Transmission, Distribution & Storage
Optimization of Operating Hydrogen Storage System for Coal–Wind–Solar Power Generation
Jul 2022
Publication
To address the severity of the wind and light abandonment problem and the economics of hydrogen energy production and operation this paper explores the problem of multi-cycle resource allocation optimization of hydrogen storage systems for coal–wind–solar power generation. In view of the seriousness of the problem of abandoning wind and photovoltaic power and the economy of hydrogen production and operation the node selection and scale setting issues for hydrogen production and storage as well as decision-making problems such as the capacity of new transmission lines and new pipelines and route planning are studied. This research takes the satisfaction of energy supply as the basic constraint and constructs a multi-cycle resource allocation optimization model for an integrated energy system aiming to achieve the maximum benefit of the whole system. Using data from Inner Mongolia where wind abandonment and power limitation are severe and Beijing and Shanxi provinces where hydrogen demand is high this paper analyzes the benefits of the hydrogen storage system for coal–wind–solar power generation and explores the impact of national subsidy policies and technological advances on system economics.
Relevance of Optimized Low-Scale Green H2 Systems in a French Context: Two Case Studies
May 2022
Publication
Hydrogen has been identified as a very promising vector for energy storage especially for heavy mobility applications. For this reason France is making significant investments in this field and use cases need to be evaluated as they are sprouting. In this paper the relevance of H2 in two storage applications is studied: a domestic renewable electricity production system connected to the grid and a collective hydrogen production for the daily bus refill. The investigation consists of the sizing of the system and then the evaluation of its performance according to several criteria depending on case. Optimizations are made using Bayesian and gradient-based methods. Several variations around a central case are explored for both cases to give insights on the impact of the different parameters (location pricing objective etc.) on the performance of the system.Our results show that domestic power-to-power applications (case 1) do not seem to be competitive with electrochemical storage. Meanwhile without any subsidies or incentives such configuration does not allow prosumers to save money (+16% spendings compared to non-equipped dwelling). It remains interesting when self-sufficiency is the main objective (up to 68% of energy is not exchanged). The power-to-gas application (case 2 central case) with a direct use of hydrogen for mobility seems to be more relevant according to our case study we could reach a production cost of green H2 around 5 €/kg similar to the 3–10 $/kg found in literature for 182 houses involved. In both cases H2 follows a yearly cycle charging in summer and discharging in winter (long term storage) due to low conversion efficiency.
Development and Future Scope of Renewable Energy and Energy Storage Systems
May 2022
Publication
This review study attempts to summarize available energy storage systems in order to accelerate the adoption of renewable energy. Inefficient energy storage systems have been shown to function as a deterrent to the implementation of sustainable development. It is therefore critical to conduct a thorough examination of existing and soon-to-be-developed energy storage technologies. Various scholarly publications in the fields of energy storage systems and renewable energy have been reviewed and summarized. Data and themes have been further highlighted with the use of appropriate figures and tables. Case studies and examples of major projects have also been researched to gain a better understanding of the energy storage technologies evaluated. An insightful analysis of present energy storage technologies and other possible innovations have been discovered with the use of suitable literature review and illustrations. This report also emphasizes the critical necessity for an efficient storage system if renewable energy is to be widely adopted.
Briefing on the EU Innovation Fund and the Implications for CCUS Projects- First Report on the Thematic Working Group on Policy, Regulation and Public Perception
Jan 2020
Publication
This report outlines the key modalities and procedures for the Innovation Fund and focuses on the potential funding implications for CCUS projects. The assessment of the suitability of the Innovation Fund for CCS projects has been completed based on discussion during a workshop hosted by the EU CCUS Projects Network in October 2019. This session was part of the Network’s Thematic Group on Policy Regulation and Public Perception. The session was held according to Chatham House rules to allow the projects present to exchange viewpoints and ideas freely.<br/>Broadly speaking it is hoped that the Innovation Fund Call for Proposal documents expected in mid-2020 will provide more information on how applicants should approach some of the key evaluation criteria namely calculating emissions avoidance for part-chain CCS and CCU projects demonstrating project maturity as well as project innovativeness. Furthermore there remains a concern that the costs for developing sufficient contingent storage sites could be overlooked by the Innovation Fund and EU policies directed towards CCS in general. Finally whereas there does not seem to be any regulatory barriers to blending Innovation Fund financing with Member State subsidies the asynchronous timing between the planned final investment decisions (FIDs) of some of the more advanced projects and the outcomes of the Innovation Fund (expected in 2022) means that certain projects may not be able to benefit from this.
