Regulations, Codes & Standards (RCS)
H2FC European Infrastructure; Research Opportunities to Focus on Scientific and Technical Bottlenecks
Sep 2013
Publication
The European Strategy Forum on Research Infrastructures (ESFRI) recognizes in its roadmap for Research Infrastructures that ?in the near future hydrogen as an energy carrier derived from various other fuels and fuel cells as energy transformers are expected to come into a major role for mobility but also for different other mobile and stationary applications? |1|. This modern hydrogen driven society lags far behind the reality. Because of that it is conform to question the current situation concerning the belief that already most is comprehensively investigated and developed concerning hydrogen technology is correct and already done. From that it appears the hydrogen technology is market ready only partial and not prepared in a sufficient way to get finally included and adopted in modern hydrogen driven society and especially the acceptance of the society is a critical. Beside this critical view through society several scientific and technical bottlenecks still discoverable. Nevertheless it is possible to foster furthermore science and development on hydrogen technology. The ?Integrating European Infrastructure? was created to support science and development of hydrogen and fuel cell technologies towards European strategy for sustainable competitive and secure energy also while identifying scientific and technical bottlenecks to support solutions based on. Its acronym is H2FC European Infrastructure and was formed to integrate the European R&D community around rare and/or unique infrastructural elements that will facilitate and significantly enhance the research and development of hydrogen and fuel cell technology.
Hy4Heat Hydrogen Purity - Work Package 2
Feb 2020
Publication
The report makes a recommendation for a minimum hydrogen purity standard to be used by manufacturers developing prototype hydrogen appliances and during their subsequent demonstration as part of the Hy4Heat programme. It makes a recommendation for a hydrogen purity level with the aim that it is reasonable and practicable and considers implications related to hydrogen production the gas network and cost.
This report and any attachment is freely available on the Hy4Heat website here. The report can also be downloaded directly by clicking on the pdf icon above
This report and any attachment is freely available on the Hy4Heat website here. The report can also be downloaded directly by clicking on the pdf icon above
Risk Assessment for Hydrogen Codes and Standards
Sep 2005
Publication
The development and promulgation of codes and standards are essential to establish a market-receptive environment for commercial hydrogen-based products and systems. The focus of the U.S. Department of Energy (DOE) is to conduct the research and development (R&D) needed to strengthen the scientific basis for technical requirements incorporated in national and international standards codes and regulations. In the U.S. the DOE and its industry partners have formed a Codes and Standards Tech Team (CSTT) to help guide the R&D. The CSTT has adopted an R&D Roadmap to achieve a substantial and verified database of the properties and behaviour of hydrogen and the performance characteristics of emerging hydrogen technology applications sufficient to enable the development of effective codes and standards for these applications. However to develop a more structured approach to the R&D described above the CSTT conducted a workshop on Risk Assessment for Hydrogen Codes and Standards in March 2005. The purpose of the workshop was to attain a consensus among invited experts on the protocols and data needed to address the development of risk-informed standards codes and regulations for hydrogen used as an energy carrier by consumers. Participants at the workshop identified and assessed requirements methodologies and applicability of risk assessment (RA) tools to develop a framework to conduct RA activities to address for example hydrogen fuel distribution delivery on-site storage and dispensing and hydrogen vehicle servicing and parking. The CSTT was particularly interested in obtaining the advice of RA experts and representatives of standards and model code developing organizations and industry on how data generated by R&D can be turned into information that is suitable for hydrogen codes and standards development. The paper reports on the results of the workshop and the RA activities that the DOE’s program on hydrogen safety codes and standards will undertake. These RA activities will help structure a comprehensive R&D effort that the DOE and its industry partners are undertaking to obtain the data and conduct the analysis and testing needed to establish a scientific and technical basis for hydrogen standards codes and regulations.
