Production & Supply Chain
Sizing of a Hydrogen System for Green-hydrogen Production by Utilising Surplus Water Accumulation in a Hydropower Plant
Jun 2025
Publication
The utilisation of surplus hydro energy can enhance the profitability of hydropower plant operation by cogeneration of green hydrogen along regular electricity production. Effective integration of the hydrogen system requires its appropriate sizing based on surplus hydro energy availability its temporal dynamics scheduled electricity generation and expected hydrogen demand. The article introduces a decision-support tool designed for the optimal sizing of hydrogen systems in run-of-river hydropower plants with surplus hydropower. In contrast to conventional methods the developed tool enables rapid configuration of key hydrogen-system components without relying on complex optimisation algorithms. Implemented in MATLAB App Designer the tool provides a visual inspection of the entire search space thus avoiding possible sub-optimal solutions. The tool has been tested on the case-study hydropower plant and it demonstrates the capabilities for proper sizing of a hydrogen system. The results show that the hydrogen system with 0.75-MW electrolyser and 20 m3 storage tank can generate up to 52652 € in a rainy month and can produce up to 86 tonnes of hydrogen annually achieving approximately 440000 € of additional income. The tool can provide valuable insights into hydrogen system’s installation profitability to guide investment decisions in sustainable hydrogen infrastructure and can contribute to broader energy transition strategies.
Seawater Membrane Distillation Coupled with Alkaline Water Electrolysis for Hydrogen Production: Parameter Influence and Techno-Economic Analysis
Feb 2025
Publication
The production of green hydrogen requires renewable electricity and a supply of sustainable water. Due to global water scarcity using seawater to produce green hydrogen is particularly important in areas where freshwater resources are scarce. This study establishes a system model to simulate and optimize the integrated technology of seawater desalination by membrane distillation and hydrogen production by alkaline water electrolysis. Technical economics is also performed to evaluate the key factors affecting the economic benefits of the coupling system. The results show that an increase in electrolyzer power and energy efficiency will reduce the amount of pure water. An increase in the heat transfer efficiency of the membrane distillation can cause the breaking of water consumption and production equilibrium requiring a higher electrolyzer power to consume the water produced by membrane distillation. The levelized costs of pure water and hydrogen are US$1.28 per tonne and $1.37/kg H2 respectively. The most important factors affecting the production costs of pure water and hydrogen are electrolyzer power and energy efficiency. When the price of hydrogen rises the project’s revenue increases significantly. The integrated system offers excellent energy efficiency compared to conventional desalination and hydrogen production processes and advantages in terms of environmental protection and resource conservation.
Hydrogen Production through the Integration of Biomass Gasification and Residual Steelmaking Streams
Sep 2025
Publication
As energy systems transition towards greater sustainability green hydrogen is emerging as a clean and flexible solution. This study evaluates the potential of using biomass and residual streams from steelmaking processes as feedstocks for hydrogen production integrating renewable resources and waste utilization to enable sustainable hydrogen generation while supporting industrial decarbonization efforts. The simulated plant includes biomass gasification and syngas upgrading through steam reforming and water-gas shift (WGS) reactors. The results demonstrate the viability of the integrated plant and identify optimal operating conditions for different scenarios: feeding solely biomass or incorporating gases from coke ovens blast furnaces and electric arc furnaces. A syngas upgrading configuration based on a single steam reforming reactor and two WGS reactors operating at different temperatures proves to be the most versatile option for effectively integrating these highly dissimilar feedstocks. Since the process involves stages operating at markedly different temperatures energy integration is feasible contributing to improved overall energy efficiency.
