Production & Supply Chain
Analysis of Floating Photovoltaics Potential in Hong Kong: Green Hydrogen Production and Energy Application
Oct 2025
Publication
Solar energy is now one of the most affordable and widely available energy sources. However densely populated cities like Hong Kong often lack the land needed for large-scale solar deployment. Floating solar photovoltaics (FPV) offer a promising alternative by using water surfaces such as reservoirs while providing additional benefits over ground-mounted systems including competition with urban development such as housing and infrastructure. The advantage of this system has been explored in parts of the world while Hong Kong is yet to fully exploit it despite the presence of pilot projects. This study uses PVsyst to evaluate FPV deployment across Hong Kong’s reservoirs estimating over 7 TWh of potential annual electricity generation. Even with 60 % surface coverage generation reaches 4.6 TWh/year with LCOE between $0.036–$0.038/kWh. In parallel green hydrogen is explored as a clean energy storage solution and alternative transport fuel. By using electricity from FPV systems hydrogen production via electrolysis is assessed through HOMER Pro. Results show annual hydrogen output ranging from 180502 kg to 36310221 kg depending on reservoir size with associated LCOH between $10.2/kg and $19.4/kg. The hydrogen produced could support ongoing hydrogen bus projects and future expansion to other vehicle types as Hong Kong moves toward a hydrogen-based transport system. After coupling the FPV systems with hydrogen-generation units the new LCOEs are found to be between $0.029–4.01/ kWh. Thus suggesting the feasibility of a hydrogen-integrated FPV system in Hong Kong.
Metal–Organic Frameworks for Seawater Electrolysis and Hydrogen Production: A Review
Oct 2025
Publication
Electrolysis utilizing renewable electricity is an environmentally friendly non-polluting and sustainable method of hydrogen production. Seawater is the most desirable and inexpensive electrolyte for this process to achieve commercial acceptance compared to competing hydrogen production technologies. We reviewed metal–organic frameworks as possible electrocatalysts for hydrogen production by seawater electrolysis. Metal–organic frameworks are interesting for seawater electrolysis due to their large surface area tunable permeability and ease of functional processing which makes them extremely suitable for obtaining modifiable electrode structures. Here we discussed the development of metal– organic framework-based electrocatalysts as multifunctional materials with applications for alkaline PEM and direct seawater electrolysis for hydrogen production. Their advantages and disadvantages were examined in search of a pathway to a successful and sustainable technology for developing electrode materials to produce hydrogen from seawater.
Synergistic Coupling of Waste Heat and Power to Gas via PEM Electrolysis for District Heating Applications
Sep 2025
Publication
This work explores the integration of Proton Exchange Membrane (PEM) electrolysis waste heat with district heating networks (DHN) aiming to enhance the overall energy efficiency and economic viability of hydrogen production systems. PEM electrolysers generate substantial amounts of low-temperature waste heat during operation which is often dissipated and left unutilised. By recovering such thermal energy and selling it to district heating systems a synergistic energy pathway that supports both green hydrogen production and sustainable urban heating can be achieved. The study investigates how the electrolyser’s operating temperature ranging between 50 and 80 ◦C influences both hydrogen production and thermal energy availability exploring trade-offs between electrical efficiency and heat recovery potential. Furthermore the study evaluates the compatibility of the recovered heat with common heat emission systems such as radiators fan coils and radiant floors. Results indicate that valorising waste heat can enhance the overall system performance by reducing the electrolyser’s specific energy consumption and its levelized cost of hydrogen (LCOH) while supplying carbon-free thermal energy for the end users. This integrated approach contributes to the broader goal of sector coupling offering a pathway toward more resilient flexible and resource-efficient energy systems.