Evaluation of Metal Materials for Hydrogen Fuel Stations
Sep 2005
Publication
Under government funded project: "Development for Safe Utilization and Infrastructure of Hydrogen" entrusted by New Energy and Industrial Technology Development Organization (NEDO) special material testing equipment with heavy walled pressure vessel under 45MPa gaseous hydrogen is facilitated. Tensile properties strain controlled low-cycle and high-cycle fatigue and fatigue crack growth tests on CrMo steel (SCM435 (JIS G 4105)) which will be applied for the storage gas cylinders in Japanese hydrogen fuel stations are investigated. The results of the tensile tests under 45MPa ultra high purity hydrogen gas (O2<1ppm) at room temperature shows that there are no difference in yield and maximum tensile strength with those tested in air. However the reduced ductilities with brittle fracture surface were observed which indicates the occurrence of hydrogen environment embrittlement. It was also found by tensile tests that the embrittling origin is not only caused by machined traces on surface but also by the non-metallic inclusions dispersed on surface. Further discussions on surface treatment effects will be presented. In low cycle fatigue tests considerable reductions in cycles to failure in 45MPa ultra high purity hydrogen gas were observed. However there are tendencies that the effect of hydrogen environment embrittlement becomes not so significant as the plastic strain range decreases. It was demonstrated that there was no effect of hydrogen on fatigue limit and this implies that CrMo gas cylinders can be operated in limited fatigue safe condition. Another series of hydrogen test results temperature effect fatigue crack growth rate delayed fracture test using wedge opening loaded specimens and fatigue test of CrMo gas cylinders under repeated internal pressure with artificial crack will be presented.
Risk-Informed Process and Tools for Permitting Hydrogen Fueling Stations
Sep 2007
Publication
The permitting process for hydrogen fueling stations varies from country to country. However a common step in the permitting process is the demonstration that the proposed fueling station meets certain safety requirements. Currently many permitting authorities rely on compliance with well known codes and standards as a means to permit a facility. Current codes and standards for hydrogen facilities require certain safety features specify equipment made of material suitable for hydrogen environment and include separation or safety distances. Thus compliance with the code and standard requirements is widely accepted as evidence of a safe design. However to ensure that a hydrogen facility is indeed safe the code and standard requirements should be identified using a risk-informed process that utilizes an acceptable level of risk. When compliance with one or more code or standard requirements is not possible an evaluation of the risk associated with the exemptions to the requirements should be understood and conveyed to the Authority Having Jurisdiction (AHJ). Establishment of a consistent risk assessment toolset and associated data is essential to performing these risk evaluations. This paper describes an approach for risk-informing the permitting process for hydrogen fueling stations that relies primarily on the establishment of risk-informed codes and standards. The proposed risk-informed process begins with the establishment of acceptable risk criteria associated with the operation of hydrogen fueling stations. Using accepted Quantitative Risk Assessment (QRA) techniques and the established risk criteria the minimum code and standard requirements necessary to ensure the safe operation of hydrogen facilities can be identified. Risk informed permitting processes exist in some countries and are being developed in others. To facilitate consistent risk-informed approaches the participants in the International Energy Agency (IEA) Task 19 on hydrogen safety are working to identify acceptable risk criteria QRA models and supporting data.
Hydrogen Safety and Permitting Hydrogen Fueling Stations
Sep 2007
Publication
Two key aspects of hydrogen safety are (1) incorporating data and analysis from research development and demonstration (RD&D) into the codes and standards development process; and (2) adopting and enforcing these codes and standards by state and local permitting officials. This paper describes work that the U.S. Department of Energy (DOE) is sponsoring to address these aspects of hydrogen safety. For the first DOE is working with the automobile and energy industries to identify and address high priority RD&D to establish a sound scientific basis for requirements that are incorporated in hydrogen codes and standards. The high priority RD&D needs are incorporated and tracked in an RD&D Roadmap adopted by the Codes and Standards Technical Team of the FreedomCAR and Fuel Partnership. DOE and its national laboratories conduct critical RD&D and work with key standards and model code development organizations to help incorporate RD&D results into the codes and standards process. To address the second aspect DOE has launched an initiative to facilitate the permitting process for hydrogen fueling stations (HFS). A key element of this initiative will be a Web-based information repository a toolkit that includes information fact sheets networking charts to encourage information exchange among code officials who have permitted or are in the process of permitting HFS templates to show whether a proposed station footprint conforms to requirements in the jurisdiction and a database of requirements incorporated in key codes and standards. The information repository will be augmented by workshops for code officials and station developers in jurisdictions that are likely to have HFS in the near future.
