Safety
The Role of Trust and Familiarity in Risk Communication
Sep 2009
Publication
In socio-economics it is well known that the success of an innovation process not only depends upon the technological innovation itself or the improvement of economic and institutional system boundaries but also on the public acceptance of the innovation. The public acceptance can as seen with genetic engineering for agriculture be an obstacle for the development and introduction of a new and innovative idea. In respect to hydrogen technologies this means that the investigation compilation and communication of scientific risk assessments are not sufficient to enhance or generate public acceptance. Moreover psychological social and cultural aspects of risk perception have to be considered when introducing new technologies. Especially trust and familiarity play an important role for risk perception and thus public acceptance of new technologies.
Safety Considerations for Hydrogen Test Cells
Sep 2009
Publication
The properties of hydrogen compared to conventional fuels such as gasoline and diesel are substantially different requiring adaptations to the design and layout of test cells for hydrogen fuelled engines and vehicles. A comparison of hydrogen fuel properties versus conventional fuels in this paper provides identification of requirements that need to be adapted to design a safe test cell. Design examples of actual test cells are provided to showcase the differences in overall layout and ventilation safety features fuel supply and metering and emissions measurements. Details include requirements for ventilation patterns the necessity for engine fume hoods as well as hydrogen specific intake and exhaust design. The unique properties of hydrogen in particular the wide flammability limits and nonvisible flames also require additional safety features such as hydrogen sensors and flame cameras. A properly designed and implemented fuel supply system adds to the safety of the test cell by minimizing the amount of hydrogen that can be released. Apart from this the properties of hydrogen also require different fuel consumption measurement systems pressure levels of the fuel supply system additional ventilation lines strategically placed safety solenoids combined with appropriate operational procedures. The emissions measurement for hydrogen application has to be expanded to include the amount of unburned hydrogen in the exhaust as a measurement of completeness of combustion. This measurement can also be used as a safety feature to avoid creation of ignitable hydrogen-air mixtures in the engine exhaust. The considerations provided in this paper lead to the conclusion that hydrogen IC engines can be safely tested however properly designed test cell and safety features have to be included to mitigate the additional hazards related to the change in fuel characteristics.
Ignition Limits For Combustion of Unintended Hydrogen Releases- Experimental and Theoretical Results
Sep 2009
Publication
The ignition limits of hydrogen/air mixtures in turbulent jets are necessary to establish safety distances based on ignitable hydrogen location for safety codes and standards development. Studies in turbulent natural gas jets have shown that the mean fuel concentration is insufficient to determine the flammable boundaries of the jet. Instead integration of probability density functions (PDFs) of local fuel concentration within the quiescent flammability limits termed the flammability factor (FF) was shown to provide a better representation of ignition probability (PI). Recent studies in turbulent hydrogen jets showed that the envelope of ignitable gas composition (based on the mean hydrogen concentration) did not correspond to the known flammability limits for quiescent hydrogen/air mixtures. The objective of this investigation is to validate the FF approach to the prediction of ignition in hydrogen leak scenarios. The PI within a turbulent hydrogen jet was determined using a pulsed Nd:YAG laser as the ignition source. Laser Rayleigh scattering was used to characterize the fuel concentration throughout the jet. Measurements in methane and hydrogen jets exhibit similar trends in the ignition contour which broadens radially until an axial location is reached after which the contour moves inward to the centerline. Measurements of the mean and fluctuating hydrogen concentration are used to characterize the local composition statistics conditional on whether the laser spark results in a local ignition event or complete light-up of a stable jet flame. The FF is obtained through direct integration of local PDFs. A model was developed to predict the FF using a presumed PDF with parameters obtained from experimental data and computer simulations. Intermittency effects that are important in the shear layer are incorporated in a composite PDF. By comparing the computed FF with the measured PI we have validated the flammability factor approach for application to ignition of hydrogen jets.
