Production & Supply Chain
Ammonia Decomposition and Hydrogen Production via Novel FeCoNiCuMnO High-entropy Ceramic Catalysts
Oct 2025
Publication
Ammonia (NH3) decomposition offers a pathway for water purification and green hydrogen production yet conventional catalysts often suffer from poor stability due to agglomeration. This study presents a novel (FeCoNiCuMn)O high-entropy ceramic (HEC) catalyst synthesized via fast-moving bed pyrolysis (FMBP) which prevents aggregation and enhances catalytic performance. The HEC catalyst applied as an anode in electrochemical oxidation (EO) demonstrated a uniform spinel (AB2O4) structure confirmed by XRD XRF and ICP-OES. Electronic structure characterization using UPS and LEIPS revealed a bandgap of 4.722 eV with EVBM and ECBM values facilitating redox reactions. Under 9 V and 50 mA/cm² current density the HEC electrode achieved 99% ammonia decomposition within 90 min and retained over 90% efficiency after four cycles. Surface analysis by XPS and HAXPES indicated oxidation state variations confirming catalyst activity and stability. Gas chromatography identified H2 N2 and O2 as the main products with ~64.7% Faradaic efficiency for H2 classifying it as green hydrogen. This dual-function approach highlights the (FeCoNiCuMn)O HEC anode as a promising and sustainable solution for wastewater treatment and hydrogen production.
Current Developments on MIL-based Metal-organic Frameworks for Photocatalytic Hydrogen Production
Sep 2025
Publication
The escalating global energy demand has intensified research into sustainable hydrogen production particularly through water splitting. A highly promising avenue involves photocatalytic water splitting which leverages readily available earth-abundant materials to generate clean hydrogen from water using only renewable energy sources. Among the various catalytic materials investigated metal-organic frameworks (MOFs) have recently attracted considerable interest. Their tunable porosity high crystallinity as well as the customisable molecular structures position them as a transformative class of catalysts for efficient and sustainable photocatalytic hydrogen generation. This review examines MOFs detailing their structural characteristics unique properties and diverse synthetic routes. The discussion extends to the various composite materials that can be derived from MOFs with particular emphasis on their application in photocatalytic hydrogen production via water splitting. Furthermore the review identifies current challenges hindering MOF implementation and proposes modification strategies to overcome these limitations. The concluding section summarises the presented information and future perspectives on the continued development of MOF composites for enhanced photocatalytic hydrogen production from water.
Sequential System for Hydrogen and Methane Production from Sucrose Wastewater: Effects of Substrate Concentration and Addition of FE2+ Ions
Oct 2025
Publication
A two-stage system is used for hydrogen (H2) and methane (CH4) production from sucrose wastewater. The H2- producing reactor is operated at pH temperature (T) and hydraulic retention time (HRT) of 5.5 35 ◦C 24 h respectively. While operating conditions of 7–8 pH 35 ◦C T and 144 h HRT are used to conduct the CH4 production stage. The effects of two different parameters as sucrose concentration (5 10 and 20 g/L) and addition of ferrous ions (60 and 120 mg/L) are investigated. Both H2 and CH4 productions are increased at high sucrose concentrations. However the optimum H2 and CH4 yields of 163.2 mL-H2/g-sucrose and 211.8 mL-CH4/g-TVS are obtained at 5 g-sucrose/L. At 5 g-sucrose/L addition of Fe2+ increases the H2 yield to 192.5 and 176.2 mLH2/g-sucrose corresponding to 60 and 120 mg-Fe2+/L respectively. Higher removal efficiencies and total energy recovery are measured using the two-stage system than the single-stage reactor.
Thermodynamics Analysis of Generation of Green Hydrogen and Methanol through Carbon Dioxide Capture
Oct 2025
Publication
This extensive study delves into analyzing carbon dioxide (CO2)-capturing green hydrogen plant exploring its operation using multiple electrolysis techniques and examining their efficiency and impact on environment. The solar energy is used for the electrolysis to make hydrogen. Emitted CO2 from thermal power plants integrate with green hydrogen and produces methanol. It is a process crucial for mitigating environmental damage and fostering sustainable energy practices. The findings demonstrated that solid oxide electrolysis is the most effective process by which hydrogen can be produced with significant rate of 90 % efficiency. Moreover proton exchange membrane (PEM) becomes a viable and common method with an 80 % efficiency whereas the alkaline electrolysis has a moderate level of 63 % efficiency. Additionally it was noted that the importance of seasonal fluctuations where the capturing of CO2 is maximum in summer months and less in the winter is an important factor to consider in order to maximize the working of the plant and the allocation of resources.