Probability of Occurrence of ISO 14687-2 Contaminants in Hydrogen: Principles and Examples from Steam Methane Reforming and Electrolysis (Water and Chlor-alkali) Production Processes Model
Apr 2018
Publication
According to European Directive 2014/94/EU hydrogen providers have the responsibility to prove that their hydrogen is of suitable quality for fuel cell vehicles. Contaminants may originate from hydrogen production transportation refuelling station or maintenance operation. This study investigated the probability of presence of the 13 gaseous contaminants (ISO 14687-2) in hydrogen on 3 production processes: steam methane reforming (SMR) process with pressure swing adsorption (PSA) chlor-alkali membrane electrolysis process and water proton exchange membrane electrolysis process with temperature swing adsorption. The rationale behind the probability of contaminant presence according to process knowledge and existing barriers is highlighted. No contaminant was identified as possible or frequent for the three production processes except oxygen (frequent for chlor-alkali membrane process) carbon monoxide (frequent) and nitrogen (possible) for SMR with PSA. Based on it a hydrogen quality assurance plan following ISO 19880-8 can be devised to support hydrogen providers in monitoring the relevant contaminants.
Regulatory Mapping for Future Fuels
May 2020
Publication
Australia’s gas infrastructure is currently subject to regulations that were designed for a natural-gas only network system. Future Fuels CRC has released a full report and database of regulations to share exactly how Australia’s current gas regulations can be modernised to enable hydrogen biomethane and other potential future fuels.
This research thoroughly assessed Australia’s current regulatory framework to identify the regulations that will require modernisation to facilitate the use of future fuels within Australia’s energy networks and align them with the goals of Australia’s National Hydrogen Strategy. This study builds on the initial work completed as part of Australia’s National Hydrogen Strategy and creates a comprehensive regulatory map of relevant legislation across the natural gas production and supply chain which may be impacted by the addition of future fuels such as hydrogen and biomethane.
The research was delivered by RMIT University of Sydney and GPA Engineering supported by our industry and government participants APA APGA ATCO AusNet Services ENA Energy Safe Victoria Jemena and the South Australian Government.
The study’s report summarises the key issues and the direction of possible solutions. The study also created a database that holds details of legislation by state and territory as well as Commonwealth legislation and applicable Australian standards. The database is designed to be readily updated as these regulations continue to evolve.
The Australian energy industry and regulators benefit from this study by ensuring that any regulatory changes required for future fuels are identified early so that appropriate regulatory changes can be initiated and delivered. These changes will enable the many highly-regulated pilot projects happening across Australia to expand and develop under a modernised and effective regulatory environment.
You can find the full report on the Future Fuels CRC website here
This research thoroughly assessed Australia’s current regulatory framework to identify the regulations that will require modernisation to facilitate the use of future fuels within Australia’s energy networks and align them with the goals of Australia’s National Hydrogen Strategy. This study builds on the initial work completed as part of Australia’s National Hydrogen Strategy and creates a comprehensive regulatory map of relevant legislation across the natural gas production and supply chain which may be impacted by the addition of future fuels such as hydrogen and biomethane.
The research was delivered by RMIT University of Sydney and GPA Engineering supported by our industry and government participants APA APGA ATCO AusNet Services ENA Energy Safe Victoria Jemena and the South Australian Government.
The study’s report summarises the key issues and the direction of possible solutions. The study also created a database that holds details of legislation by state and territory as well as Commonwealth legislation and applicable Australian standards. The database is designed to be readily updated as these regulations continue to evolve.
The Australian energy industry and regulators benefit from this study by ensuring that any regulatory changes required for future fuels are identified early so that appropriate regulatory changes can be initiated and delivered. These changes will enable the many highly-regulated pilot projects happening across Australia to expand and develop under a modernised and effective regulatory environment.
You can find the full report on the Future Fuels CRC website here
Hy4Heat Domestic Hydrogen Purge Procedures - Work Package 4
Jun 2021
Publication
The aim of this project was to review the current purge standards for UK domestic installations in particular IGEM/UP/1B and carry out experiments to assess the validity of those standards for use in hydrogen in order to understand and recommend safe purge practices for hydrogen in a domestic environment.
This report provides the results and conclusions relating to the relative safety of purging domestic installations to hydrogen compared to Natural Gas and the implications of releasing any purged gas
into an enclosed volume representing a small room.
The two high-level findings from this work are:
The risks with hydrogen are associated with a wide range of flammability with methane the risks are smaller and mainly in lower concentrations of gas in air. Because of this it is particularly important to ensure hydrogen pipes are appropriately purged.