Risk Modelling of a Hydrogen Refuelling Station Using a Bayesian Network
Sep 2009
Publication
Fault trees and event trees have for decades been the most commonly applied modelling tools in both risk analysis in general and the risk analysis of hydrogen applications including infrastructure in particular. It is sometimes found challenging to make traditional Quantitative Risk Analyses sufficiently transparent and it is frequently challenging for outsiders to verify the probabilistic modelling. Bayesian Networks (BN) are a graphical representation of uncertain quantities and decisions that explicitly reveal the probabilistic dependence between the variables and the related information flow. It has been suggested that BN represent a modelling tool that is superior to both fault trees and event trees with respect to the structuring and modelling of large complex systems. This paper gives an introduction to BN and utilises a case study as a basis for discussing and demonstrating the suitability of BN for modelling the risks associated with the introduction of hydrogen as an energy carrier. In this study we explore the benefits of modelling a hydrogen refuelling station using BN. The study takes its point of departure in input from a traditional detailed Quantitative Risk Analysis conducted by DNV during the HyApproval project. We compare and discuss the two analyses with respect to their advantages and disadvantages. We especially focus on a comparison of transparency and the results that may be extracted from the two alternative procedures.
An Overview of Hydrogen Safety Sensors and Requirements
Sep 2009
Publication
There exists an international commitment to increase the utilization of hydrogen as a clean and renewable alternative to carbon-based fuels. The availability of hydrogen safety sensors is critical to assure the safe deployment of hydrogen systems. Already the use of hydrogen safety sensors is required for the indoor fueling of fuel cell powered forklifts (e.g. NFPA 52 Vehicular Fuel Systems Code [1]). Additional Codes and Standards specific to hydrogen detectors are being developed [2 3] which when adopted will impose mandatory analytical performance metrics. There are a large number of commercially available hydrogen safety sensors. Because end-users have a broad range of sensor options for their specific applications the final selection of an appropriate sensor technology can be complicated. Facility engineers and other end-users are expected to select the optimal sensor technology choice. However some sensor technologies may not be a good fit for a given application. Informed decisions require an understanding of the general analytical performance specifications that can be expected by a given sensor technology. Although there are a large number of commercial sensors most can be classified into relatively few specific sensor types (e.g. electrochemical metal oxide catalytic bead and others). Performance metrics of commercial sensors produced on a specific platform may vary between manufacturers but to a significant degree a specific platform has characteristic analytical trends advantages and limitations. Knowledge of these trends facilitates the selection of the optimal technology for a specific application (i.e. indoor vs. outdoor environments). An understanding of the various sensor options and their general analytical performance specifications would be invaluable in guiding the selection of the most appropriate technology for the designated application.
Vented Explosion Overpressures From Combustion of Hydrogen and Hydrocarbon Mixtures
Sep 2009
Publication
Experimental data obtained for hydrogen mixtures in a room-size enclosure are presented and compared with data for propane and methane mixtures. This set of data was also used to develop a three-dimensional gas dynamic model for the simulation of gaseous combustion in vented enclosures. The experiments were performed in a 64 m3 chamber with dimensions of 4.6 × 4.6 × 3.0 m and a vent opening on one side and vent areas of either 2.7 or 5.4 m2 were used. Tests were performed for three ignition locations at the wall opposite the vent at the center of the chamber or at the center of the wall containing the vent. Hydrogen–air mixtures with concentrations close 18% vol. were compared with stoichiometric propane–air and methane–air mixtures. Pressure data as function of time and flame time-of-arrival data were obtained both inside and outside the chamber near the vent. Modelling was based on a Large Eddy Simulation (LES) solver created using the OpenFOAM CFD toolbox using sub-grid turbulence and flame wrinkling models. A comparison of these simulations with experimental data is discussed.
Estimation of an Allowable Hydrogen Permeation Rate From Road Vehicle Compressed Gaseous H2 Storage Systems In Typical Garages, Part 2: CFC Dispersion Calculations Using the ADREA-HF Code and Experimental Validation Using Helium Tests at the Garage Facility
Sep 2009
Publication
The time and space evolution of the distribution of hydrogen in confined settings was investigated computationally and experimentally for permeation from typical compressed gaseous hydrogen storage systems for buses or cars. The work was performed within the framework of the InsHyde internal project of the HySafe NoE funded by EC. The main goal was to examine whether hydrogen is distributed homogeneously within a garage like facility or whether stratified conditions are developed under certain conditions. The nominal hydrogen flow rate considered was 1.087 NL/min based on the then current SAE standard for composite hydrogen containers with a non-metallic liner (type 4) at simulated end of life and maximum material temperature in a bus facility with a volume of 681m3. The release was assumed to be directed upwards from a 0.15m diameter hole located at the middle part of the bus cylinders casing. Ventilation rates up to 0.03 ACH were considered. Simulated time periods extended up to 20 days. The CFD simulations performed with the ADREA-HF code showed that fully homogeneous conditions exist for low ventilation rates while stratified conditions prevail for higher ventilation rates. Regarding flow structure it was found that the vertical concentration profiles can be considered as the superposition of the concentration at the floor (driven by laminar diffusion) plus a concentration difference between floor and ceiling (driven by buoyancy forces). In all cases considered this concentration difference was found to be less than 0.5%. The dispersion experiments were performed at the GARAGE facility using Helium. Comparison between CFD simulations and experiments showed that the predicted concentrations were in good agreement with the experimental data. Finally simulations were performed using two integral models: the fully homogeneous model and the two-layer model proposed by Lowesmith et al. (ICHS-2 2007) and the results were compared both against CFD and the experimental data.
