Safety
H21- Phase 1 Technical Summary Report
May 2021
Publication
The UK Government signed legislation on 27th June 2019 committing the UK to a legally binding target of Net Zero emissions by 2050. Climate change is one of the most significant technical economic social and business challenges facing the world today.
The H21 NIC Phase 1 project delivered an optimally designed experimentation and testing programme supported by the HSE Science Division and DNV GL with the aim to collect quantifiable evidence to support that the UK distribution network of 2032 will be comparably as safe operating on 100% hydrogen as it currently is on
natural gas. This innovative project begins to fill critical safety evidence gaps surrounding the conversion of the UK gas network to 100% hydrogen. This will facilitate progression towards H21 Phase 2 Operational Safety Demonstrations and the H21 Phase 3 Live Trials to promote customer acceptability and ultimately aid progress towards a government policy decision on heat.
DNV GL and HSE Science Division were engaged to undertake the experimentation testing and QRA update programme of work. DNV GL and HSE Science Division also peer reviewed each other’s programme of work at various stages throughout the project undertaking a challenge and review of the experimental data and results to provide confidence in the conclusions.
A strategic set of tests was designed to cover the range of assets represented across the Great Britain gas distribution networks. The assets used in the testing were mostly recovered from the distribution network as part of the ongoing Iron Mains Risk Reduction Replacement Programme. Controlled testing against a well-defined master testing plan with both natural gas and 100% hydrogen was then undertaken to provide the quantitative evidence to forecast any change to background leakage levels in a 100% hydrogen network.
Key Findings from Phase 1a:
The H21 NIC Phase 1 project delivered an optimally designed experimentation and testing programme supported by the HSE Science Division and DNV GL with the aim to collect quantifiable evidence to support that the UK distribution network of 2032 will be comparably as safe operating on 100% hydrogen as it currently is on
natural gas. This innovative project begins to fill critical safety evidence gaps surrounding the conversion of the UK gas network to 100% hydrogen. This will facilitate progression towards H21 Phase 2 Operational Safety Demonstrations and the H21 Phase 3 Live Trials to promote customer acceptability and ultimately aid progress towards a government policy decision on heat.
DNV GL and HSE Science Division were engaged to undertake the experimentation testing and QRA update programme of work. DNV GL and HSE Science Division also peer reviewed each other’s programme of work at various stages throughout the project undertaking a challenge and review of the experimental data and results to provide confidence in the conclusions.
A strategic set of tests was designed to cover the range of assets represented across the Great Britain gas distribution networks. The assets used in the testing were mostly recovered from the distribution network as part of the ongoing Iron Mains Risk Reduction Replacement Programme. Controlled testing against a well-defined master testing plan with both natural gas and 100% hydrogen was then undertaken to provide the quantitative evidence to forecast any change to background leakage levels in a 100% hydrogen network.
Key Findings from Phase 1a:
- Of the 215 assets tested 41 of them were found to leak 19 of them provided sufficient data to be able to compare hydrogen and methane leak rates.
- The tests showed that assets that were gas tight on methane were also gas tight on hydrogen. Assets that leaked on hydrogen also leaked
- on methane including repaired assets.
- The ratio of the hydrogen to methane volumetric leak rates varied between 1.1 and 2.2 which is largely consistent with the bounding values expected for laminar and turbulent (or inertial) flow which gave ratios of 1.2 and 2.8 respectively.
- None of the PE assets leaked; cast ductile and spun iron leaked to a similar degree (around 26-29% of all iron assets leaked) and the proportion of leaking steel assets was slightly less (14%).
- Four types of joint were responsible for most of the leaks on joints: screwed lead yarn bolted gland and hook bolts.
- All of the repairs that sealed methane leaks also were effective when tested with hydrogen.