Innovative Sulfer-based Photocatalysts for Seawater Splitting: Synthesis Strategies, Engineering Advances, and Prospective Pathways for Sustainable Hydrogen Production
Oct 2025
Publication
While hydrogen production through pure water splitting remains a key focus in solar hydrogen research photocatalytic seawater splitting presents a more sustainable alternative better aligned with global development goals amid increasing freshwater scarcity. Nevertheless the deactivation of the photocatalyst by the corrosion of various ions present in seawater as well as the chloride ions’ redox side reaction limits the practical use of the photocatalytic seawater splitting process. In this context sulfur has emerged as a crucial component in photocatalytic composites for seawater splitting owing to its unique chemical properties. It acts as a chlorine-repulsive agent effectively suppressing chloride ion oxidation which mitigates corrosion enhances structural stability and significantly improves overall photocatalytic performance in saline environments. This review offers a thorough explanation of the basic ideas of solar-driven seawater splitting delves into various synthesis strategies and explores recent advancements in sulfur-based composites for efficient hydrogen generation using seawater. Optimizing synthesis techniques and incorporating strategies like doping cocatalyst and heterojunctions significantly enhance the performance of sulfur-based photocatalysts for seawater splitting. Future advances include integrating AI-guided material discovery sustainable use of industrial sulfur waste and precise control of sacrificial agents to ensure long-term efficiency and stability.
Green Hydrogen Production and Deployment: Opportunities and Challenges
Aug 2025
Publication
Green hydrogen is emerging as a pivotal energy carrier in the global transition toward decarbonization offering a sustainable alternative to fossil fuels in sectors such as heavy industry transportation power generation and long-duration energy storage. Despite its potential large-scale deployment remains hindered by significant economic technological and infrastructure challenges. Current production costs for green hydrogen range from USD 3.8 to 11.9/kg H2 significantly higher than gray hydrogen at USD 1.5–6.4/kg H2 due to high electricity prices and electrolyzer capital costs exceeding USD 2000 per kW. This review critically examines the key bottlenecks in green hydrogen production focusing on water electrolysis technologies electrocatalyst limitations and integration with renewable energy sources. The economic viability of green hydrogen is constrained by high electricity consumption capital-intensive electrolyzer costs and operational inefficiencies making it uncompetitive with fossil fuel-based hydrogen. Infrastructure and supply chain challenges including limited hydrogen storage transport complexities and critical material dependencies further restrict market scalability. Additionally policy and regulatory gaps disparities in financial incentives and the absence of a standardized certification framework hinder international trade and investment in green hydrogen projects. This review also highlights market trends and global initiatives assessing the role of government incentives and cross-border collaborations in accelerating hydrogen adoption. While technological advancements and cost reductions are progressing overcoming these challenges requires sustained innovation stronger policy interventions and coordinated efforts to develop a resilient scalable and cost-competitive green hydrogen sector.
Aluminium-based Electrode Materials for Green Hydrogen Production through Electrolysis and Hydrolysis: A Review
Sep 2025
Publication
In recent years the utilization of aluminium (Al) Al alloys and their composite powder and anode encourages the generation of green hydrogen through hydrolysis and water splitting electrolysis with zero emissions. As such in this study the development and characterization of Al Al alloys and Al-based composite powder and compacted Al composites for clean hydrogen production using hydrolysis and water splitting processes were reviewed. Herein based on the available literature it is worth mentioning that the incorporation of active additives such as h-BN Bi@C g-C3N4 MoS2 Ni In Fe and BiOCl@CNTs in the Al-based composites using ball milling melting smelting casting and spark plasma sintering technique remarkably improved the rate of hydrogen evolution and hydrogen gas conversion yield particularly during hydrolysis of Al-water reaction. Again Al-based electrodes with improved electrical conductivity notably results in better water splitting electrolysis as well as fast chemical reaction in achieving hydrogen gas production at low energy consumption with efficiency. Though notwithstanding the significance of Al Al alloy and Al-based composite hydrogen generation performances there are still some challenges associated with the Al-based materials for hydrogen production via hydrolysis and water electrolysis. For example the low current density and poor electrochemical properties of Al which on the other hand results in long induction time high overpotential and cost remains a gap to bridge. Hence the authors concluded the review study with recommendations for future improvement of Al-based composite electrodes on hydrogen production and sustainability via hydrolysis and water electrolysis. Thus the study will pave the way for further research on clean hydrogen energy generation.