Working with Uncertainty in Life cycle Costing: New Approach Applied to the Case Study on Proton Exchange Membrane Water Electrolysis
Jul 2025
Publication
Hydrogen recognized as a critical energy source requires green production methods such as proton exchange membrane water electrolysis (PEMWE) powered by renewable energy. This is a key step toward sustainable development with economic analysis playing an essential role. Life cycle costing (LCC) is commonly used to evaluate economic feasibility but traditional LCC analyses often provide a single cost outcome which limits their applicability across diverse regional contexts. To address these challenges a Python-based tool is developed in this paper integrating a bottom-up approach with net present value (NPV) calculations and Monte Carlo simulations. The tool allows users to manage uncertainty by intervening in the input data producing a range of outcomes rather than a single deterministic result thus offering greater flexibility in decision-making. Applying the tool to a 5 MW PEMWE plant in Germany the total cost of ownership (TCO) is estimated to range between €52 million and €82.5 million with hydrogen production costs between 5.5 and 11.4 €/kg H2. There is a 95% probability that actual costs fall within this range. Sensitivity analysis reveals that energy prices are the key contributors to LCC accounting for 95% of the variance in LCC while iridium membrane materials and power electronics contribute to 75% of the variation in construction-phase costs. These findings underscore the importance of renewable energy integration and circular economy strategies in reducing LCC.
Thermal Design and Economic Optimization of a Solar Tower for Hydrogen Production
Oct 2025
Publication
Harnessing renewable energy for sustainable hydrogen production is a pivotal step towards a greener future. This study explores integrating solar tower (ST) technology with thermal energy storage and a power cycle to drive a PEM electrolyzer for green hydrogen production. A comprehensive investigation is conducted to evaluate the thermodynamic performance of the integrated system including an exergoeconomic analysis to evaluate and optimize techno-economic performance. Exergy analysis reveals that the main components responsible for 84 % of the total exergy destruction are the ST with 60 % the heat exchanger with 16 % and the electrolyzer with 8 %. The hydrogen production cost varies with operational parameters e.g. increased solar radiation reduces the cost to 4.5 $/kg at 1000 W/m2 . Furthermore the overall system performance is evaluated and monitored using overall effectiveness exergy efficiency and hydrogen production cost for full-day operation at hourly intervals based on the design set operating conditions versus optimized ones using the conjugate optimization. The findings indicate that the optimization improved the average overall effectiveness from 29.3 % to 31.2 % and the average exergy efficiency from 36 % to 40 % while the average hydrogen cost is reduced from 4.6 to 4.3 $/kg.
Waste to Hydrogen: Steam Gasification of Municipal Solid wastes with Carbon Capture for Enhanced Hydrogen Production
Apr 2025
Publication
The research focuses on enhancing hydrogen production using a blend of municipal solid waste (MSW) with Biomass and mixed plastic waste (MPW) under the Bioenergy with Carbon Capture Utilisation and Storage (BECCUS) concept. The key challenges include optimising the feedstock blends and gasification process parameters to maximise hydrogen yield and carbon dioxide capture. This study introduces a novel approach that employs sorption-enhanced gasification and a high-temperature regenerator reactor. Using this method syngas streams with high hydrogen contents of up to 93 mol% and 66 mol% were produced respectively. Thermodynamic simulations with Aspen Plus® validated the integrated system for achieving high-purity hydrogen (99.99 mol%) and effective carbon dioxide isolation. The system produced 70.33 molH2 /kgfeed when using steam as a gasifying agent while 37.95 molH2 /kgfeed was produced under air gasification conditions. Case I employed a mixture of MSW and wood residue at a ratio of 1:1.25 with steam and calcium oxide added at 2:1 and 0.92:1 respectively resulting in 68.80 molH2 /kgfeed and a CO2 capture efficiency of 92 %. Case II utilised MSW and MPW at a 1:1 ratio with steam and calcium oxide at 2:1 and 0.4:1 respectively producing 100.17 molH2 /kgfeed and achieving a 90.09 % CO2 capture efficiency. The optimised parameters significantly improve hydrogen yield and carbon capture offering valuable insights for BECCUS applications.