From Research Results to Published Codes And Standards - Establishing Code Requirements For NFPA 55 Bulk Hydrogen Systems Separation Distances
Sep 2009
Publication
Performing research in the interest of providing relevant safety requirements is a valuable and essential endeavor but translating research results into enforceable requirements adopted into codes and standards a process sometimes referred to as codification can be a separate and challenging task. This paper discusses the process utilized to successfully translate research results related to bulk gaseous hydrogen storage separation (or stand-off) distances into code requirements in NFPA 55:Storage Use and Handling of Compressed Gases and Cryogenic Fluids in Portable and StationaryContainers Cylinders and Tanks and NFPA 2: Hydrogen Technologies. The process utilized can besummarized as follows: First the technical committees for the documents to be revised were engaged to confirm that the codification process was endorsed by the committee. Then a sub-committee referred to as a task group was formed. A chair must be elected or appointed. The chair should be a generalist with code enforcement or application experience. The task group was populated with several voting members of each technical committee. By having voting members as part of the task group the group becomes empowered and uniquely different from any other code proposal generating body. The task group was also populated with technical experts as needed but primarily the experts needed are the researchers involved. Once properly populated and empowered the task group must actively engage its members. The researchers must educate the code makers on the methods and limitations of their work and the code makers must take the research results and fill the gaps as needed to build consensus and create enforceable code language and generate a code change proposal that will be accepted. While this process seems simple there are pitfalls along the way that can impede or nullify the desired end result – changes to codes and standards. A few of these pitfalls include: wrong task group membership task group not empowered task group not supported in-person meetings not possible consensus not achieved. This paper focuses on the process used and how pitfalls can be avoided for future efforts.
Hysafe SBEP-V20: Numerical Predictions of Release Experiments Inside a Residential Garage With Passive Ventilation
Sep 2009
Publication
This work presents the results of the Standard Benchmark Exercise Problem (SBEP) V20 of Work Package 6 (WP6) of HySafe Network of Excellence (NoE) co-funded by the European Commission in the frame of evaluating the quality and suitability of codes models and user practices by comparative assessments of code results. The benchmark problem SBEP-V20 covers release scenarios that were experimentally investigated in the past using helium as a substitute to hydrogen. The aim of the experimental investigations was to determine the ventilation requirements for parking hydrogen fuelled vehicles in residential garages. Helium was released under the vehicle for 2 h with 7.200 l/h flow rate. The leak rate corresponded to a 20% drop of the peak power of a 50 kW fuel cell vehicle. Three double vent garage door geometries are considered in this numerical investigation. In each case the vents are located at the top and bottom of the garage door. The vents vary only in height. In the first case the height of the vents is 0.063 m in the second 0.241 m and in the third 0.495 m. Four HySafe partners participated in this benchmark. The following CFD packages with the respective models were applied to simulate the experiments: ADREA-HF using k–ɛ model by partner NCSRD FLACS using k–ɛ model by partner DNV FLUENT using k–ɛ model by partner UPM and CFX using laminar and the low-Re number SST model by partner JRC. This study compares the results predicted by the partners to the experimental measurements at four sensor locations inside the garage with an attempt to assess and validate the performance of the different numerical approaches.