Decoupled Hydrogen Production through Hybrid Water Electrolysis Utilizing Ruthenium-tin Oxide Electrocatalyst
Oct 2025
Publication
Hybrid water electrolysis system was designed by using Ruthenium-Tin Oxide (RuSn12.4O2) electrocatalyst as anode material for efficient hydrogen production enhancing energy conversion efficiency. The RuSn12.4O2 Electrocatalyst was synthesized by hydrothermal method and exhibited exceptional activity making it an optimal choice for Iodide oxidation reaction (IOR) and enabling energy-saving hydrogen production. The two-electrode acidic electrolyzer reduced voltage consumption by 0.51 V at 10 mA cm-2 compared to oxygen evolution reaction (OER) at the same current density. This hybrid electrolysis system achieved a remarkable reduction in energy consumption of over 40 % compared to OER process. The Chrono-potentiometric test demonstrated that the RuSn12.4O2 electro-catalyst’s superior stability and low overpotential increase of 70 mV at 10 mAcm-2 . The RuSn12.4O2 electro-catalyst Tafel slope is also a crucial metric for understanding kinetic characteristics in both IOR and OER processes. Thus RuSn12.4O2 electro-catalyst in IOR has a lower Tafel slope (61 mV dec-1) than that in OER according to the Tafel slopes determined from linear sweep voltammetry (LSV) curves. Additionally at various potentials the electro-catalyst's activity toward IOR to produce hydrogen demonstrated exceptional performance in this electrolysis system without causing any catalyst degradation.
Scoring and Ranking Methods for Evaluating the Techno-Economic Competitiveness of Hydrogen Production Technologies
Jun 2025
Publication
This research evaluates four hydrogen (H2) production technologies via water electrolysis (WE): alkaline water electrolysis (AWE) proton exchange membrane electrolysis (PEME) anion exchange membrane electrolysis (AEME) and solid oxide electrolysis (SOE). Two scoring and ranking methods the MACBETH method and the Pugh decision matrix are utilized for this evaluation. The scoring process employs nine decision criteria: capital expenditure (CAPEX) operating expenditure (OPEX) operating efficiency (SOE) startup time (SuT) environmental impact (EI) technology readiness level (TRL) maintenance requirements (MRs) supply chain challenges (SCCs) and levelized cost of H2 (LCOH). The MACBETH method involves pairwise technology comparisons for each decision criterion using seven qualitative judgment categories which are converted into quantitative scores via M-MACBETH software (Version 3.2.0). The Pugh decision matrix benchmarks WE technologies using a baseline technology—SMR with CCS—and a three-point scoring scale (0 for the baseline +1 for better −1 for worse). Results from both methods indicate AWE as the leading H2 production technology which is followed by AEME PEME and SOE. AWE excels due to its lowest CAPEX and OPEX highest TRL and optimal operational efficiency (at ≈7 bars of pressure) which minimizes LCOH. AEME demonstrates balanced performance across the criteria. While PEME shows advantages in some areas it requires improvements in others. SOE has the most areas needing enhancement. These insights can direct future R&D efforts toward the most promising H2 production technologies to achieve the net-zero goal.
Presumptions for the Integration of Green Hydrogen and Biomethane Production in Wastewater Treatment Plants
Jul 2025
Publication
Achieving climate neutrality goals is inseparable from the sustainable development of modern cities. Municipal wastewater treatment plants (WWTP) are among the starting points when moving cities to Net-zero Greenhouse Gas (GHG) emissions and climate neutrality. This study focuses on the analysis of the integration of green hydrogen (H2) and biomethane technologies in WWTPs and on the impact of this integration on WWTPs’ energy neutrality. This study treats WWTP as an integrated energy system with certain inputs and outputs. Currently such systems in most cases have a significantly negative energy balance and in addition fossil fuel energy sources are used. Key findings highlight that the integration of green hydrogen production in WWTPs and the efficient utilization of electrolysis by-products can make such energy systems neutral or even positive. This study provides an analysis of the main technical presumptions for the successful integration of green hydrogen and biomethane production processes in WWTP. Furthermore a case study of a real wastewater treatment plant is presented.