Influence of Catalytic Support on Hydrogen Production from Glycerol Steam Reforming
Oct 2025
Publication
The use of hydrogen as an energy carrier represents a promising alternative for mitigating climate change. However its practical application requires achieving a high degree of purity throughout the production process. In this study the influence of the type of catalytic support on H2 production via steam glycerol reforming was evaluated with the objective of obtaining syngas with the highest possible H2 concentration. Three types of support were analyzed: two natural materials (zeolite and dolomite) and one metal oxide alumina. Alumina and dolomite were coated with Ni at different loadings while zeolite was only evaluated without Ni. Reforming experiments were carried out at a constant temperature of 850 ◦C with continuous monitoring of H2 CO2 CO and CH4 concentrations. The results showed that zeolite yielded the lowest H2 concentration (51%) mainly due to amorphization at high temperatures and the limited effectiveness of physical adsorption processes. In contrast alumina and dolomite achieved H2 purities of around 70% which increased with Ni loading. The improvement was particularly significant in dolomite owing to its higher porosity and the recarbonation processes of CaO enabling H2 purities of up to 90%.
Hydrogen Production Through Newly Developed Photocatalytic Nanostructures and Composite Materials
Jun 2025
Publication
Photocatalytic hydrogen (H2) production offers a promising solution to energy shortages and environmental challenges by converting solar energy into chemical energy. Hydrogen as a versatile energy carrier can be generated through photocatalysis under sunlight or via electrolysis powered by solar or wind energy. However the advancement of photocatalysis is hindered by the limited availability of effective visible light-responsive semiconductors and the challenges of charge separation and transport. To address these issues researchers are focusing on the development of novel nanostructured semiconductors and composite materials that can enhance photocatalytic performance. In this paper we provide an overview of the advanced photocatalytic materials prepared so far that can be activated by sunlight and their efficiency in H2 production. One of the key strategies in this research area concerns improving the separation and transfer of electron–hole pairs generated by light which can significantly boost H2 production. Advanced hybrid materials such as organic–inorganic hybrid composites consisting of a combination of polymers with metal oxide photocatalysts and the creation of heterojunctions are seen as effective methods to improve charge separation and interfacial interactions. The development of Schottky heterojunctions Z-type heterojunctions p–n heterojunctions from nanostructures and the incorporation of nonmetallic atoms have proven to reduce photocorrosion and enhance photocatalytic efficiency. Despite these advancements designing efficient semiconductor-based heterojunctions at the atomic scale remains a significant challenge for the realization of large-scale photocatalytic H2 production. In this review state-of-the-art advancements in photocatalytic hydrogen production are presented and discussed in detail with a focus on photocatalytic nanostructures heterojunctions and hybrid composites.
Exploring Natural Hydrogen Potential in Alberta's Western Canadian Sedimentary Basin
Oct 2025
Publication
Natural hydrogen or "white hydrogen" has recently garnered attention as a viable and cost-effective energy resource due to its low-carbon footprint and high energy density positioning it as a key contributor to the transition towards a sustainable low-carbon energy system. This study represents Alberta’s first systematic effort to evaluate natural hydrogen potential in the province using publicly available geological geospatial and gas composition datasets. By mapping hydrogen occurrences against key geological features in the Western Canadian Sedimentary Basin (WCSB) we identify regions with strong geological potential for natural hydrogen generation migration and accumulation while addressing data uncertainties. Within the WCSB formations like the Montney Cardium Bearpaw Manville Belly River McMurray and Lea Park are identified as zones likely for hydrogen generation by prominent mechanisms including hydrocarbon decomposition water-rock reactions with iron-rich sediments and organic pyrolysis. Formation proximity to the underlying Canadian Shield may also suggest potential for basement-derived hydrogen migration via deep-seated faults and shear zones. Salt deposits (Elk Point Group - Prairie evaporites Cold Lake and Lotsberg) and deep shales (e.g. Kaskapau Lea Park Wapiabi) provide effective cap rock potential while reservoirs like porous sandstone (e.g. Dunvegan Spirit River Cardium) and fractured carbonate (e.g. Keg River) formations offer favorable accumulation conditions. Hydrogen occurrences in relation to geological features identify Southern Eastern and West-Central plains as prominent natural Hydrogen generation and accumulation areas. Alberta’s established energy infrastructure as well as subsurface expertise positions it as a potential leader in natural hydrogen exploration. As Alberta’s first systematic investigation this study provides a preliminary assessment of natural hydrogen potential and outlines recommended next steps to guide future exploration and research. Targeted research on specific generation and accumulation mechanisms and source identification through isotopic and geochemical fingerprinting will be crucial for exploration de-risking and viability assessment in support of net-zero emission initiatives.