This report provides the results and conclusions relating to the relative safety of purging domestic installations to hydrogen compared to Natural Gas and the implications of releasing any purged gas
into an enclosed volume representing a small room.
The two high-level findings from this work are:
- changeover to hydrogen will result in an increased risk of flammability inside the installation pipework
- changeover to hydrogen will result in a reduced risk of a build-up of flammable gas in any room where purging occurs.
The risks with hydrogen are associated with a wide range of flammability with methane the risks are smaller and mainly in lower concentrations of gas in air. Because of this it is particularly important to ensure hydrogen pipes are appropriately purged.
Development of a Hydrogen Supplement for use with IGEM/SR/25
Jun 2022
Publication
In response to the UK Government’s commitment to achieve net-zero carbon emissions by 2050 a range of research and demonstration projects are underway to investigate the feasibility of using hydrogen in place of natural gas within the national transmission and distribution system. In order for these projects to achieve their full scope of work a mechanism for performing hazardous area classification for hydrogen installations is required. At present IGEM/SR/25 is used to undertake such assessments for natural gas installations but the standard is not currently applicable to hydrogen or hydrogen/natural gas blends.<br/>This report presents updated data and a summary of the recommended methodologies for hazardous area classification of installations using hydrogen or blends of up to 20% hydrogen in natural gas. The contents of this report are intended to provide a technical commentary and the data for a hydrogen-specific supplement to IGEM/SR/25. The supplement will specifically cover 100% hydrogen and a 20/80% by volume blend of hydrogen/natural gas. Reference to intermediate blends is included in this report where appropriate to cover the anticipated step-wise introduction of hydrogen into the natural gas network.<br/>This report is divided into a series of appendices each of which covers a specific area of the IGEM standard. Each appendix includes a summary of specific recommendations made to enable IGEM/SR/25 to be applied to hydrogen and blends of up to 20% hydrogen in natural gas. The reader is encouraged to review the individual appendices for specific conclusions associated with the topic areas addressed in this report.<br/>In general the existing methodologies and approaches used for area classification in IGEM/SR/25 have been deemed appropriate for installations using either hydrogen or blends of up to 20% hydrogen in natural gas. Where necessary revised versions of the equations and zoning distances used in the standard are presented which account for the influence of material property differences between natural gas and the two alternative fuels considered in this work.
Innovating Transport Across Australia: Inquiry into Automated Mass Transit
Mar 2019
Publication
Automated and electric mass transit will play a significant role in the connectivity of our cities and regions. But automated mass transit must be placed within the wider context of the optimum transport needs of those cities and regions— transport networks based on shared and multi-modal mobility. Realising the full potential of these networks will require sustained policy development and investment.<br/>This report examines current and future developments in the use of automation and new energy sources in land-based mass transit including rail and road mass transit point-to-point transport using automated vehicles and the role and responsibilities of the Commonwealth in the development of these technologies. It will analyse the opportunities and challenges presented by automation and new energy sources and the role the Australian Government has to play in managing this transport revolution.
Hydrogen Gas Quality for Gas Network Injection: State of the Art of Three Hydrogen Production Methods
Jun 2021
Publication
The widescale distribution of hydrogen through gas networks is promoted as a viable and cost-efficient option for optimising its application in heat industry and transport. It is a key step towards achieving decarbonisation targets in the UK. A key consideration before the injection of hydrogen into the UK gas networks is an assessment of the difference in hydrogen contaminants presence from different production methods. This information is essential for gas regulation and for further purification requirements. This study investigates the level of ISO 14687 Grade D contaminants in hydrogen from steam methane reforming proton exchange membrane water electrolysis and alkaline electrolysis. Sampling and analysis of hydrogen were carried out by the National Physical Laboratory following ISO 21087 guidance. The results of analysis indicated the presence of nitrogen in hydrogen from electrolysis and water carbon dioxide and particles in all samples analysed. The contaminants were at levels below or at the threshold limits set by ISO 14687 Grade D. This indicates that the investigated production methods are not a source of contaminants for the eventual utilisation of hydrogen in different applications including fuel cell electric vehicles (FCEV’s). The gas network infrastructure will require a similar analysis to determine the likelihood of contamination to hydrogen gas.