AI Predictive Simulation for Low-Cost Hydrogen Production
Jul 2025
Publication
Green hydrogen produced through renewable-powered electrolysis has the potential to revolutionize energy systems; however its widespread adoption hinges on achieving competitive production costs. A critical challenge lies in optimising the hydrogen production process to address solar and wind energy’s high variability and intermittency. This paper explores the role of artificial intelligence (AI) in reducing and streamlining hydrogen production costs by enabling advanced process optimisation focusing on electricity cost management and system-wide efficiency improvements.
Model Predictive Supervisory Control for Multi-stack Electrolyzers Using Multilinear Modeling
Oct 2025
Publication
Offshore green hydrogen production lacks of flexible and scalable supervisory control approaches for multistack electrolyzers raising the need for extendable and high-performance solutions. This work presents a two-stage nonlinear model predictive control (MPC) method. First an MPC stage generates a discrete on-off electrolyzer switching decision through algebraic relaxation of a Boolean signal. The second MPC stage receives the stack’s on-off operation decision and optimizes hydrogen production. This is a novel approach for solving a mixed-integer nonlinear program (MINP) in multi-stack electrolyzer control applications. In order to realize the MPC the advantages of the implicit multilinear time-invariant (iMTI) model class are exploited for the first time for proton exchange membrane (PEM) electrolyzer models. A modular flexible and scalable framework in MATLAB is built. The tensor based iMTI model in canonical polyadic (CP) decomposed form breaks the curse of dimensionality and enables effective model composition for electrolyzers. Simulation results show an appropriate multilinear model representation of the nonlinear system dynamics in the operation region. A sensitivity analysis identified three numeric factors as decisive for the effectiveness of the MPC approach. The classic rule-based control methods Daisy Chain and Equal serve as reference. Over two weeks and under a wind power input profile the MPC strategy performs better regarding the objective of hydrogen production compared to the Daisy Chain (4.60 %) and Equal (0.43 %) power distribution controllers. As a side effect of the optimization a convergence of the degradation states is observed.
Accurate Prediction of Green Hydrogen Production Based on Solid Oxide Electrolysis Cell via Soft Computing Algorithms
Oct 2025
Publication
The solid oxide electrolysis cell (SOEC) presents significant potential for transforming renewable energy into green hydrogen. Traditional modeling approaches however are constrained by their applicability to specific SOEC systems. This study aims to develop robust data-driven models that accurately capture the complex relationships between input and output parameters within the hydrogen production process. To achieve this advanced machine learning techniques were utilized including Random Forests (RFs) Convolutional Neural Networks (CNNs) Linear Regression Artificial Neural Networks (ANNs) Elastic Net Ridge and Lasso Regressions Decision Trees (DTs) Support Vector Machines (SVMs) k-Nearest Neighbors (KNN) Gradient Boosting Machines (GBMs) Extreme Gradient Boosting (XGBoost) Light Gradient Boosting Machines (LightGBM) CatBoost and Gaussian Process. These models were trained and validated using a dataset consisting of 351 data points with performance evaluated through various metrics and visual methods. The dataset’s suitability for model training was confirmed using the Monte Carlo outlier detection method. Results indicate that within the dataset and evaluation framework of this study ANNs CNNs Gradient Boosting and XGBoost models have demonstrated high accuracy and reliability achieving the largest R-squared scores and the smallest error metrics. Sensitivity analysis reveals that all input parameters significantly influence hydrogen production magnitude. Game-theoretic SHAP values underline current and cathode electrode conditions as critical factors. This research determines the performance of machine learning models particularly ANNs CNNs Gradient Boosting and XGBoost in predicting hydrogen production through the SOEC process. The outcomes of this paper can provide a certain reference for related research and applications in the hydrogen production field.