The Role of the Argon and Helium Bath Gases on the Detonation Structure of H2/)2 Mixture
Sep 2021
Publication
Recent modeling efforts of non-equilibrium effects in detonations have suggested that hydrogen-based detonations may be affected by vibrational non-equilibrium of the hydrogen and oxygen molecules effects which could explain discrepancies of cell sizes measured experimentally and calculated without relaxation effects. The present study addresses the role of vibrational relaxation in 2H2/O2 detonations by considering two-bath gases argon and helium. These two gases have the same thermodynamic and kinetic effects when relaxation is neglected. However due to the bath gases differences in molecular weight and reduced mass differences which affect the molecular collisions relaxation rates can be changed by approximately 50-70%. Experiments were performed in a narrow channel in mixtures of 2H2/O2/7Ar and 2H2/O2/7He to evaluate the role of the bath gas on detonation cellular structures. The experiments showed differences in velocity deficits and cell sizes for experimental conditions keeping the induction zone length constant in each of the mixtures. These differences were negligible in sensitive mixtures but increased with the increase in velocity deficits while the cell sizes approaching the channel dimensions. Near the limits differences of cell size in two mixtures approached a factor of 2. These differences were however reconciled by accounting for the viscous losses to the tube walls evaluated using a modified version of Mirels' laminar boundary layer theory and generalized Chapman-Jouguet theory for eigenvalue detonations. The experiments suggest that there is an influence of relaxation effects on the cellular structure of detonations which is more sensitive to wall boundary conditions. However the previous works showed that the impact of vibrational non-equilibrium in a mixture of H2/Air is more visible due to the effects of N2 in the air slowest to relax. Previous discrepancies suggested to be indicative of relaxation effects should be reevaluated by the inclusion of wall loss effects.
Approaches and Methods to Demonstrate Repurposing of the UK's Local Transmission System (LTS) Pipelines for Transportation of Hydrogen
Sep 2021
Publication
Hydrogen has the potential as an energy solution to contribute to decarbonisation targets as it has the capability to deliver low-carbon energy at the scale required. For this to be realised the suitability of the existing natural gas pipeline networks for transporting hydrogen must be established. The current paper describes a feasibility study that was undertaken to assess the potential for repurposing the UK’s Local Transmission System (LTS) natural gas pipelines for hydrogen service. The analysis focused on SGN’s network which includes 3000 km of LTS pipelines in Scotland and the south of England. The characteristics of the LTS pipelines in terms of materials of construction and operation were first evaluated. This analysis showed that a significant percentage of SGN’s LTS network consists of lower strength grades of steel pipeline that operate at low stresses which are factors conducive to a pipeline’s suitability for hydrogen service. An assessment was also made of where existing approaches in pipeline operation may require modifications for hydrogen. The effects of changes in mechanical properties of steel pipelines on integrity and lifetime as a result of potential hydrogen degradation were demonstrated using fitness-for-purpose analysis. A review of pipeline risk assessment and Land-Use Planning (LUP) zone calculations for hydrogen was undertaken to identify any required changes. Case studies on selected sections of the LTS pipeline were then carried out to illustrate the potential changes to LUP zones. The work concluded with a summary of identified gaps that require addressing to ensure safe pipeline repurposing for hydrogen which cover materials performance inspection risk assessment land use planning and procedures.
Evaluation of Selectivity and Resistance to Poisons of Commercial Hydrogen Sensors
Sep 2013
Publication
The development of reliable hydrogen sensors is crucial for the safe use of hydrogen. One of the main concerns of end-users is sensor reliability in the presence of species other than the target gas which can lead to false alarms or undetected harmful situations. In order to assess the selectivity of commercial of the shelf (COTS) hydrogen sensors a number of sensors of different technology types were exposed to various interferent gas species. Cross-sensitivity tests were performed in accordance to the recommendations of ISO 26142:2010 using the hydrogen sensor testing facilities of NREL and JRC-IET. The results and conclusions arising from this study are presented.
Effects of Renewable Energy Unstable Source to Hydrogen Production: Safety Considerations
Sep 2021
Publication
Hydrogen is considered a promising energy carrier for a sustainable future when it is produced by utilizing renewable energy. Nowadays less than 4% of hydrogen production is based on electrolysis processes. Each component of a hydrogen energy system needs to be optimized to increase the operation time and system efficiency. Only in this way hydrogen produced by electrolysis processes can be competitive with the conventional fossil energy sources. As conventional electrolysers are designed for operation at fixed process conditions the implementation of fluctuating and highly intermittent renewable energy is challenging. Alkaline water electrolysis is a key technology for large-scale hydrogen production powered by renewable energy. At low power availability conventional alkaline water electrolysers show a limited part-load range due to an increased gas impurity. Explosive mixtures of hydrogen and oxygen must be prevented; thus a safety shutdown is performed when reaching specific gas contamination. The University of Pisa is setting up a dedicated laboratory including a 40-kW commercial alkaline electrolyser: the focus of the study is to analyze the safety of the electrolyser together with its performance and the real energy efficiency analyzing its operational data collected under different operating conditions affected by the unstable energy supply.