Installation Permitting Guidance for Hydrogen and Fuel Cell Stationary Applications: UK Version
Jan 2009
Publication
The HYPER project a specific targeted research project (STREP) funded by the European Commission under the Sixth Framework Programme developed an Installation Permitting Guide (IPG) for hydrogen and fuel cell stationary applications. The IPG was developed in response to the growing need for guidance to foster the use and facilitate installation of these systems in Europe. This document presents a modified version of the IPG specifically intended for the UK market. For example reference is made to UK national regulations standards and practices when appropriate as opposed to European ones.<br/>The IPG applies to stationary systems fuelled by hydrogen incorporating fuel cell devices with net electrical output of up to 10 kWel and with total power outputs of the order of 50 kW (combined heat + electrical) suitable for small back up power supplies residential heating combined heat-power (CHP) and small storage systems. Many of the guidelines appropriate for these small systems will also apply to systems up to 100 kWel which will serve small communities or groups of households. The document is not a standard but is a compendium of useful information for a variety of users with a role in installing these systems including design engineers manufacturers architects installers operators/maintenance workers and regulators.<br/>This report and the work it describes were funded by the Health and Safety Executive (HSE). Its contents including any opinions and/or conclusions expressed are those of the authors alone and do not necessarily reflect HSE policy.
Development of a Hydrogen Supplement for use with IGEM/SR/25
Nov 2022
Publication
In response to the UK Government’s commitment to achieve net-zero carbon emissions by 2050 a range of research and demonstration projects are underway to investigate the feasibility of using hydrogen in place of natural gas within the national transmission and distribution system. In order for these projects to achieve their full scope of work a mechanism for performing hazardous area classification for hydrogen installations is required. At present IGEM/SR/25 is used to undertake such assessments for natural gas installations but the standard is not currently applicable to hydrogen or hydrogen/natural gas blends.<br/>This report presents updated data and a summary of the recommended methodologies for hazardous area classification of installations using hydrogen or blends of up to 20% hydrogen in natural gas. The contents of this report are intended to provide a technical commentary and the data for a hydrogen-specific supplement to IGEM/SR/25. The supplement will specifically cover 100% hydrogen and a 20/80% by volume blend of hydrogen/natural gas. Reference to intermediate blends is included in this report where appropriate to cover the anticipated step-wise introduction of hydrogen into the natural gas network.<br/>This report is divided into a series of appendices each of which covers a specific area of the IGEM standard. Each appendix includes a summary of specific recommendations made to enable IGEM/SR/25 to be applied to hydrogen and blends of up to 20% hydrogen in natural gas. The reader is encouraged to review the individual appendices for specific conclusions associated with the topic areas addressed in this report.<br/>In general the existing methodologies and approaches used for area classification in IGEM/SR/25 have been deemed appropriate for installations using either hydrogen or blends of up to 20% hydrogen in natural gas. Where necessary revised versions of the equations and zoning distances used in the standard are presented which account for the influence of material property differences between natural gas and the two alternative fuels considered in this work.
Preparation of Gas Standards for Quality Assurance of Hydrogen Fuel
May 2022
Publication
This study has developed traceable standards for evaluating impurities in hydrogen fuel according to ISO 14687. Impurities in raw H2 including sub mmol/mol levels of CO CO2 and CH4 were analyzed using multiple detectors while avoiding contamination. The gravimetric standards prepared included mixtures of the following nominal concentrations: 1 2 3e5 8e11 17e23 and 47e65 mmol/mol for CO2 CH4 and CO O2 N2 Ar and He respectively. The expanded uncertainty ranges were 0.8% for Ar N2 and He 1% for CH4 and CO and 2% for CO2 and O2. These standards were stable while that for CO varied by only 0.5% during a time span of three years. The prepared standards are useful for evaluating the compliance of H2 fuel in service stations with ISO 14687 quality requirements.
Advances in Hydrogen, Carbon Dioxide, and Hydrocarbon Gas Sensor Technology Using GaN and ZnO-Based Devices
Jun 2009
Publication
In this paper we review our recent results in developing gas sensors for hydrogen using various device structures including ZnO nanowires and GaN High Electron Mobility Transistors (HEMTs). ZnO nanowires are particularly interesting because they have a large surface area to volume ratio which will improve sensitivity and because they operate at low current levels will have low power requirements in a sensor module. GaN-based devices offer the advantage of the HEMT structure high temperature operation and simple integration with existing fabrication technology and sensing systems. Improvements in sensitivity recoverability and reliability are presented. Also reported are demonstrations of detection of other gases including CO2 and C2H4 using functionalized GaN HEMTs. This is critical for the development of lab-on-a-chip type systems and can provide a significant advance towards a market-ready sensor application.