Magnetically Induced Convection Enhances Water Electrolysis in Microgravity
Aug 2025
Publication
Since the early days of space exploration the efficient production of oxygen and hydrogen via water electrolysis has been a central task for regenerative life-support systems. Water electrolysers are however challenged by the near-absence of buoyancy in microgravity resulting in hindered gas bubble detachment from electrodes and diminished electrolysis efficiencies. Here we show that a commercial neodymium magnet enhances water electrolysis with current density improvements of up to 240% in microgravity by exploiting the magnetic polarization of the electrolyte and the magnetohydrodynamic force. We demonstrate that these interactions enhance gas bubble detachment and displacement through magnetic convection and achieve passive gas–liquid phase separation. Two model magnetoelectrolytic cells a proton-exchange membrane electrolyser and a magnetohydrodynamic drive were designed to leverage these forces and produce oxygen and hydrogen at near-terrestrial efficiencies in microgravity. Overall this work highlights achievable lightweight low-maintenance and energy-efficient phase separation and electrolyser technologies to support future human spaceflight architectures.
Innovative Anode Porous Transport Layers for Polymer Elecrolyte Membrane Water Electrolyzers
Sep 2025
Publication
Polymer Electrolyte Membrane Water Electrolyzers (PEMWEs) attract significant attention for producing green hydrogen. However their widespread application remains hindered by high production costs. This study develops cost-effective and high-performance 3D-printed gyroid structures as porous transport layers (PTLs) for the anode of PEMWEs. Experimental results demonstrate that the PTL’s structure critically influences its performance which depends on its design. Among the four gyroid structures evaluated the G10 electrode exhibited the best performance in electrochemical tests conducted under various ex-situ conditions simulating real-world operation. Furthermore the 3D-printed G10 electrode undergoes Pt coating and is compared with commercially available PTLs. The commercial PTL (C3) shows a current density of 138.488 mA cm−2 whereas the G10-1.00 μm Pt electrode achieves a significantly higher current density of 584.692 mA cm−2 at 1.9V. The gyroid structure is a promising avenue for developing high-energy and low-cost PEMWEs and other related technologies.
An Innovative Industrial Complex for Sustainable Hydrocarbon Production with Near-Zero Emissions
Oct 2025
Publication
The Allam power cycle is a groundbreaking elevated-pressure power generation unit that utilizes oxygen and fossil fuels to generate low-cost electricity while capturing carbon dioxide (CO2) inherently. In this project we utilize the CO2 generated from the Allam cycle as feedstock for a newly envisioned industrial complex dedicated to producing renewable hydrocarbons. The industrial complex (FAAR) comprises four subsystems: (i) a Fischer–Tropsch synthesis plant (FTSP) (ii) an alkaline water electrolysis plant (AWEP) (iii) an Allam power cycle plant (APCP) and (iv) a reverse water-gas shift plant (RWGSP). Through effective material heat and power integration the FAAR complex utilizing 57.1% renewable energy for its electricity needs can poly-generate sustainable hydrocarbons (C1–C30) pure hydrogen and oxygen with near-zero emissions from natural gas and water. Economic analysis indicates strong financial performance of the development with an internal rate of return (IRR) of 18% a discounted payback period of 8.7 years and a profitability index of 2.39. The complex has been validated through rigorous modeling and simulation using Aspen Plus version 14 including sensitivity analysis.
Hydrogen Production from Organic Waste in Bangladesh: Impacts of Temperature and Steam Flow on Syngas Composition
Sep 2025
Publication
More than 0.13 million tons of waste are generated annually making conventional methods of treatment including anaerobic digestion incineration and landfilling insufficient.Thus a long-term solution is required.Therefore this study used a process modeling through Aspen Plus V11 to investigate how variations in waste types and gasification temperatures affect the ability to producing hydrogen. Additionally the use of a Steam Rankin Cycle has been used to optimize the economy through generation. To explore the potential of various type of waste proximate and Ultimate analysis have been done experimentally in lab and some of them (Rice Husk Rice Straw Sugar-cane Baggage Cow-dung etc.) have been taken from references. This study presents validation against experimental data using dolomite and olivine as bed materials. The model showed strong agreement with experimental results accurately predicting hydrogen concentration CO and CO2. A detailed thermodynamic analysis revealed an increase in hydrogen purity from 50.9 % in raw syngas to 100 % after pressure swing adsorption (PSA) accompanied by an exergy reduction from 48.99 MW to 34.68 MW due to separation and thermal losses. Parametric studies demonstrated that gasification temperatures between 750 °C and 800 °C and steam-to-biomass ratios of 0.4–0.5 optimize hydrogen production. Feedstock type significantly influenced performance; rice straw rice husk jute stick and cow dung exhibited higher hydrogen yields compared to food waste. The model predicted a hydrogen production rate of approximately 1020 kg/h per ton of dry feedstock with an overall system efficiency of 48.5 % based on exergy analysis.
