reduction of fossil fuel use.
Hydrogen Energy Planning with Water Considerations: A SWITCH Model Enhancement for Sustainable Deployment
Apr 2024
Publication
This study presents an enhancement to the Switch optimization model for hydrogen energy planning by integrating the capability to consider the construction and operation of hydrogen electrolysis plants and the operation of water distribution systems. This integration was achieved through the addition of two new modules and their effectiveness is demonstrated through their application in a case study for Durham region. The study highlights the significance of incorporating water distribution systems into energy planning demonstrating how optimal locations for hydrogen plants can significantly influence water and power demand as well as alter the total operating costs. The enhanced Switch model showcases its improved capability to assist policymakers and stakeholders in transitioning towards a sustainable energy future.
Proton Exchange Membrane Electrolyzer Modeling for Power Electronics Control: A Short Review
May 2020
Publication
The main purpose of this article is to provide a short review of proton exchange membrane electrolyzer (PEMEL) modeling used for power electronics control. So far three types of PEMEL modeling have been adopted in the literature: resistive load static load (including an equivalent resistance series-connected with a DC voltage generator representing the reversible voltage) and dynamic load (taking into consideration the dynamics both at the anode and the cathode). The modeling of the load is crucial for control purposes since it may have an impact on the performance of the system. This article aims at providing essential information and comparing the different load modeling.
No more items...