Enhancing Durability of Raney-Ni-based Electrodes for Hydrogen Evolution Reaction in Alkaline Water Electrolysis: Mitigating Reverse Current and H2 Bubble Effects using a NiP Protective Layer
Oct 2025
Publication
Raney Ni (R-Ni) electrodes are used as hydrogen evolution reaction catalysts in alkaline water electrolysis (AWE). However they are not durable because of reverse current-induced oxidation and catalyst damage from H2 bubbles. Reverse current triggers Ni phase changes and mechanical stress leading to catalyst delamination while bubbles block active sites increase resistance and cause structural damage. These issues have been addressed individually but not simultaneously. In this study a P-doped Ni (NiP) protective layer is electroplated on the R-Ni electrode to overcome both challenges. The NiP protective layer inhibits oxidation reducing Ni phase changes and preventing catalyst delamination. Enhanced surface wettability minimizes nucleation and facilitates faster bubble detachment reducing bubble-related damage. Electrochemical tests reveal that NiP/R-Ni exhibits a 26 mV lower overpotential than that of R-Ni at −400 mA cm−2 indicating higher catalytic activity. Accelerated degradation tests (ADTs) demonstrate the retention of the NiP/R-Ni catalyst layer with only a 25 mV increase in overpotential after ADT which is significantly less than that of R-Ni. Real-time impedance analysis reveals the presence of small rapidly detaching bubbles on NiP/R-Ni. Overall the NiP protective layer on R-Ni simultaneously mitigates both reverse current and H2 bubble-induced degradation improving catalytic activity and durability during AWE.
Quantifying Natural Hydrogen Generation Rates and Volumetric Potential in Onshore Serpentinization
Mar 2025
Publication
This study explores the generation of natural hydrogen through the serpentinization of onshore ultramafic rocks highlighting its potential as a clean energy resource. By investigating critical factors such as mineral composition temperature and pressure the research develops an empirical model using multiple regression analysis to predict hydrogen generation rates under varying geological conditions. A novel five-stage volumetric calculation methodology is introduced to estimate hydrogen production from ultramafic rock bodies. The application of this framework to the Giles Complex an ultramafic-mafic intrusion in Australia suggests a hydrogen generation potential of approximately 2.24 × 1013 kg of hydrogen through partial serpentinization. This estimate is based on the assumed mineral composition depth and temperature conditions within the intrusion which influence the extent of serpentinization reactions. The findings demonstrate the significant potential of ultramafic complexes for natural hydrogen production and provide a foundation for advancing natural hydrogen exploration refining predictive models and supporting sustainable energy development.
Comprehensive Review of Emerging Trends in Thermal Energy Storage Mechanisms, Materials and Applications
Aug 2025
Publication
Thermal energy storage (TES) technologies are emerging as key enablers of sustainable energy systems by providing flexibility and efficiency in managing thermal resources across diverse applications. This review comprehensively examines the latest advancements in TES mechanisms materials and structural designs including sensible heat latent heat and thermochemical storage systems. Recent innovations in nano-enhanced phase change materials (PCMs) hybrid TES configurations and intelligent system integration are highlighted. The role of advanced computational methods such as digital twins and AI-based optimization in enhancing TES performance is also explored. Applications in renewable energy systems industrial processes district heating networks and green hydrogen production are discussed along with associated challenges and future research directions. This review aims to synthesize current knowledge while identifying pathways for accelerating the development and practical deployment of next-generation TES technologies.