Fault Tree and Importance Measure Analysis of a PEM Electrolyzer for Hydrogen Production at a Nuclear Power Plant
Sep 2025
Publication
Pilot projects to generate hydrogen using proton exchange membrane (PEM) electrolyzers coupled to nuclear power plants (NPPs) began in 2022 with further developments anticipated over the next decade. However the co-location of electrolyzers with NPPs requires an understanding and mitigation of potential risks. In this work we identify and rank failure contributors for a 1 MW PEM electrolysis system. We used fault trees to define the component failure logic parameterized them with generic data and calculated failure frequencies and minimal cut sets for four top events: hydrogen release oxygen release nitrogen release and hydrogen and oxygen mixing. We use risk reduction worth importance measures to determine the most risk-significant components. The results provide insight into primary risk drivers in PEM electrolyzer systems and provide the foundational steps towards quantitative risk assessment of large-scale PEM electrolyzers at NPPs. The results include recommended riskmitigation actions include recommendations about design maintenance and monitoring strategies.
Emerging Application of Solid Oxide Electrolysis Cells in Hydrogen Production: A Comprehensive Analytic Review and Life Cycle Assessment
Aug 2025
Publication
This paper provides a comprehensive analytical review and life cycle assessment (LCA) of solid oxide electrolysis cells (SOECs) for hydrogen production. As the global energy landscape shifts toward cleaner and more sustainable solutions SOECs offer a promising pathway for hydrogen generation by utilizing water as a feedstock. Despite their potential challenges in efficiency economic viability and technological barriers remain. This review explores the evolution of SOECs highlighting key advancements and innovations over time and examines their operational principles efficiency factors and classification by operational temperature range. It further addresses critical technological challenges and potential breakthroughs alongside an indepth assessment of economic feasibility covering production cost comparisons hydrogen storage capacity and plant viability and an LCA evaluating environmental impacts and sustainability. The findings underscore SOECs’ progress and their crucial role in advancing hydrogen production while pointing to the need for further research to overcome existing limitations and enhance commercial viability.
High-performance Hydrogen Energy Generation via Innovative Metal-organic Framework Catalysts and Integrated System Design
Aug 2025
Publication
Hydrogen energy generation faces challenges in efficiency and economic viability due to reliance on scarce noble metal catalysts. This study aimed to develop platinum-doped nickel-iron metal-organic framework (Pt-NiFe-MOF) catalysts with controlled metal ratios and pore architecture for enhanced water electrolysis. The NiFe-MOF framework was first synthesized via a solvothermal method which was then subjected to post-synthetic modification to introduce controlled platinum loadings (0.5- 2.0 wt%). The pore structure was tuned using a mixed-linker strategy (H₄DOBDC ratios 1:0 to 1:1). Catalysts were characterized using PXRD HRTEM BET XPS and ICP-OES techniques. Electrochemical performance was analyzed in 1.0 M KOH. A custom-designed integrated electrolysis system at 75 °C assessed practical performance. The Pt-NiFe-MOF-1.0 catalyst with H₄DOBDC ratio of 1:0.5 achieved remarkable effectiveness requiring overpotentials of only 253 mV for OER and 58 mV for HER when operating at 10 mA/cm². This catalyst featured an optimal pore diameter of 4.2 nm and surface area of 1325 m²/g. DFT calculations revealed platinum incorporation created synergistic effects by modifying hydrogen binding energies. Furthermore DFT calculations and XPS analysis revealed that the role of platinum in the OER is not direct catalysis but rather a powerful electronic modulation effect; Pt dopants withdraw electron density from adjacent Ni and Fe centers promoting the formation of higher-valent Ni³⁺/Fe³⁺ species that are intrinsically more active and lowering the energy barrier for the rate-determining O-O bond formation step. The integrated system achieved 1.62V at 100 mA/cm² with 75.8% energy efficiency maintaining stability for 200 h with 15–30 times lower precious metal loading than conventional systems. Strategic incorporation of low platinum concentrations within optimized NiFe-MOF structures significantly enhances water electrolysis performance while maintaining economic viability advancing development of industrial-scale hydrogen generation systems.
No more items...