IGEM/TD/13 Edition 3 Supplement 1 - Pressure Regulating Installations for Hydrogen at Pressures Exceeding 7 Bar
Nov 2021
Publication
IGEM/TD/13 Standard applies to the safe design construction inspection testing operation and maintenance of pressure regulating installations (PRIs) in accordance with current knowledge and operational experience.
This Supplement provides additional requirements for new PRIs to be used for the transmission of Hydrogen including Natural Gas/Hydrogen blended mixtures (subsequently referred to as NG/H blends) and for the repurposing of Natural Gas (NG) PRIs for Hydrogen service.
NG/H blends are considered to be equivalent to 100 mol % Hydrogen with respect to limits on design stresses the potential effect on the material properties and damage and defect categories and acceptance levels unless an additional technical evaluation is carried out to qualify the materials.
NG/H blends containing in excess of 10 mol % Hydrogen are considered to be equivalent to 100 mol.% Hydrogen with respect to all other requirements except for hazardous areas.
This Supplement gives additional recommendations for PRIs and installations
You can purchase the standard here
This Supplement provides additional requirements for new PRIs to be used for the transmission of Hydrogen including Natural Gas/Hydrogen blended mixtures (subsequently referred to as NG/H blends) and for the repurposing of Natural Gas (NG) PRIs for Hydrogen service.
NG/H blends are considered to be equivalent to 100 mol % Hydrogen with respect to limits on design stresses the potential effect on the material properties and damage and defect categories and acceptance levels unless an additional technical evaluation is carried out to qualify the materials.
NG/H blends containing in excess of 10 mol % Hydrogen are considered to be equivalent to 100 mol.% Hydrogen with respect to all other requirements except for hazardous areas.
This Supplement gives additional recommendations for PRIs and installations
- with an upstream maximum operating pressure (MOP) not greater than 100 bar
- with an outlet pressure greater than or equal to 7 bar
- for use with Hydrogen or NG/H blends with a Hydrogen content greater than 10 %
- operating with a temperature range between -20°C and 120°C.
You can purchase the standard here
Notes on the Development of the Hydrogen Supplement to IGEM/TD13 > 7 bar
Nov 2021
Publication
IGEM/TD/13 Standard applies to the safe design construction inspection testing operation and maintenance of pressure regulating installations (PRIs) in accordance with current knowledge and operational experience.
This Supplement provides additional requirements for new PRIs to be used for the transmission of Hydrogen including Natural Gas/Hydrogen blended mixtures (subsequently referred to as NG/H blends) and for the repurposing of Natural Gas (NG) PRIs for Hydrogen service.
NG/H blends are considered to be equivalent to 100 mol % Hydrogen with respect to limits on design stresses the potential effect on the material properties and damage and defect categories and acceptance levels unless an additional technical evaluation is carried out to qualify the materials.
NG/H blends containing in excess of 10 mol % Hydrogen are considered to be equivalent to 100 mol.% Hydrogen with respect to all other requirements except for hazardous areas.
This Supplement gives additional recommendations for PRIs and installations:
This Supplement provides additional requirements for new PRIs to be used for the transmission of Hydrogen including Natural Gas/Hydrogen blended mixtures (subsequently referred to as NG/H blends) and for the repurposing of Natural Gas (NG) PRIs for Hydrogen service.
NG/H blends are considered to be equivalent to 100 mol % Hydrogen with respect to limits on design stresses the potential effect on the material properties and damage and defect categories and acceptance levels unless an additional technical evaluation is carried out to qualify the materials.
NG/H blends containing in excess of 10 mol % Hydrogen are considered to be equivalent to 100 mol.% Hydrogen with respect to all other requirements except for hazardous areas.
This Supplement gives additional recommendations for PRIs and installations:
- with an upstream maximum operating pressure (MOP) not greater than 100 bar
- with an outlet pressure greater than or equal to 7 bar
- for use with Hydrogen or NG/H blends with a Hydrogen content greater than 10 %
- operating with a temperature range between -20°C and 120°C.