Discrete Event Simulation in Support to Hydrogen Supply Reliability
Sep 2009
Publication
Discrete Event Simulation (DES) environments are rapidly developing and they appear to be promising tools for developing reliability and risk analysis models of safety-critical systems. DES models are an alternative to the conventional methods such as fault and event trees Bayesian networks and cause-consequence diagrams that could be used to assess the reliability of fuel supply. DES models can rather easily account for the dynamic dimensions and other important features that can hardly be captured by the conventional models. The paper describes a novel approach to estimate gas supply security and the reliability/safety of gas installations and argues that this approach can be transferred to estimate future hydrogen supply reliability. The core of the approach is a DES model of gas or other fuel propulsion through a pipeline to the customers and failures of the components of the pipeline. We will argue in the paper that the experience gained in the modelling of gas supply reliability is very relevant to the security and safety of a future hydrogen supply and worth being employed in this area.
Novel Wide-area Hydrogen Sensing Technology
Sep 2007
Publication
Element One Inc. is developing novel indicators for hydrogen gas for applications as a complement to conventional electronic hydrogen sensors or as a low-cost alternative in situations where an electronic signal is not needed. The indicator consists of a thin film coating or a pigment of a transition metal oxide such as tungsten oxide or molybdenum oxide with a catalyst such as platinum or palladium. The oxide is partially reduced in the presence of hydrogen in concentrations as low as 300 parts per million and changes from transparent to a dark colour. The colour change is fast and easily seen from a distance. In air the colour change reverses quickly when the source of hydrogen gas is removed in the case of tungsten oxide or is nearly irreversible in the case of molybdenum oxide. A number of possible implementations have been successfully demonstrated in the laboratory including hydrogen indicating paints tape cautionary decals and coatings for hydrogen storage tanks. These and other implementations may find use in vehicles stationary appliances piping refuelling stations and in closed spaces such as maintenance and residential garages for hydrogen-fuelled vehicles. The partially reduced transition metal oxide becomes semi conductive and increases its electrical conductivity by several orders of magnitude when exposed to hydrogen. The integration of this electrical resistance sensor with an RFID tag may extend the ability of these sensors to record and transmit a history of the presence or absence of leaked hydrogen over long distances. Over long periods of exposure to the atmosphere the indicator’s response may slow due to catalyst degradation. Our current emphasis is on controlling this degradation. The kinetics of the visual indicators is being investigated along with their durability in collaboration with the NASA Kennedy Space Center.
Ignited Releases of Liquid Hydrogen: Safety Considerations of Thermal and Overpressure Effects
Sep 2013
Publication
If the ‘Hydrogen Economy’ is to progress more hydrogen fuelling stations are required. In the short term and in the absence of a hydrogen distribution network these fuelling stations will have to be supplied by liquid hydrogen (LH2) road tankers. Such a development will increase the number of tanker offloading operations significantly and these may need to be performed in close proximity to the general public. LH2 was first investigated experimentally as large-scale spills of LH2 at a rate of 60 litres per minute. Measurements were made on un-ignited releases which included the concentration of hydrogen in air thermal gradients in the concrete substrate liquid pool formation and temperatures within the pool. Computational modelling on the un-ignited spills was also performed. The experimental work on ignited releases of LH2 detailed in this paper is a continuation of the work performed by Royle and Willoughby. The experimental findings presented are split into three phenomena; jet-fires in high and low wind conditions ‘burn-back’ of ignited clouds and secondary explosions post ‘burn-back’. The aim of this work was to determine the hazards and severity of a realistic ignited spill of LH2 focussing on; flammability limits of an LH2 vapour cloud flame speeds through an LH2 vapour cloud and subsequent radiative heat levels after ignition. An attempt was made to estimate the magnitude of an explosion that occurred during one of the releases. The results of these experiments will inform the wider hydrogen community and contribute to the development of more robust modelling tools. The resulting data were used to propose safety distances for LH2 offloading facilities which will help to update and develop guidance for codes and standards.
Development of Standards for Evaluating Materials Compatibility with High-pressure Gaseous Hydrogen
Sep 2013
Publication
The Hydrogen Safety Codes and Standards program element of the US Department of Energy's Fuel Cell Technologies Office provides coordination and technical data for the development of domestic and international codes and standards related to hydrogen technologies. The materials compatibility program task at Sandia National Laboratories (Livermore CA) is focused on developing the technical basis for qualifying materials for hydrogen service i.e. accommodating hydrogen embrittlement. This presentation summarizes code development activities for qualifying materials for hydrogen service with emphasis on the scientific basis for the testing methodologies including fracture mechanics based measurements (fracture threshold and fatigue crack growth) total fatigue life measurements and full- scale pressure vessel testing.