Analysis to Support Revised Distances between Bulk Liquid Hydrogen Systems and Exposures
Sep 2021
Publication
The minimum distances between exposures and bulk liquid hydrogen listed in the National Fire Protection Agency’s Hydrogen Technology Code NFPA 2 are based on historical consensus without a documented scientific analysis. This work follows a similar analysis as the scientific justification provided in NFPA 2 for exposure distances from bulk gaseous hydrogen storage systems but for liquid hydrogen. Validated physical models from Sandia’s HyRAM software are used to calculate distances to a flammable concentration for an unignited release the distance to critical heat flux values and the visible flame length for an ignited release and the overpressure that would occur for a delayed ignition of a liquid hydrogen leak. Revised exposure distances for bulk liquid hydrogen systems are calculated. These distances are related to the maximum allowable working pressure of the tank and the line size as compared to the current exposure distances which are based on system volume. For most systems the exposure distances calculated are smaller than the current distances for Group 1 they are similar for Group 2 while they increase for some Group 3 exposures. These distances could enable smaller footprints for infrastructure that includes bulk liquid hydrogen storage tanks especially when using firewalls to mitigate Group 3 hazards and exposure distances. This analysis is being refined as additional information on leak frequencies is incorporated and changes have been proposed to the 2023 edition of NFPA 2.
Hydrogen Generation on Orkney: Integrating Established Risk Management Best Practice to Emerging Clean Energy Sector
Sep 2021
Publication
The European Marine Energy Centre’s (EMEC) ITEG project (Integrating Tidal Energy into the European Grid) funded by Interreg NWE combines a tidal energy and hydrogen production solution to address grid constraints on the island of Eday in Orkney. The project will install a 0.5MW electrolyser at EMEC’s existing hydrogen production plant. EMEC and Risktec collaboratively applied best practice risk assessment and management techniques to assess and manage hydrogen safety. Hazard identification (HAZID) workshops were conducted collaboratively with design engineers through which a comprehensive hazard register was developed. Risktec applied bowtie analysis to each major accident hazard identified from the hazard register via virtual workshop with design engineers. The bowties promoted a structured review of each hazard’s threat and consequence identifying and reviewing the controls in place against good practice standards. The process revealed some recommendations for further improvement and risk reduction exemplifying a systematic management of risks associated with hydrogen hazards to as low as reasonably practicable (ALARP). Hardware based barriers preventing or mitigating loss of control of these hazards were logged as safety critical elements (SCE) and procedural barriers as safety critical activities (SCA). To ensure that all SCEs and SCAs identified through the risk assessment process are managed throughout the facility’s operational lifetime a safety management system is created giving assurance of overall safety management system continued effectiveness. The process enables the demonstration that design risks are managed to ALARP during design and throughout operational lifetime. More importantly enabling ITEG to progress to construction and operation in 2021.
Chemical Inhibition of Premixed Hydrogen-air Flames: Experimental Investigation using a 20-litre Vessel
Sep 2021
Publication
Throughout the history of the mining petroleum process and nuclear industries continuous efforts have been made to develop and improve measures to prevent and mitigate accidental explosions. Over the coming decades energy systems are expected to undergo a transition towards sustainable use of conventional hydrocarbons and an increasing share of renewable energy sources in the global energy mix. The variable and intermittent supply of energy from solar and wind points to energy systems based on hydrogen or hydrogen-based fuels as the primary energy carriers. However the safety-related properties of hydrogen imply that it is not straightforward to achieve and document the same level of safety for hydrogen systems compared to similar systems based on established fuels such as petrol diesel and natural gas. Compared to the conventional fuels hydrogen-air mixtures have lower ignition energy higher combustion reactivity and a propensity to undergo deflagration-to-detonation-transition (DDT) under certain conditions. To achieve an acceptable level of safety it is essential to develop effective measures for mitigating the consequences of hydrogen explosions in systems with certain degree of congestion and confinement. Extensive research over the last decade have demonstrated that chemical inhibition or partial suppression can be used for mitigating the consequences of vapour cloud explosions (VCEs) in congested process plants. Total and cooperation partners have demonstrated that solid flame inhibitors injected into flammable hydrocarbon-air clouds represent an effective means of mitigating the consequences of VCEs involving hydrocarbons. For hydrogen-air explosions these same chemicals inhibitors have not proved effective. It is however well-known that hydrocarbons can affect the burning velocity of hydrogen-air mixtures greatly. This paper gives an overview over previous work on chemical inhibitors. In addition experiments in a 20-litre vessel have been performed to investigate the effect of combinations of hydrocarbons and alkali salts on hydrogen/air mixtures.