Feasibility of Using Rainwater for Hydrogen Production via Electrolysis: Experimental Evaluation and Ionic Analysis
Oct 2025
Publication
This study evaluates the feasibility of employing rainwater as an alternative feedstock for hydrogen production via electrolysis. While conventional systems typically rely on high-purity water—such as deionized or distilled variants—these can be cost-prohibitive and environmentally intensive. Rainwater being naturally available and minimally treated presents a potential sustainable alternative. In this work a series of comparative experiments was conducted using a proton exchange membrane electrolyzer system operating with both deionized water and rainwater collected from different Austrian locations. The chemical composition of rainwater samples was assessed through inductively coupled plasma ion chromatography and visual rapid tests to identify impurities and ionic profiles. The electrolyzer’s performance was evaluated under equivalent operating conditions. Results indicate that rainwater in some cases yielded comparable or marginally superior efficiency compared to deionized water attributed to its inherent ionic content. The study also examines the operational risks linked to trace contaminants and explores possible strategies for their mitigation.
Risk Assessment of Offshore Wind–Solar–Current Energy Coupling Hydrogen Production Project Based on Hybrid Weighting Method and Aggregation Operator
Oct 2025
Publication
Under the dual pressures of global climate change and energy structure transition the offshore wind–solar–current energy coupling hydrogen production (OCWPHP) system has emerged as a promising integrated energy solution. However its complex multi-energy structure and harsh marine environment introduce systemic risks that are challenging to assess comprehensively using traditional methods. To address this we develop a novel risk assessment framework based on hesitant fuzzy sets (HFS) establishing a multidimensional risk criteria system covering economic technical social political and environmental aspects. A hybrid weighting method integrating AHP entropy weighting and consensus adjustment is proposed to determine expert weights while minimizing risk information loss. Two aggregation operators—AHFOWA and AHFOWG—are applied to enhance uncertainty modeling. A case study of an OCWPHP project in the East China Sea is conducted with the overall risk level assessed as “Medium.” Comparative analysis with the classical Cumulative Prospect Theory (CPT) method shows that our approach yields a risk value of 0.4764 closely aligning with the CPT result of 0.4745 thereby confirming the feasibility and credibility of the proposed framework. This study provides both theoretical support and practical guidance for early-stage risk assessment of OCWPHP projects.
A Comparative Study of Alternative Polymer Binders for the Hydrogen Evolution Reaction
Aug 2025
Publication
Given the economic industrial and environmental value of green dihydrogen (H2) optimization of water electrolysis as a means of producing H2 is essential. Binders are a crucial component of electrocatalysts yet they remain largely underdeveloped with a significant lack of standardization in the field. Therefore targeted research into the development of alternative binder systems is essential for advancing performance and consistency. Binders essentially act as the key to regulating the electrode (support)–catalyst–electrolyte interfacial junctions and contribute to the overall reactivity of the electrocatalyst assembly. Therefore alternative binders were explored with a focus on cost efficiency and environmental compatibility striving to achieve desirable activity and stability. Herein the alkaline hydrogen evolution reaction (HER) was investigated and the sluggish water dissociation step was targeted. Controlled hydrophilic poly(vinyl alcohol)-based hydrogel binders were designed for this application. Three hydrogel binders were evaluated without incorporated electrocatalysts namely PVA145 PVA145-blend-bPEI1.8 and PVA145-blend-PPy. Interestingly the study revealed that the hydrophilicity of the binders exhibited an enhancing effect on the observed activity resulting in improved performance compared to the commercial binder Nafion™. Notably the PVA145 system stands out with an overpotential of 224 mV at−10 mA·cm−2 (geometric) in 1.0 M KOH compared to the 238 mV exhibited by Nafion™. Inclusion of Pt as active material in PVA145 as binder exhibited a synergistic increase in performance achieving a mass activity of 1.174 A.cm−2.mg−1 Pt in comparison to Nafion™’s 0.344 A.cm−2.mg−1 Pt measured at−150 mV vs RHE. Our research aimed to contribute to the development of cost-effective and efficient binder systems stressing the necessity to challenge the dominance of the commercially available binders.