Accelerating to Net Zero with Hydrogen Blending Standards Development in the UK, Canada and the US - Part 1
Mar 2021
Publication
"Hydrogen is expected to play a critical role in the move to a net-zero economy. However large-scale deployment is still in its infancy and there is still much to be done before we can blend hydrogen in large volumes into gas networks and ramp up the production that is required to meet demands of the energy transport and industry sectors. KTN Global Alliance will host two webinars to explore these challenges and opportunities in hydrogen blending on the 2nd and 3rd March 2021.
Exciting pilot projects are being conducted and explored in the UK Canada and US states such as California to determine the technical feasibility of blending hydrogen into existing natural gas systems. Whilst the deployment of hydrogen is in its early stages there is increasing interest around permitting significant percentage blends of hydrogen into gas networks which would enable the carbon intensity of gas supplies to be reduced creating a new demand for hydrogen and with the use of separation and purification technologies downstream support the transportation of pure hydrogen to markets.
Gaps in codes and standards need to be addressed to enable adoption and there may be opportunities for international collaboration and harmonisation to ensure that best practices are shared globally and to facilitate the growth of trade and export markets. There is an opportunity for the UK Canada and US three G7 countries to work together and show market making leadership in key enabling regulation for the new hydrogen economy.
Delivered by KTN Global Alliance on behalf of the British Consulate-General in Vancouver and the UK Science and Innovation Network in Canada and the US these two webinars will showcase hydrogen blending pilot projects in the UK Canada and California highlighting challenges and opportunities with regard to standards development for hydrogen blending and supporting further transatlantic collaboration in this area. The events also form part of the UK’s international engagement to build momentum towards a successful outcome at COP26 the UN climate summit that the UK will host in Glasgow in November 2021. The webinars will bring together experts from industry academia and policy from the UK Canada and California. Attendees will have an opportunity to ask questions and interact using Mentimeter."
Part 2 Highlights and Perspectives from Canada and California can be found here.
Exciting pilot projects are being conducted and explored in the UK Canada and US states such as California to determine the technical feasibility of blending hydrogen into existing natural gas systems. Whilst the deployment of hydrogen is in its early stages there is increasing interest around permitting significant percentage blends of hydrogen into gas networks which would enable the carbon intensity of gas supplies to be reduced creating a new demand for hydrogen and with the use of separation and purification technologies downstream support the transportation of pure hydrogen to markets.
Gaps in codes and standards need to be addressed to enable adoption and there may be opportunities for international collaboration and harmonisation to ensure that best practices are shared globally and to facilitate the growth of trade and export markets. There is an opportunity for the UK Canada and US three G7 countries to work together and show market making leadership in key enabling regulation for the new hydrogen economy.
Delivered by KTN Global Alliance on behalf of the British Consulate-General in Vancouver and the UK Science and Innovation Network in Canada and the US these two webinars will showcase hydrogen blending pilot projects in the UK Canada and California highlighting challenges and opportunities with regard to standards development for hydrogen blending and supporting further transatlantic collaboration in this area. The events also form part of the UK’s international engagement to build momentum towards a successful outcome at COP26 the UN climate summit that the UK will host in Glasgow in November 2021. The webinars will bring together experts from industry academia and policy from the UK Canada and California. Attendees will have an opportunity to ask questions and interact using Mentimeter."
Part 2 Highlights and Perspectives from Canada and California can be found here.
Trace Level Analysis of Reactive ISO 14687 Impurities in Hydrogen Fuel Using Laser-based Spectroscopic Detection Methods
Oct 2020
Publication
Hydrogen fuelled vehicles can play a key role in the decarbonisation of transport and reducing emissions. To ensure the durability of fuel cells a specification has been developed (ISO 14687) setting upper limits to the amount fraction of a series of impurities. Demonstrating conformity with this standard requires demonstrating by measurement that the actual levels of the impurities are below the thresholds. Currently the industry is unable to do so for measurement standards and sensitive dedicated analytical methods are lacking. In this work we report on the development of such measurement standards and methods for four reactive components: formaldehyde formic acid hydrogen chloride and hydrogen fluoride. The primary measurement standard is based on permeation and the analytical methods on highly sensitive and selective laser-based spectroscopic techniques. Relative expanded uncertainties at the ISO 14687 threshold level in hydrogen of 4% (formaldehyde) 8% (formic acid) 5% (hydrogen chloride) and 8% (hydrogen fluoride) have been achieved.
No more items...