Minimum Fire Size for Hydrogen Storage Tank Fire Test Protocol for Hydrogen-powered Electric City Bus Determine Via Risk-based Approach
Sep 2021
Publication
As part of the United Nations Global Technical Regulation No. 13 (UN GTR #13 [1]) vehicle fire safety is validated using a localized and engulfing fire test methodology and currently updates are being considered in the on-going Phase 2 development stage. The GTR#13 fire test is designed to verify the performance of a hydrogen storage system of preventing rupture when exposed to service-terminating condition of fire situation. The test is conducted in two stages – localized flame exposure at a location most challenging for thermally-activated pressure relief device(s) (TPRDs) to respond for 10 min. followed by engulfing fire exposure until the system vents and the pressure falls to less than 1 MPa or until “time out” (30min. for light-duty vehicle containers and 60 min. for heavy-duty vehicle containers). The rationale behind this two-stage fire test is to ensure that even when fire sizes are small and TPRDs are not responding the containers have fire resistance to withstand or fire sensitivity to respond to a localized fire to avoid system rupture. In this study appropriate fire sizes for localized and engulfing fire tests in GTR#13 are evaluated by considering actual fire conditions in a hydrogen-powered electric city bus. Quantitative risk analysis is conducted to develop various fire accident scenarios including regular bus fire battery fire and hydrogen leak fire. Frequency and severity analyses are performed to determine the minimum fire size required in GTR#13 fire test to ensure hydrogen storage tank safety in hydrogen-powered electric city buses.
Protocol for Heavy-duty Hydrogen Refueling: A Modelling Benchmark
Sep 2021
Publication
For the successful deployment of the Heavy Duty (HD) hydrogen vehicles an associated infrastructure in particular hydrogen refueling stations (HRS) should be reliable compliant with regulations and optimized to reduce the related costs. FCH JU project PRHYDE aims to develop a sophisticated protocol dedicated to HD applications. The target of the project is to develop protocol and recommendations for an efficient refueling of 350 500 and 700 bar HD tanks of types III and IV. This protocol is based on modeling results as well as experimental data. Different partners of the PRHYDE European project are closely working together on this target. However modeling approaches and corresponding tools must first be compared and validated to ensure the high level of reliability for the modeling results. The current paper presents the benchmark performed in the frame of the project by Air Liquide Engie Wenger Engineering and NREL. The different models used were compared and calibrated to the configurations proposed by the PRHYDE project. In addition several scenarios were investigated to explore different cases with high ambient temperatures.
Hydrogen Sensing Properties of UV Enhanced Pd-SnO2 Nano-Spherical Composites at Low Temperature
Sep 2021
Publication
Metal oxide semiconductor (MOS) is promising in developing hydrogen detectors. However typical MOS materials usually work between 200-500°C which not only restricts their application in flammable and explosive gases detection but also weakens sensor stability and causes high power consumption. This paper studies the sensing properties of UV enhanced Pd-SnO2 nano-spherical composites at 80-360 ℃. In the experiment Pd of different molar ratios (0.5 2.5 5.0 10.0) was doped into uniform spherical SnO2 nanoparticles by a hydrothermal synthesis method. A xenon lamp with a filter was used as the ultraviolet excitation light source to examine the response of the spherical Pd- SnO2 nanocomposite to 50-1000 ppm H2 gas. The influence of different intensities of ultraviolet light on the gas-sensing properties of composite materials compared with dark condition was analyzed. The experiments show that the conductivity of the composites can be greatly stabilized and the thermal excitation temperature can be reduced to 180 ℃ under the effect of UV enhancement. A rapid response (4.4/ 17.4 s) to 200 ppm of H2 at 330 °C can be achieved by the Pd-SnO2 nanocomposites with UV assistance. The mechanism may be attributed to light motivated electron-hole pairs due to built-in electric fields under UV light illumination which can be captured by target gases and lead to UV controlled gas sensing performance. Catalytic active sites of hydrogen are provided on the surface of the mixed material by Pd. The results in this study can be helpful in reducing the response temperature of MOS materials and improving the performance of hydrogen detectors."