Autothermal Reforming of Methane: A Thermodynamic Study on the Use of Air and Pure Oxygen as Oxidizing Agents in Isothermal and Adiabatic Systems
Oct 2023
Publication
In this paper we analyze the autothermal reforming (ATR) of methane through Gibbs energy minimization and entropy maximization methods to analyze isothermic and adiabatic systems respectively. The software GAMS® 23.9 and the CONOPT3 solver were used to conduct the simulations and thermodynamic analyses in order to determine the equilibrium compositions and equilibrium temperatures of this system. Simulations were performed covering different pressures in the range of 1 to 10 atm temperatures between 873 and 1073 K steam/methane ratio was varied in the range of 1.0/1.0 and 2.0/1.0 and oxygen/methane ratios in the feed stream in the range of 0.5/1.0 to 2.0/1.0. The effect of using pure oxygen or air as oxidizer agent to perform the reaction was also studied. The simulations were carried out in order to maintain the same molar proportions of oxygen as in the simulated cases considering pure oxygen in the reactor feed. The results showed that the formation of hydrogen and synthesis gas increased with temperature average composition of 71.9% and 56.0% using air and O2 respectively. These results are observed at low molar oxygen ratios (O2/CH4 = 0.5) in the feed. Higher pressures reduced the production of hydrogen and synthesis gas produced during ATR of methane. In general reductions on the order of 19.7% using O2 and 14.0% using air were observed. It was also verified that the process has autothermicity in all conditions tested and the use of air in relation to pure oxygen favored the compounds of interest mainly in conditions of higher pressure (10 atm). The mean reductions with increasing temperature in the percentage increase of H2 and syngas using air under 1.5 and 10 atm at the different O2/CH4 ratios were 5.3% 13.8% and 16.5% respectively. In the same order these values with the increase of oxygen were 3.6% 6.4% and 9.1%. The better conditions for the reaction include high temperatures low pressures and low O2/CH4 ratios a region in which there is no swelling in terms of the oxygen source used. In addition with the introduction of air the final temperature of the system was reduced by 5% which can help to reduce the negative impacts of high temperatures in reactors during ATR reactions.
Power Converters for Green Hydrogen: State of the Art and Perspectives
Nov 2024
Publication
This paper provides a comprehensive review and outlook on power converters devised for supplying polymer electrolyte membrane (PEM) electrolyzers from photovoltaic sources. The produced hydrogen known as green hydrogen is a promising solution to mitigate the dependence on fossil fuels. The main topologies of power conversion systems are discussed and classified; a loss analysis emphasizes the issues concerning the electrolyzer supply. The attention is focused on power converters of rated power up to a tenth of a kW since it is a promising field for a short-term solution implementing green hydrogen production as a decentralized. It is also encouraged by the proliferation of relatively cheap photovoltaic low-power plants. The main converters proposed by the literature in the last few years and realized for practical applications are analyzed highlighting their key characteristics and focusing on the parameters useful for designers. Future perspectives are addressed concerning the availability of new wide-bandgap devices and hard-to-abate sectors with reference to the whole conversion chain.
Dynamic Simulation Optimization of the Hydrogen Liquefaction Process
Jan 2025
Publication
Liquid hydrogen has attracted much attention due to its high energy storage density and suitability for long-distance transportation. An efficient hydrogen liquefaction process is the key to obtaining liquid hydrogen. In an effort to determine the parameter optimization of the hydrogen liquefaction process this paper employed process simulation software Aspen HYSYS to simulate the hydrogen liquefaction process. By establishing a dynamic model of the unit module this study carried out dynamic simulation optimization based on the steady-state process and process parameters of the hydrogen liquefaction process and analyzed the dynamic characteristics of the process. Based on the pressure drop characteristic experiment an equation for the pressure drop in the heat exchanger was proposed. The heat transfer of hydrogen conversion was simulated and analyzed and its accuracy was verified by comparison with the literature. The dynamic simulation of a plate-fin heat exchanger was carried out by coupling heat transfer simulation and the pressure drop experiment. The results show that the increase in inlet temperature (5 C and 10 C) leads to an increase in specific energy consumption (0.65 % and 1.29 % respectively) and a decrease in hydrogen liquefaction rate (0.63 % and 2.88 % respectively). When the inlet pressure decreases by 28.57 % the hydrogen temperature of the whole liquefaction process decreases and the specific energy consumption increases by 52.94 %. The research results are of great significance for improving the operating efficiency of the refrigeration cycle and guiding the actual liquid hydrogen production.