Analysis of Hydrogen in Inorganic Materials and Coatings: A Critical Review
Jun 2021
Publication
The currently used bulk analysis and depth profiling methods for hydrogen in inorganic materials and inorganic coatings are reviewed. Bulk analysis of hydrogen is based on fusion of macroscopic samples in an inert gas and the detection of the thereby released gaseous H2 using inert gas fusion (IGF) and thermal desorption spectroscopy (TDS). They offer excellent accuracy and sensitivity. Depth profiling methods involve glow discharge optical emission spectroscopy and mass spectrometry (GDOES and GDMS) laser-induced breakdown spectroscopy (LIBS) secondary ion mass spectrometry (SIMS) nuclear reaction analysis (NRA) and elastic recoil detection analysis (ERDA). The principles of all these methods are explained in terms of the methodology calibration procedures analytical performance and major application areas. The synergies and the complementarity of various methods of hydrogen analysis are described. The existing literature about these methods is critically evaluated and major papers concerning each method are listed.
Factors Affecting Hydrogen Adsorption in Metal–Organic Frameworks: A Short Review
Jun 2021
Publication
Metal–organic frameworks (MOFs) have significant potential for hydrogen storage. The main benefit of MOFs is their reversible and high-rate hydrogen adsorption process whereas their biggest disadvantage is related to their operation at very low temperatures. In this study we describe selected examples of MOF structures studied for hydrogen adsorption and different factors affecting hydrogen adsorption in MOFs. Approaches to improving hydrogen uptake are reviewed including surface area and pore volume in addition to the value of isosteric enthalpy of hydrogen adsorption. Nanoconfinement of metal hydrides inside MOFs is proposed as a new approach to hydrogen storage. Conclusions regarding MOFs with incorporated metal nanoparticles which may be used as nanoscaffolds and/or H2 sorbents are summarized as prospects for the near future.
Study of the Microstructural and First Hydrogenation Properties of TiFe Alloy with Zr, Mn and V as Additives
Jul 2021
Publication
In this paper we report the effect of adding Zr + V or Zr + V + Mn to TiFe alloy on microstructure and hydrogen storage properties. The addition of only V was not enough to produce a minimum amount of secondary phase and therefore the first hydrogenation at room temperature under a hydrogen pressure of 20 bars was impossible. When 2 wt.% Zr + 2 wt.% V or 2 wt.% Zr + 2 wt.% V + 2 wt.% Mn is added to TiFe the alloy shows a finely distributed Ti2Fe-like secondary phase. These alloys presented a fast first hydrogenation and a high capacity. The rate-limiting step was found to be 3D growth diffusion controlled with decreasing interface velocity. This is consistent with the hypothesis that the fast reaction is likely to be the presence of Ti2Fe-like secondary phases that act as a gateway for hydrogen.
Effects of Hydrogen Addition on Design, Maintenance and Surveillance of Gas Networks
Jul 2021
Publication
Hydrogen when is blended with natural gas over time degrades the materials used for pipe transport. Degradation is dependent on the proportion of hydrogen added to the natural gas. The assessment is made according to hydrogen permeation risk to the integrity of structures adaptation of surveillance and maintenance of equipment. The paper gives a survey of HE and its consequence on the design and maintenance. It is presented in a logical sequence: the design before use; the hydrogen embrittlement (HE) effects on Maximum Allowable Operating Pressure (MAOP); maintenance and surveillance during use of smooth and damaged pipes; and particularly for crack-like defects corrosion defects and dents.