The Influence of Grain Boundary and Hydrogen on the Indetation of Bi-crystal Nickel
Sep 2021
Publication
Three different types of symmetrical tilt grain boundaries Ȉ3 Ȉ11 and Ȉ27 were constructed to study the dislocation behavior under the indentation on bi-crystal nickel. After hydrogen charging the number of hydrogen atoms in the Ȉ3 sample is the smallest and gradually increases in Ȉ11 and Ȉ27 samples. The force-displacement curve of indentation shows that the deformation resistance of the Ȉ3 sample is significantly higher than that of Ȉ11 and Ȉ27 samples. With the presence of grain boundaries the deformation resistance of Ȉ11 and Ȉ27 samples is significantly improved while the deformation resistance of the Ȉ3 VDPSOH is weakened. The indentation depth during the formation of dislocations in single crystals is significantly greater than that of bi-crystals. Grain boundaries slow down the dislocation propagation speed. Compared with the bi-crystals without hydrogen the presence of hydrogen reduces the deformation resistance and accelerates the dislocation propagation.
Overview of First Outcomes of PNR Project HYTUNNEL-CS
Sep 2021
Publication
Dmitry Makarov,
Donatella Cirrone,
Volodymyr V. Shentsov,
Sergii Kashkarov,
Vladimir V. Molkov,
Z. Xu,
Mike Kuznetsov,
Alexandros G. Venetsanos,
Stella G. Giannissi,
Ilias C. Tolias,
Knut Vaagsaether,
André Vagner Gaathaug,
Mark R. Pursell,
Wayne M. Rattigan,
Frank Markert,
Luisa Giuliani,
L.S. Sørensen,
A. Bernad,
Mercedes Sanz Millán,
U. Kummer,
Christian Brauner,
Paola Russo,
J. van den Berg,
F. de Jong,
Tom Van Esbroeck,
M. Van De Veire,
Didier Bouix,
Gilles Bernard-Michel,
Sergey Kudriakov,
Etienne Studer,
Domenico Ferrero,
Joachim Grüne and
G. Stern
The paper presents the first outcomes of the experimental numerical and theoretical studies performed in the funded by Fuel Cell and Hydrogen Joint Undertaking (FCH2 JU) project HyTunnel-CS. The project aims to conduct pre-normative research (PNR) to close relevant knowledge gaps and technological bottlenecks in the provision of safety of hydrogen vehicles in underground transportation systems. Pre normative research performed in the project will ultimately result in three main outputs: harmonised recommendations on response to hydrogen accidents recommendations for inherently safer use of hydrogen vehicles in underground traffic systems and recommendations for RCS. The overall concept behind this project is to use inter-disciplinary and inter-sectoral prenormative research by bringing together theoretical modelling and experimental studies to maximise the impact. The originality of the overall project concept is the consideration of hydrogen vehicle and underground traffic structure as a single system with integrated safety approach. The project strives to develop and offer safety strategies reducing or completely excluding hydrogen-specific risks to drivers passengers public and first responders in case of hydrogen vehicle accidents within the currently available infrastructure.
Development of Dispensing Hardware for Safe Fueling of Heavy Duty Vehicles
Sep 2021
Publication
The development of safe dispensing equipment for the fueling of heavy duty (HD) vehicles is critical to the expansion of this newly and quickly expanding market. This paper discusses the development of a HD dispenser and nozzles assembly (nozzle hose breakaway) for these new larger vehicles where flow rates are more than double compared to light duty (LD) vehicles. This equipment must operate at nominal pressures of 700 bar -40o C gas temperature and average flow rate of 5-10 kg/min at a high throughput commercial hydrogen fueling station without leaking hydrogen. The project surveyed HD vehicle manufacturers station developers and component suppliers to determine the basic specifications of the dispensing equipment and nozzle assembly. The team also examined existing codes and standards to determine necessary changes to accommodate HD components. From this information the team developed a set of specifications which will be used to design the dispensing equipment. In order to meet these goals the team performed computational fluid dynamic pressure modelling and temperature analysis in order to determine the necessary parameters to meet existing safety standards modified for HD fueling. The team also considered user operational and maintenance requirements such as freeze lock which has been an issue which prevents the removal of the nozzle from LD vehicles. The team also performed a failure mode and effects analysis (FMEA) to identify the possible failures in the design. The dispenser and nozzle assembly will be tested separately and then installed on an innovative HD fueling station which will use a HD vehicle simulator to test the entire system.