Simulation of Small-Scale Releases from Liquid Hydrogen Storage Systems
Sep 2009
Publication
Knowledge of the concentration field and flammability envelope from small-scale leaks is important for the safe use of hydrogen. These small-scale leaks may occur from leaky fittings or o-ring seals on liquid hydrogen-based systems. The present study focuses on steady-state leaks with large amounts of pressure drop along the leak path such that hydrogen enters the atmosphere at near atmospheric pressure (i.e. Very low Mach number). A three-stage buoyant turbulent entrainment model is developed to predict the properties (trajectory hydrogen concentration and temperature) of a jet emanating from the leak. Atmospheric hydrogen properties (temperature and quality) at the leak plane depend on the storage pressure and whether the leak occurs from the saturated vapor space or saturated liquid space. In the first stage of the entrainment model ambient temperature air (295 K) mixes with the leaking hydrogen (20–30 K) over a short distance creating an ideal gas mixture at low temperature (∼65 K). During this process states of hydrogen and air are determined from equilibrium thermodynamics using models developed by NIST. In the second stage of the model (also relatively short in distance) the radial distribution of hydrogen concentration and velocity in the jet develops into a Gaussian profile characteristic of free jets. The third and by far the longest stage is the part of the jet trajectory where flow is fully developed. Results show that flammability envelopes for cold hydrogen jets are generally larger than those of ambient temperature jets. While trajectories for ambient temperature jets depend solely on the leak densimetric Froude number results from the present study show that cold jet trajectories depend on the Froude number and the initial jet density ratio. Furthermore the flammability envelope is influenced by the hydrogen concentration in the jet at the beginning of fully developed flow.
Unsteady Lumped-Parameter Modelling Of Hydrogen Combustion in The Presence of a Water Spray
Sep 2009
Publication
In case of severe accidents in Pressurized Water Reactors a great amount of hydrogen can be released the resulting heterogeneous gaseous mixture (hydrogen-air-steam) can be flammable or inert and the pressure effects could alter the confinement of the reactor. Water spray systems have been designed in order to reduce overpressures in the containment but the presence of water droplets could enhance flame propagation through turbulence or generate flammable mixtures since the steam present in the vessel could condense on the droplets and could not inert the mixture anymore. However beneficial effects would be heat sinks and homogenization of mixtures. On-going work is devoted to the modelling of the interaction between fine water droplets and a hydrogen-air flame. We present in this paper an unsteady Lumped Parameter model in detail with a special focus on hydrogen-air flame propagation in the presence of water droplets. The effects of the initial concentration of droplets steam and hydrogen concentrations on flame propagation are discussed in the paper and a comparison between this model and our previous steady Lumped-Parameter model highlights the features of the unsteady approach. This physical model can serve as a validation tool for a CFD modelling. The results will be further validated against experimental data.
Environmental Reactivity of Solid State Hydride Materials
Sep 2009
Publication
In searching for high gravimetric and volumetric density hydrogen storage systems it is inevitable that higher energy density materials will be used. In order to make safe and commercially acceptable condensed phase hydrogen storage systems it is important to understand quantitatively the hazards involved in using and handling these materials and to develop appropriate mitigation strategies to handle potential material exposure events. A crucial aspect of the development of risk identification and mitigation strategies is the development of rigorous environmental reactivity testing standards and procedures. This will allow for the identification of potential hazards and implementation of risk mitigation strategies. Modified testing procedures for shipping air and/or water sensitive materials as codified by the United Nations have been used to evaluate two potential hydrogen storage materials 2LiBH4·MgH2 and NH3BH3. The modified U.N. procedures include identification of self-reactive substances pyrophoric substances and gas-emitting substances with water contact. The results of these tests for air and water contact sensitivity will be compared to the pure material components where appropriate (e.g. LiBH4 and MgH2). The water contact tests are divided into two scenarios dependent on the hydride to water mole ratio and heat transport characteristics. Air contact tests were run to determine whether a substance will spontaneously react with air in a packed or dispersed form. Relative to 2LiBH4·MgH2 the chemical hydride NH3BH3 was observed to be less environmentally reactive.