Optimization of Renewable Energy Supply Chain for Sustainable Hydrogen Energy Production from Plastic Waste
Dec 2023
Publication
Disposing of plastic waste through burial or burning leads to air pollution issues while also contributing to gas emissions and plastic waste spreading underground into seas via springs. Henceforth this research aims at reducing plastic waste volume while simultaneously generating clean energy. Hydrogen energy is a promising fuel source that holds great value for humanity. However achieving clean hydrogen energy poses challenges including high costs and complex production processes especially on a national scale. This research focuses on Iran as a country capable of producing this energy examining the production process along with related challenges and the general supply chain. These challenges encompass selecting appropriate raw materials based on chosen technologies factory capacities storage methods and transportation flow among different provinces of the country. To deal with these challenges a mixed-integer linear programming model is developed to optimize the hydrogen supply chain and make optimal decisions about the mentioned problems. The supply chain model estimates an average cost—IRR 4 million (approximately USD 8)—per kilogram of hydrogen energy that is available in syngas during the initial period; however subsequent periods may see costs decrease to IRR 1 million (approximately USD 2) factoring in return-on-investment rates.
Economic Evaluation and Technoeconomic Resilience Analysis of Two Routes for Hydrogen Production via Indirect Gasification in North Colombia
Nov 2023
Publication
Hydrogen has become a prospective energy carrier for a cleaner more sustainable economy offering carbon-free energy to reduce reliance on fossil fuels and address climate change challenges. However hydrogen production faces significant technological and economic hurdles that must be overcome to reveal its highest potential. This study focused on evaluating the economics and technoeconomic resilience of two large-scale hydrogen production routes from African palm empty fruit bunches (EFB) by indirect gasification. Computer-aided process engineering (CAPE) assessed multiple scenarios to identify bottlenecks and optimize economic performance indicators like gross profits including depreciation after-tax profitability payback period and net present value. Resilience for each route was also assessed considering raw material costs and the market price of hydrogen in relation to gross profits and after-tax profitability. Route 1 achieved a gross profit (DGP) of USD 47.12 million and a profit after taxes (PAT) of USD 28.74 million while Route 2 achieved a DGP of USD 46.53 million and a PAT of USD 28.38 million. The results indicated that Route 2 involving hydrogen production through an indirect gasification reactor with a Selexol solvent unit for carbon dioxide removal demonstrated greater resilience in terms of raw material costs and product selling price.
Thermoeconomic Analysis of a Integrated Membrane Reactor and Carbon Dioxide Capture System Producing Decarbonized Hydrogen
Jan 2025
Publication
In this study a novel thermo-economic analysis on a membrane reactor adopted to generate hydrogen coupled to a carbon-dioxide capture system is proposed. Exergy destruction fuel and environmental as well as pur chased equipment costs have been accounted to estimate the cost of hydrogen production in the aforementioned integrated plant. It has been found that the integration of the CO2 capture system with the membrane reactor is responsible for the reduction of the hydrogen production cost by 12 % due to the decrease in environmental penalty cost. In addition the effects of operating parameters (steam-to-carbo ratio and biogas temperature) on the hydrogen production cost are investigated. Hence this work demonstrates that the latter can be decreased by approximately 2 $/kgH2 when steam to carbon ratio increases from 1.5 to 4. The analyses reveal that steam-tocarbo ratio increases exergy destruction cost affecting consequently also the hydrogen production cost. How ever from a thermodynamic point of view it enhances the hydrogen production in the membrane reactor mutually lowering the hydrogen production cost. It has been also estimated that a decrease in the biogas inlet temperature from 450 to 400◦C can reduce the hydrogen production cost by 7 %. This study demonstrates that the fuel cost is a major economic parameter affecting commercialization of hydrogen production while exergy destruction and environmental costs are also significant factors in determining the hydrogen production cost.
Techno-Economic Evaluation of Scalable and Sustainable Hydrogen Production Using an Innovative Molten-Phase Reactor
Sep 2025
Publication
The transition to low-carbon energy systems requires efficient hydrogen production methods that minimise CO2 emissions. This study presents a techno-economic assessment of hydrogen production via methane pyrolysis utilising a novel liquid metal bubble column reactor (LMBCR) designed for CO2-free hydrogen and solid carbon outputs. Operating at 20 bar and 1100 ◦C the reactor employs a molten nickel-bismuth alloy as both catalyst and heat transfer medium alongside a sodium bromide layer to enhance carbon purity and facilitate separation. Four operational scenarios were modelled comparing various heating and recycling configurations to optimise hydrogen yield and process economics. Results indicate that the levelised cost of hydrogen (LCOH) is highly sensitive to methane and electricity prices CO2 taxation and the value of carbon by-products. Two reactor configurations demonstrate competitive LCOHs of 1.29 $/kgH2 and 1.53 $/kgH2 highlighting methane pyrolysis as a viable low-carbon alternative to steam methane reforming (SMR) with carbon capture and storage (CCS). This analysis underscores the potential of methane pyrolysis for scalable economically viable hydrogen production under specificmarket conditions.