Biohydrogen Production from Industrial Waste: The Role of Pretreatment Methods
Oct 2025
Publication
This study aimed to investigate the effectiveness of dark fermentation in biohydrogen production from agro-industrial wastes including apple pomace brewer’s grains molasses and potato powder subjected to different pretreatment methods. The experiments were conducted at a laboratory scale using 1000 cm3 anaerobic reactors at a temperature of 35 ◦C and anaerobic sludge as the inoculum. The highest yield of hydrogen was obtained from pre-treated apple pomace (101 cm3/g VS). Molasses a less complex substrate compared to the other raw materials produced 25% more hydrogen yield following pretreatment. Methanogens are sensitive to high temperatures and low-pH conditions. Nevertheless methane constituted 1–6% of the total biogas under these conditions. The key factor was appropriate treatment of the inoculum to limit competition from methanogens. Increasing the inoculum dose from 150 cm3/dm3 to 250 cm3/dm3 had no further effect on biogas production. The physicochemical parameters and VFA data confirmed the stability and usefulness of activated sludge as a source of microbial cultures for H2 production via dark fermentation.
Maximization and Efficient Production Rates of Different Zero Carbon Electrofuels using Dry Alkaline Electroyzers
Aug 2025
Publication
The present work focused on the comparison between HHO and hydrogen electrolyzers in design gas production and various parameters which affect the performance and efficiency of alkaline electrolyzers. The primary goal is to generate the highest possible hydrogen and HHO gas flow rates. Hydrogen and HHO were produced using 3 mm electrode of stainless steel 316L with 224 cm2 surface area. Hydroxy and hydrogen rates were affected by electrolyte content cell connection electric current operating time electrolyte temperature and voltage. Maximum HHO generation values were 1020 1076 1125 and 1175 mL min−1 n at 5 10 15 and 20 g L−1 of sodium hydroxide (NaOH) with supply currents of 15 15.3 15.6 and 16 A respectively. Once it stabilized after 30 min the temperature increased to 26 30 35 and 38 °C respectively and remained there. With currents of 18 18.45 18.7 19.2 19.5 and 19.8 A hydrogen output peak values after 60 min. stayed constant at 680 734 785 846 897 and 945 mL min-1. at 5 10 15 and 20 g L−1 NaOH catalyst concentrations. At 5 10 15 and 20 g L−1 catalyst ratios the temperatures were elevated to constant values of 28.5 32 37.9 40.5 41.4 and 43 °C respectively. With cell design [4C3A19N] electrolyte concentration of 5 g L−1 NaOH and current of 14 A maximum HHO productivity was 866 mL min−1. and 74.23% efficiency. In a cell design of [4C5A17N] with catalyst content of 10 g L−1 maximum productivity was 680 mL min−1 for hydrogen and highest production efficiency of 72.85% was attained at 18 A.
Optimization Using RSM of Combined Cycle of Power, NG, and Hydrogen Production by a Bi-geothermal Energy Resource and LNG Heat Sink
Aug 2025
Publication
This study presents a comprehensive optimization of a tri-generation system that integrates dual geothermal wells Liquefied Natural Gas (LNG) cold energy recovery and hydrogen production using an advanced Response Surface Methodology (RSM) approach. The system combines two geothermal wells with different temperature profiles power generation via an Organic Rankine Cycle (ORC) and hydrogen production through a Proton Exchange Membrane (PEM) electrolyzer enhanced by integrated LNG regasification for improved energy recovery. The primary novelty of this work lies in the first application of RSM for multi-objective optimization of geothermal-based tri-generation systems moving beyond the conventional single-objective approaches. A 40-run experimental design is employed to simultaneously optimize three critical performance indicators: exergy efficiency power-specific cost and hydrogen production rate considering six key operating parameters. The RSM framework enables systematic exploration of parameter interactions and delivers statistically validated predictive models offering a robust and computationally efficient optimization strategy. The optimized system achieves outstanding performance with an exergy efficiency of 44.60% a competitive power-specific cost of 19.70 $/GJ and a hydrogen production rate of 5.15 kg/hr. Comparative analysis against prior studies confirms the superiority of the RSM-based approach demonstrating a 1% improvement in exergy efficiency (44.60% vs. 44.16%) a significant 44.1% increase in hydrogen production rate (5.15 kg/hr vs. 3.575 kg/hr) and a 0.81% reduction in power-specific cost compared to genetic algorithm-based optimization.