The Enhanced Hydrogen Storage Capacity of Carbon Fibers The Effect of Hollow Porous Structure and Surface Modification
Jul 2021
Publication
In this study highly porous carbon fiber was prepared for hydrogen storage. Porous carbon fiber (PCF) and activated porous carbon fiber (APCF) were derived by carbonization and chemical activation after selectively removing polyvinyl alcohol from a bi-component fiber composed of polyvinyl alcohol and polyacrylonitrile (PAN). The chemical activation created more pores on the surface of the PCF and consequently highly porous APCF was obtained with an improved BET surface area (3058 m2 g−1) and micropore volume (1.18 cm3 g−1) compare to those of the carbon fiber which was prepared by calcination of monocomponent PAN. APCF was revealed to be very efficient for hydrogen storage its hydrogen capacity of 5.14 wt% at 77 K and 10 MPa. Such hydrogen storage capacity is much higher than that of activated carbon fibers reported previously. To further enhance hydrogen storage capacity catalytic Pd nanoparticles were deposited on the surface of the APCF. The Pd-deposited APCF exhibits a high hydrogen storage capacity of 5.45 wt% at 77 K and 10 MPa. The results demonstrate the potential of Pd-deposited APCF for efficient hydrogen storage.
Synthesis and Characterization of Carbon-Based Composites for Hydrogen Storage Application
Dec 2021
Publication
Recent development shows that carbon-based composites are proving to be the most promising materials in hydrogen energy production storage and conversion applications. In this study composites of the copper-based metal-organic framework with different ratios of graphite oxide have been prepared for hydrogen storage application. The developed materials are characterized by X-ray diffraction (XRD) gravimetric thermal analysis (TGA) scanning electron microscopy (SEM) and BET. The newly developed composites have an improved crystalline structure and an increased surface area. The results of the experiment showed that the composite material MOF/GO 20% can store 6.12% of hydrogen at −40 ◦C.
Scenarios to Decarbonize Austria’s Energy Consumption and the Role of Underground Hydrogen Storage
May 2022
Publication
The European Union is aiming at reaching greenhouse gas (GHG) emission neutrality in 2050. Austria’s current greenhouse gas emissions are 80 million t/year. Renewable Energy (REN) contributes 32% to Austria’s total energy consumption. To decarbonize energy consumption a substantial increase in energy generation from renewable energy is required. This increase will add to the seasonality of energy supply and amplifies the seasonality in energy demand. In this paper the seasonality of energy supply and demand in a Net-Zero Scenario are analyzed for Austria and requirements for hydrogen storage derived. We looked into the potential usage of hydrogen in Austria and the economics of hydrogen generation and technology and market developments to assess the Levelized Cost of Hydrogen (LCOH). Then we cover the energy consumption in Austria followed by the REN potential. The results show that incremental potential of up to 140 TWh for hydropower photovoltaic (PV) and wind exists in Austria. Hydropower generation and PV is higher in summer- than in wintertime while wind energy leads to higher energy generation in wintertime. The largest incremental potential is PV with agrivoltaic systems significantly increasing the area amenable for PV compared with PV usage only. Battery Electric Vehicles (BEV) and Fuel Cell Vehicles (FCV) use energy more efficiently than Internal Combustion Engine (ICE) cars; however the use of hydrogen for electricity generation significantly decreases the efficiency due to electricity–hydrogen– electricity conversion. The increase in REN use and the higher demand for energy in Austria in wintertime require seasonal storage of energy. We developed three scenarios Externally Dependent Scenario (EDS) Balanced Energy Scenario (BES) or Self-Sustained Scenario (SSS) for Austria. The EDS scenario assumes significant REN import to Austria whereas the SSS scenario relies on REN generation within Austria. The required hydrogen storage would be 10.82 bn m3 for EDS 13.34 bn m3 for BES and 18.69 bn m3 for SSS. Gas and oil production in Austria and the presence of aquifers indicates that sufficient storage capacity might be available. Significant technology development is required to be able to implement hydrogen as an energy carrier and to balance seasonal energy demand and supply.