A Comprehensive Review on the Power Supply System of Hydrogen Production Electrolyzers for Future Integrated Energy Systems
Feb 2024
Publication
Hydrogen energy is regarded as an ideal solution for addressing climate change issues and an indispensable part of future integrated energy systems. The most environmentally friendly hydrogen production method remains water electrolysis where the electrolyzer constructs the physical interface between electrical energy and hydrogen energy. However few articles have reviewed the electrolyzer from the perspective of power supply topology and control. This review is the first to discuss the positioning of the electrolyzer power supply in the future integrated energy system. The electrolyzer is reviewed from the perspective of the electrolysis method the market and the electrical interface modelling reflecting the requirement of the electrolyzer for power supply. Various electrolyzer power supply topologies are studied and reviewed. Although the most widely used topology in the current hydrogen production industry is still single-stage AC/DC the interleaved parallel LLC topology constructed by wideband gap power semiconductors and controlled by the zero-voltage switching algorithm has broad application prospects because of its advantages of high power density high efficiency fault tolerance and low current ripple. Taking into account the development trend of the EL power supply a hierarchical control framework is proposed as it can manage the operation performance of the power supply itself the electrolyzer the hydrogen energy domain and the entire integrated energy system.
Current Status of Green Hydrogen Production Technology: A Review
Oct 2024
Publication
As a clean energy source hydrogen not only helps to reduce the use of fossil fuels but also promotes the transformation of energy structure and sustainable development. This paper firstly introduces the development status of green hydrogen at home and abroad and then focuses on several advanced green hydrogen production technologies. Then the advantages and shortcomings of different green hydrogen production technologies are compared. Among them the future source of hydrogen tends to be electrolysis water hydrogen production. Finally the challenges and application prospects of the development process of green hydrogen technology are discussed and green hydrogen is expected to become an important part of realizing sustainable global energy development.
Life Cycle Assessment of Greenhouse Gas Emissions in Hydrogen Production via Water Electrolysis in South Korea
Dec 2024
Publication
This study evaluated the greenhouse gas (GHG) emissions associated with hydrogen production in South Korea (hereafter referred to as Korea) using water electrolysis. Korea aims to advance hydrogen as a clean fuel for transportation and power generation. To support this goal we employed a life cycle assessment (LCA) approach to evaluate the emissions across the hydrogen supply chain in a well-to-pump framework using the Korean clean hydrogen certification tiers. Our assessment covered seven stages from raw material extraction for power plant construction to hydrogen production liquefaction storage and distribution to refueling stations. Our findings revealed that among the sixteen power sources evaluated hydroelectric and onshore wind power exhibited the lowest emissions qualifying as the Tier 2 category of emissions between 0.11 and 1.00 kgCO2e/kgH2 under a well-to-pump framework and Tier 1 category of emissions below 0.10 kgCO2e/kgH2 under a well-to-gate framework. They were followed by photovoltaics nuclear energy and offshore wind all of which are highly dependent on electrolysis efficiency and construction inputs. Additionally the study uncovered a significant impact of electrolyzer type on GHG emissions demonstrating that improvements in electrolyzer efficiency could substantially lower GHG outputs. We further explored the potential of future energy mixes for 2036 2040 and 2050 as projected by Korea’s energy and environmental authorities in supporting clean hydrogen production. The results suggested that with progressive decarbonization of the power sector grid electricity could meet Tier 2 certification for hydrogen production through electrolysis and potentially reach Tier 1 when considering well-to-gate GHG emissions.