Effectiveness of a Blower in Reducing the Hazard of Hydrogen Leaking from a Hydrogen-fueled Vehicle
Sep 2013
Publication
To handle a hydrogen fuel cell vehicle (HFCV) safely after its involvement in an accident it is necessary to provide appropriate emergency response information to the first responder. In the present study a forced wind of 10 m/s or faster with and without a duct was applied to a vehicle leaking hydrogen gas at a rate of 2000 NL/min. Then hydrogen concentrations were measured around the vehicle and an ignition test was conducted to evaluate the effectiveness of forced winds and the safety of emergency response under forced wind conditions. The results: 1) Forced winds of 10 m/s or faster caused the hydrogen concentrations in the vicinity of the vehicle to decline to less than the lower flammability limit and the hydrogen gas in the various sections of the vehicles were so diluted that even if ignition occurred the blast-wave pressure was moderate. 2) When the first responder had located the hydrogen leakage point in the vehicle it was possible to lower the hydrogen concentrations around the vehicle by aiming the wind duct towards the leakage point and blowing winds at 10 m/s from the duct exit.
Hydrogen Jet Fires in a Passively Ventilated Enclosure
Oct 2015
Publication
This paper describes a combined experimental analytical and numerical modelling investigation into hydrogen jet fires in a passively ventilated enclosure. The work was funded by the EU Fuel Cells and Hydrogen Joint Undertaking project Hyindoor. It is relevant to situations where hydrogen is stored or used indoors. In such situations passive ventilation can be used to prevent the formation of a flammable atmosphere following a release of hydrogen. Whilst a significant amount of work has been reported on unignited releases in passively ventilated enclosures and on outdoor hydrogen jet fires very little is known about the behaviour of hydrogen jet fires in passively ventilated enclosures. This paper considers the effects of passive ventilation openings on the behaviour of hydrogen jet fires. A series of hydrogen jet fire experiments were carried out using a 31 m3 passively ventilated enclosure. The test programme included subsonic and chocked flow releases with varying hydrogen release rates and vent configurations. In most of the tests the hydrogen release rate was sufficiently low and the vent area sufficiently large to lead to a well-ventilated jet fire. In a limited number of tests the vent area was reduced allowing under-ventilated conditions to be investigated. The behaviour of a jet fire in a passively ventilated enclosure depends on the hydrogen release rate the vent area and the thermal properties of the enclosure. An analytical model was used to quantify the relative importance of the hydrogen release rate and vent area whilst the influence of the thermal properties of the enclosure were investigated using a CFD model. Overall the results indicate that passive ventilation openings that are sufficiently large to safely ventilate an unignited release will tend to be large enough to prevent a jet fire from becoming under-ventilated.
Experimental Investigation on Helium Jet Release and Distribution in a Vented Cylindrical Enclosure – Effect of Wall Temperature Conditions
Oct 2015
Publication
Hydrogen generated during core meltdown accidents in nuclear reactors can cause serious threat to the structural integrity of the containment and safe operation of nuclear power plants. The study of hydrogen release and mixing within the containments is an important area of safety research as hydrogen released during such accidents in nuclear power plants can lead to hydrogen explosions and catastrophic consequences. A small scale experimental setup called the AERB-IIT Madras Hydrogen Mixing Studies (AIHMS) facility is setup at IIT Madras to study the distribution of hydrogen subsequent to release as a jet followed by its response to various wall thermal conditions. The present paper gives details of the design fabrication and instrumentation of the AIHMS facility and a comparison of features of the facility with respect to other facilities existing for hydrogen mitigation studies. Then it gives details of the experiments conducted and the results of the preliminary experiments on concentration build-up as a result of injection of gases (air and helium) and effect of thermally induced natural convection on gas mixing performed in this experimental facility.
Hydrogen Compatibility of Austenitic Stainless Steel Tubing and Orbital Tube Welds
Sep 2013
Publication
Refueling infrastructure for use in gaseous hydrogen powered vehicles requires extensive manifolding for delivering the hydrogen from the stationary fuel storage at the refueling station to the vehicle as well as from the mobile storage on the vehicle to the fuel cell or combustion engine. Manifolds for gas handling often use welded construction (as opposed to compression fittings) to minimize gas leaks. Therefore it is important to understand the effects of hydrogen on tubing and tubing welds. This paper provides a brief overview of on-going studies on the effects of hydrogen precharging on the tensile properties of austenitic stainless tubing and orbital tube welds of several austenitic stainless steels.
No more items...