Metallurgical and Hydrogen Effects on the Small Punch Tested Mechanical Properties of PH-13-8Mo Stainless Steel
Oct 2018
Publication
PH13-8Mo is a precipitation hardened martensitic stainless steel known for its high strength but also for its high sensitivity to hydrogen embrittlement. Small punch test SPT (also referred to as the ball punch test BPT) is a relatively simple and new technique to assess the mechanical properties of samples under biaxial loading conditions. The current study utilizes the unique loading conditions of SPT to investigate the mechanical behavior and fracture prior to and after the hydrogen charging of PH13-8Mo steel. The mechanical characteristics were investigated at different metallurgical conditions: solution and quenched (SQ); fully-aged (550 °C for 4 h) and over-aged (600 °C for 4 h). Samples were cathodically hydrogen charged in a 1 M H2SO4 solution containing NaAsO2 (0.125 mg/L) at 50 mA/cm2 for different durations of 0.5 h 2 h and 19 h and compared to the as-heat-treated condition. A fractographic examination was performed following the SPT measurements by scanning electron microscopy (SEM). Transmission electron microscopy (TEM) and x-ray diffraction (XRD) analyses were used as complementary characterization tools. It is shown that upon hydrogen charging the SPT fracture mode changes from ductile to completely brittle with a transition of mixed mode cracking also affecting the SPT load-displacement curve.
Solid-State Hydrogen Storage for a Decarbonized Society
Nov 2021
Publication
Humanity is confronted with one of the most significant challenges in its history. The excessive use of fossil fuel energy sources is causing extreme climate change which threatens our way of life and poses huge social and technological problems. It is imperative to look for alternate energy sources that can replace environmentally destructive fossil fuels. In this scenario hydrogen is seen as a potential energy vector capable of enabling the better and synergic exploitation of renewable energy sources. A brief review of the use of hydrogen as a tool for decarbonizing our society is given in this work. Special emphasis is placed on the possibility of storing hydrogen in solid-state form (in hydride species) on the potential fields of application of solid-state hydrogen storage and on the technological challenges solid-state hydrogen storage faces. A potential approach to reduce the carbon footprint of hydrogen storage materials is presented in the concluding section of this paper.
Boron Hydrogen Compounds: Hydrogen Storage and Battery Applications
Dec 2021
Publication
About 25 years ago Bogdanovic and Schwickardi (B. Bogdanovic M. Schwickardi: J. Alloys Compd. 1–9 253 (1997) discovered the catalyzed release of hydrogen from NaAlH4 . This discovery stimulated a vast research effort on light hydrides as hydrogen storage materials in particular boron hydrogen compounds. Mg(BH4 )2 with a hydrogen content of 14.9 wt % has been extensively studied and recent results shed new light on intermediate species formed during dehydrogenation. The chemistry of B3H8 − which is an important intermediate between BH4 − and B12H12 2− is presented in detail. The discovery of high ionic conductivity in the high-temperature phases of LiBH4 and Na2B12H12 opened a new research direction. The high chemical and electrochemical stability of closo-hydroborates has stimulated new research for their applications in batteries. Very recently an all-solid-state 4 V Na battery prototype using a Na4 (CB11H12)2 (B12H12) solid electrolyte has been demonstrated. In this review we present the current knowledge of possible reaction pathways involved in the successive hydrogen release reactions from BH4 − to B12H12 2− and a discussion of relevant necessary properties for high-ionic-conduction materials.
Theoretical Limits of Hydrogen Storage in Metal-Organic Frameworks: Opportunities and Trade-offs
Jul 2013
Publication
Because of their high surface areas crystallinity and tunable propertiesmetal−organic frameworks (MOFs) have attracted intense interest as next-generationmaterials for gas capture and storage. While much effort has been devoted to thediscovery of new MOFs a vast catalog of existing MOFs resides within the CambridgeStructural Database (CSD) many of whose gas uptake properties have not beenassessed. Here we employ data mining and automated structure analysis to identify“cleanup” and rapidly predict the hydrogen storage properties of these compounds.Approximately 20 000 candidate compounds were generated from the CSD using analgorithm that removes solvent/guest molecules. These compounds were thencharacterized with respect to their surface area and porosity. Employing the empiricalrelationship between excess H2 uptake and surface area we predict the theoretical total hydrogen storage capacity for the subsetof ∼4000 compounds exhibiting nontrivial internal porosity. Our screening identifies several overlooked compounds having hightheoretical capacities; these compounds are suggested as targets of opportunity for additional experimental characterization.More importantly screening reveals that the relationship between gravimetric and volumetric H2 density is concave downwardwith maximal volumetric performance occurring for surface areas of 3100−4800 m2 /g. We conclude that H2 storage in MOFswill not benefit from further improvements in surface area alone. Rather discovery efforts should aim to achieve moderate massdensities and surface areas simultaneously while ensuring framework stability upon solvent removal.