Potential Capacity and Cost Assessments for Hydrogen Production from Marine Sources
May 2024
Publication
The current study comprehensively examines the application of wave tidal and undersea current energy sources of Turkiye for green hydrogen fuel production and cost analysis. The estimated potential capacity of each city is derived from official data and acceptable assumptions and is subject to discussion and evaluation in the context of a viable hydrogen economy. According to the findings the potential for green hydrogen generation in Turkiye is projected to be 7.33 million tons using a proton exchange membrane electrolyser (PEMEL). Cities with the highest hydrogen production capacities from marine applications are Mugla Izmir Antalya and Canakkale with 998.10 kt 840.31 kt 605.46 kt and 550.42 kt respectively. The study calculations obviously show that there is a great potential by using excess power in producing hydrogen which will result in an economic value of 3.01 billion US dollars. This study further helps develop a detailed hydrogen map for every city in Turkiye using the identified potential capacities of renewable energy sources and the utilization of electrolysers to make green hydrogen by green power. The potentials and specific capacities for every city are also highlighted. Furthermore the study results are expected to provide clear guidance for government authorities and industries to utilize such a potential of renewable energy for investment and promote clean energy projects by further addressing concerns caused by the usage of carbon-based (fossil fuels dependent) energy options. Moreover green hydrogen production and utilization in every sector will help achieve the national targets for a net zero economy and cope with international targets to achieve the United Nation's sustainable development goals.
Power Ultrasound as Performance Enhancer for Alkaline Water Electrolysis: A Review
Dec 2024
Publication
The industry is advancing decarbonization in hydrogen production through water splitting technologies like water electrolysis which involves the hydrogen evolution reaction (HER) at the cathode and oxygen evolution reaction (OER) at the anode. Alkaline water electrolyser (AWE) is particularly suited for industrial applications due to its use of cost-effective and abundant nickel-based electrodes. However AWE faces significant challenges including energy losses from gas bubble coverage and poor detachment known as “bubble resistance”. Recent research highlights the role of power ultrasound in mitigating these issues by leveraging Bjerknes forces. These forces facilitate the ejection of larger bubbles and the coalescence of smaller ones enhancing gas removal. Additionally ultrasound improves mass transfer from the electrolyte to electrodes and boosts heat transfer via acoustic streaming and acoustic cavitation which the latter also enhances electrocatalytic properties for both HER and OER. However employing ultrasonic fields presents both benefits and challenges for scaling the system.
Research Goals for Minimizing the Cost of CO2 Capture when Using Steam Methane Reforming for Hydrogen Production
Nov 2024
Publication
This paper presents a techno-economic assessment of adding state-of-the-art solvent-based CO2 capture technologies to greenfield steam methane reforming (SMR)-based H2 production plants and quantifies the impacts of improvements in CO2 capture technology. Current conventional capture technologies are reviewed and future technologies in intermediate and long-term scenarios are analyzed. The results show that adding significantly more efficient solvent-based capture technologies leads to an equivalent rate of natural gas consumption as that of a conventional SMR plant without capture despite capturing most of the CO2 and producing the same amount of H2. Overall improvements in reboiler duty and reductions in capital costs can significantly reduce the cost of H2 production and cost of capture. Particularly the reboiler duty of pre-combustion capture and the capital cost of post-combustion capture have the greatest impact. Based on the results research goals are suggested. Solvent development is recommended—particularly pre-combustion solvents—for reducing the reboiler duties and process schemes to reduce the capital costs. Costlier but more efficient solvents can be considered. A sensitivity analysis using natural gas price shows that technological improvements can reduce the impacts of high natural gas prices. The degree of economic feasibility of CO2 capture increases with improvements to the capture technology.
Life Cycle Assessment and Life Cycle Costing of Hydrogen Production from Biowaste and Biomass in Sweden
Jun 2023
Publication
In this study an environmental and economic assessment of hydrogen production from biowaste and biomass is performed from a life cycle perspective with a high degree of primary life cycle inventory data on materials energy and investment flows. Using SimaPro LCA software and CML-IA 2001 impact assessment method ten environmental impact categories are analyzed for environmental analysis. Economic analysis includes capital and operational expenditures and monetization cost of life cycle environmental impacts. The hydrogen pro duction from biowaste has a high climate impact photochemical oxidant and freshwater eutrophication than biomass while it performs far better in ozone depletion terrestrial ecotoxicity abiotic depletion-fossil abiotic depletion human toxicity and freshwater ecotoxicity. The sensitivity analysis of LCA results indicates that feedstock to biogas/pyrolysis-oil yields ratio and the type of energy source for the reforming process can significantly influence the results particularly climate change abiotic depletion and human toxicity. The life cycle cost (LCC) of 1 kg hydrogen production has been accounted as 0.45–2.76 € with biowaste and 0.54–3.31 € with biomass over the plant’s lifetime of 20 years. From the environmental impacts of climate change photo chemical oxidant and freshwater eutrophication hydrogen production from biomass is a better option than biowaste while from other included impact categories and LCC perspectives it’s biowaste. This research con tributes to bioresources to hydrogen literature with some new findings that can be generalized in Europe and even globally as it is in line with and endorse existing theoretical and simulation software-based studies.