French Guide to Conformity Assessment and Certification of Hydrogen Systems
Sep 2021
Publication
Hydrogen as energy carrier is referenced in French and European political strategies to realize the transition to low-carbon energy. In 2020 in France the government was launching a major investment plan amounting to 7.2 billion euros until 2030 to support the deployment of large-scale hydrogen technologies [1]. The implementation of this strategy should lead to the arrival of several new hydrogen systems that will need to be evaluated and certified regarding their compliance with safety requirements before being commercialized. Conformity assessment and certification play an important role to achieve a good safety level on the EU market for the protection of workers and consumers. It is a way for the manufacturer to prove that hazards have been identified and risks are managed and to demonstrate his commitment to safety that are key to access to the EU market. To assist manufacturers in identifying the applicable regulations standards and procedures for putting their product on the market Ineris elaborated a guidebook [2] with financial and technical support by ADEME the French Agency for Ecological Transition and France Hydrogen the French Association for Hydrogen and Fuel Cells. The preparation of this document also led to identifying gaps in the Regulations Codes and Standards (RCS) framework and necessary resources for the implementation of the conformity assessment procedures. This paper first describes the main regulatory procedures applicable for various types of hydrogen systems. Then describes the role of the actors involved in this process with a special focus on the French context. And finally focuses on some of the gaps that were identified and formulates suggestions to address them.
Influence of Non-equilibrium Conditions on Liquid Hydrogen Storage Tank Behavior
Sep 2021
Publication
In a liquid hydrogen storage tank hydrogen vapor exists above the cryogenic liquid. A common modeling assumption of a liquid hydrogen tank is thermodynamic equilibrium. However this assumption may not hold in all conditions. A non-equilibrium storage tank with a pressure relief valve and a burst disc in parallel was modeled in this work. The model includes different boiling regimes to handle scenarios with high heat transfer. The model was first validated with a scenario where normal boil-off from an unused tank was compared to experimental data. Then four abnormal tank scenarios were explored: a loss of vacuum in the insulation layer a high ambient temperature (to simulate an engulfing fire) a high ambient temperature with a simultaneous loss of vacuum and high conduction through the insulation layer. The burst disc of the tank opened only in the cases with extreme heat transfer to the tank (i.e. fire with a loss of vacuum and high insulation conductivity) quickly releasing the hydrogen. In the cases with only a loss of vacuum or only external heat from fire the pressure relief valve on the tank managed to moderate the pressure below the burst disc activation pressure. The high insulation conductivity case highlights differences between the equilibrium and non-equilibrium tank models. The mass loss from the tank through the burst disc is slower using a non-equilibrium model because mass transfer from the liquid to gas phase within the tank becomes limiting. The implications of this model and how it can be used to help inform safety codes and standards are discussed.
Fuel-scale Tunnel Experiments for Fuel Cell Hydrogen Vehicles: Gas Dispersion
Sep 2021
Publication
In the framework of the HYTUNNEL-CS European project sponsored by FCH-JU a set of preliminary tests were conducted in a real tunnel in France. These tests are devoted to safety of hydrogen-fueled vehicles having a compressed gas storage and Temperature Pressure Release Device (TPRD). The goal of the study is to develop recommendations for Regulations Codes and Standards (RCS) for inherently safer use of hydrogen vehicles in enclosed transportation systems. In these preliminary tests the helium gas has been employed instead of hydrogen. Upward and downward gas releases following by TPRD activation has been considered. The experimental data describing local behavior (close to jet or below the chassis) as well as global behavior at the tunnel scale are obtained. These experimental data are systematically compared to existing engineering correlations. The results will be used for benchmarking studies using CFD codes. The hydrogen pressure range in these preliminary tests has been lowered down to 20MPa in order to verify the capability of various large-scale measurement techniques before scaling up to 70MPa the subject of the second campaign.