Process Integration and Exergy-based Assessment of High-temperature Solid Oxide Electrolysis Configurations
Sep 2025
Publication
Solid oxide electrolysis (SOEL) is considered an efficient option for largely emission-free hydrogen production and thus for supporting the decarbonization of the process industry. The thermodynamic advantages of high-temperature operation can be utilized particularly when heat integration from subsequent processes is realized. As the produced hydrogen is usually required at a higher pressure level the operating pressure of the electrolysis is a relevant design parameter. The study compares pressurized and near-atmospheric designs of 126 MW SOEL systems with and without the integration of process heat from a downstream ammonia synthesis and the inefficiencies that occur in the processes. Furthermore process improvements by sweep-air utilization are investigated. Pinch analysis is applied to determine the potential of internal heat recovery and the minimum external heating and cooling demand. It is shown that pressurized SOEL operation does not necessarily decrease the overall power consumption for compression due to the high power requirement of the sweep-air compressor. The exergetic efficiencies of the standalone SOEL processes achieve similar values of = 81 %. Results further show that integrating the heat of reaction from ammonia synthesis can replace almost the entire electrically supplied thermal energy thereby improving the overall exergetic efficiency by up to 3.5 percentage points. However the exergetic efficiency strongly depends on the applied air ratio. The highest exergetic efficiency of 86 % can be achieved by employing sweep-air utilization with an expander. The results demonstrate that integrating downstream process heat and applying sweep-air utilization can significantly enhance overall efficiency and thus reduce external energy requirements.
Design and Assessment of an Integrated PV-based Hydrogen Production Facility
Jun 2025
Publication
This study develops a photovoltaic (PV)-based hydrogen production system specifically designed for university campuses which is expected to lead in sustainability efforts. The proposed system aims to meet the electricity demand of a Hydrogen Research Center while supplying energy to an electric charging station and a hydrogen refueling station for battery-electric and fuel-cell electric vehicles operating within the campus. In this integrated system the electricity generation capacity of PV panels installed on the research center’s roof is determined and the surplus electricity after meeting the energy demand is allocated to cover the varying proportions needed for both electric charging station and hydrogen production system. The green hydrogen produced by the system is compressed to 100 350 and 700 bar with intermediate cooling stages where the heat generated at the compressor outlet is absorbed by a cooling fluid and repurposed in a condenser for domestic hot water production. A full thermodynamic analysis of this entirely renewable energy-powered system is conducted by considering a 9-hour daily operational period from 8:00 AM to 5:00 PM. The average incoming solar radiation is determined to be 484.63 W/m2 resulting in an annual electricity generation capacity of 494.86 MWh. Based on the assumptions and data considered the energy and exergy efficiencies of the proposed system are calculated as 17.71 % and 17.01 % respectively with an annual hydrogen production capacity of 3.642 tons. Various parametric studies are performed for varying solar intensity values and PV surface areas to investigate how the overall system capacities and efficiencies are affected. The results show that an integration of hydrogen production systems with solar energy offers significant advantages including mitigating intermittency issues found in standalone renewable systems reducing carbon emissions compared to fossil-based alternatives and enhancing the flexibility of energy systems.
No more items...