Progress in Carbon Capture and Impurities Removal for High Purity Hydrogen Production from Biomass Thermochemical Conversion
Nov 2024
Publication
Renewable hydrogen production from biomass thermochemical conversion is an emerging technology to reduce fossil fuel consumptions and carbon emissions. Biomass-derived hydrogen can be produced by pyrolysis gasification alkaline thermal treatment etc. However the removal of impurities from biomass thermochemical conversion products to improve hydrogen purity is currently technical bottleneck. It is important to assess and investigate the types and properties of impurities the difficulty of separation and the impact on downstream utilization of hydrogen in the biomass-derived hydrogen production process. The key objectives of this comprehensive review are: (1) to reveal the current status and necessity of developing biomass-derived hydrogen production; (2) to evaluate the types devices and impurities distribution of biomass thermochemical conversion; (3) to explore the formation pathways and removal technologies of typical impurities of tar CO2 sulfides and nitrides in hydrogen production process; and (4) to propose future insights on the separation technologies of typical impurities to promote the gradual substitution of biomass-derived hydrogen for fossil-derived energy.
Research on Hydrogen Production System Technology Based on Photovoltaic-Photothermal Coupling Electrolyzer
Dec 2023
Publication
Solar hydrogen production technology is a key technology for building a clean low-carbon safe and efficient energy system. At present the intermittency and volatility of renewable energy have caused a lot of “wind and light.” By combining renewable energy with electrolytic water technology to produce high-purity hydrogen and oxygen which can be converted into electricity the utilization rate of renewable energy can be effectively improved while helping to improve the solar hydrogen production system. This paper summarizes and analyzes the research status and development direction of solar hydrogen production technology from three aspects. Energy supply mode: the role of solar PV systems and PT systems in this technology is analyzed. System control: the key technology and system structure of different types of electrolytic cells are introduced in detail. System economy: the economy and improvement measures of electrolytic cells are analyzed from the perspectives of cost consumption efficiency and durability. Finally the development prospects of solar hydrogen production systems in China are summarized and anticipated. This article reviews the current research status of photovoltaic-photothermal coupled electrolysis cell systems fills the current research gap and provides theoretical reference for the further development of solar hydrogen production systems.
Carbon Dioxide Removal Potential from Decentralised Bioenergy with Carbon Capture and Storage (BECCS) and the Relevance of Operation Choices
Mar 2022
Publication
Bioenergy with carbon capture and storage (BECCS) technology is expected to support net-zero targets by supplying low carbon energy while providing carbon dioxide removal (CDR). BECCS is estimated to deliver 20 to 70 MtCO2 annual negative emissions by 2050 in the UK despite there are currently no BECCS operating facility. This research is modelling and demonstrating the flexibility scalability and attainable immediate application of BECCS. The CDR potential for two out of three BECCS pathways considered by the Intergovernmental Panel on Climate Change (IPCC) scenarios were quantified (i) modular-scale CHP process with post-combustion CCS utilising wheat straw and (ii) hydrogen production in a small-scale gasifier with pre-combustion CCS utilising locally sourced waste wood. Process modelling and lifecycle assessment were used including a whole supply chain analysis. The investigated BECCS pathways could annually remove between − 0.8 and − 1.4 tCO2e tbiomass− 1 depending on operational decisions. Using all the available wheat straw and waste wood in the UK a joint CDR capacity for both systems could reach about 23% of the UK’s CDR minimum target set for BECCS. Policy frameworks prioritising carbon efficiencies can shape those operational decisions and strongly impact on the overall energy and CDR performance of a BECCS system but not necessarily maximising the trade-offs between biomass use energy performance and CDR. A combination of different BECCS pathways will be necessary to reach net-zero targets. Decentralised BECCS deployment could support flexible approaches allowing to maximise positive system trade-offs enable regional biomass utilisation and provide local energy supply to remote areas.
No more items...