CFD Simulation of Pressure Reduction Inside Large-scale Liquefied Hydrogen Tank
Sep 2021
Publication
Building the international hydrogen supply chain requires the large-scale liquefied hydrogen(LH2) carrier. During shipping LH2 with LH2 Carrier the tank is pressurized by LH2 evaporation due to heat ingress from outside. Before unloading LH2 at the receiving terminal reducing the tank pressure is essential for the safe tank operation. However pressure reduction might cause flashing leading to rapid vaporization of liquefied hydrogen liquid leakage. Moreover it was considered that pressure recovery phenomenon which was not preferred in terms of tank pressure management occurred at the beginning of pressure reduction. Hence the purpose of our research is to clarify the phenomenon inside the cargo tank during pressure reduction. The CFD analysis of the pressure reduction phenomenon was conducted with the VOF based in-house CFD code utilizing the C-CUP scheme combined with the hybrid Level Set and MARS method. In our previous research the pressure reduction experiments with the 30 m³ LH2 tank were simulated and the results showed that the pressure recovery was caused by the boiling delay and the tank pressure followed the saturation pressure after the liquid was fully stirred. In this paper the results were re-evaluated in terms of temperature. While pressure reduction was dominant the temperature of vapor-liquid interface decreased. Once the boiling bubble stirred the interface its temperature reached the saturation temperature after pressure recovery occurred. Moreover it was found that the liquid temperature during pressure reduction could not be measured because of the boiling from the wall of the thermometer. The CFD analysis on pressure reduction of 1250 m³ tank for the LH2 Carrier was also very could occur in the case of the 1250 m³ tank in a certain condition. These results provide new insight into the development of the LH2 carrier.
AMHYCO Project - Towards Advanced Accident Guidelines for Hydrogen Safety in Nuclear Power Plants
Sep 2021
Publication
Severe accidents in nuclear power plants are potentially dangerous to both humans and the environment. To prevent and/or mitigate the consequences of these accidents it is paramount to have adequate accident management measures in place. During a severe accident combustible gases — especially hydrogen and carbon monoxide — can be released in significant amounts leading to a potential explosion risk in the nuclear containment building. These gases need to be managed to avoid threatening the containment integrity which can result in the releases of radioactive material into the environment. The main objective of the AMHYCO project is to propose innovative enhancements in the way combustible gases are managed in case of a severe accident in currently operating reactors. For this purpose the AMHYCO project pursues three specific activities including experimental investigations of relevant phenomena related to hydrogen / carbon monoxide combustion and mitigation with PARs (Passive Autocatalytic Recombiners) improvement of the predictive capabilities of analysis tools used for explosion hazard evaluation inside the reactor containment as well as enhancement of the Severe Accident Management Guidelines (SAMGs) with respect to combustible gases risk management based on theoretical and experimental results. Officially launched on 1 October 2020 AMHYCO is an EU-funded Horizon 2020 project that will last 4 years from 2020 to 2024. This international project consists of 12 organizations (six from European countries and one from Canada) and is led by the Universidad Politécnica de Madrid (UPM). AMHYCO will benefit from the worldwide experts in combustion science accident management and nuclear safety in its Advisory Board. The paper will give an overview of the work program and planned outcome of the project.
Safety Compliance Verification of Fuel Cell Electric Vehicle Exhaust
Sep 2021
Publication
NREL has been developing compliance verification tools for allowable hydrogen levels prescribed by the Global Technical Regulation Number 13 (GTR-13) for hydrogen fuel cell electric vehicles (FCEVs). As per GTR-13 FCEV exhaust is to remain below 4 vol% H2 over a 3-second moving average and shall not at any time exceed 8 vol% H2 and that this requirement is to be verified with an analyzer that has a response time of less than 300 ms. To be enforceable a means to verify regulatory requirements must exist. In response to this need NREL developed a prototype analyzer that meets the GTR metrological requirements for FCEV exhaust analysis. The analyzer was tested on a commercial fuel cell electric vehicle (FCEV) under simulated driving conditions using a chassis dynamometer at the Emissions Research and Measurement Section of Environment and Climate Change Canada and FCEV exhaust was successfully profiled. Although the prototype FCEV Exhaust Analyzer met the metrological requirements of GTR-13 the stability of the hydrogen sensor was adversely impacted by condensed water in the sample gas. FCEV exhaust is at an elevated temperature and nearly saturated with water vapor. Furthermore condensed water is present in the form of droplets. Condensed water in the sample gas collected from FCEV exhaust can accumulate on the hydrogen sensing element which would not only block access of hydrogen to the sensing element but can also permanently damage the sensor electronics. In the past year the design of the gas sampling system was modified to mitigate against the transport of liquid water to the sensing element. Laboratory testing confirmed the effectiveness of the modified sampling system water removal strategy while maintaining the measurement range and response time required by GTR-13. Testing of the upgraded analyzer design on an FCEV operating on a chassis dynamometer is scheduled for the summer of 2021.
No more items...