Evaluation of Hydrogen-induced Cracking in High-strength Steel Welded Joints by Acoustic Emission Technique
Feb 2020
Publication
Hydrogen-induced cracking behavior in high-strength steel mainly composed of martensite was analyzed by acoustic emission (AE) technique and finite element method (FEM) in slow strain-rate tensile (SSRT) tests and welding tests. The crack initiation was detected by the AE signals and the time evolution of stress concentration and hydrogen diffusion were calculated by FEM. The effect of hardness and plastic strain on the hydrogen diffusion coefficientwas explicitly introduced into the governing equation in FEM. The criterion and indicator parameter for the crack initiation were derived as a function of maximum principal stress and locally accumulated hydrogen concentration. The results showed that the cracking criterion derived by AE and FEM is useful for predicting the cold cracking behavior and determining the critical preheat temperature to prevent hydrogeninduced cracking.
New Liquid Chemical Hydrogen Storage Technology
Aug 2022
Publication
The liquid chemical hydrogen storage technology has great potentials for high-density hydrogen storage and transportation at ambient temperature and pressure. However its commercial applications highly rely on the high-performance heterogeneous dehydrogenation catalysts owing to the dehydrogenation difficulty of chemical hydrogen storage materials. In recent years the chemists and materials scientists found that the supported metal nanoparticles (MNPs) can exhibit high catalytic activity selectivity and stability for the dehydrogenation of chemical hydrogen storage materials which will clear the way for the commercial application of liquid chemical hydrogen storage technology. This review has summarized the recent important research progress in the MNP-catalyzed liquid chemical hydrogen storage technology including formic acid dehydrogenation hydrazine hydrate dehydrogenation and ammonia borane dehydrogenation discussed the urgent challenges in the key field and pointed out the future research trends.
Combined Effects of Stress and Temperature on Hydrogen Diffusion in Non-hydride Forming Alloys Applied in Gas Turbines
Jul 2022
Publication
Hydrogen plays a vital role in the utilisation of renewable energy but ingress and diffusion of hydrogen in a gas turbine can induce hydrogen embrittlement on its metallic components. This paper aims to investigate the hydrogen transport in a non-hydride forming alloy such as Alloy 690 used in gas turbines inspired by service conditions of turbine blades i.e. under the combined effects of stress and temperature. An appropriate hydrogen transport equation is formulated accounting for both stress and temperature distributions of the domain in the non-hydride forming alloy. Finite element (FE) analyses are performed to predict steady-state hydrogen distribution in lattice sites and dislocation traps of a double notched specimen under constant tensile load and various temperature fields. Results demonstrate that the lattice hydrogen concentration is very sensitive to the temperature gradients whilst the stress concentration only slightly increases local lattice hydrogen concentration. The combined effects of stress and temperature result in the highest concentration of the dislocation trapped hydrogen in low-temperature regions although the plastic strain is only at a moderate level. Our results suggest that temperature gradients and stress concentrations in turbine blades due to cooling channels and holes make the relatively low-temperature regions susceptible to hydrogen embrittlement.
Microfluidics-based Analysis of Dynamic Contact Angles Relevant for Underground Hydrogen Storage
May 2022
Publication
Underground Hydrogen Storage (UHS) is an attractive technology for large-scale (TWh) renewable energy storage. To ensure the safety and efficiency of the UHS it is crucial to quantify the H2 interactions with the reservoir fluids and rocks across scales including the micro scale. This paper reports the experimental measurements of advancing and receding contact angles for different channel widths for a H2 /water system at P = 10 bar and T = 20 ◦C using a microfluidic chip. To analyse the characteristics of the H2 flow in straight pore throats the network is designed such that it holds several straight channels. More specifically the width of the microchannels range between 50 μm and 130 μm. For the drainage experiments H2 is injected into a fully water saturated system while for the imbibition tests water is injected into a fully H2 -saturated system. For both scenarios high-resolution images are captured starting the introduction of the new phase into the system allowing for fully-dynamic transport analyses. For better insights N2 /water and CO2 /water flows were also analysed and compared with H2 /water. Results indicate strong water-wet conditions with H2 /water advancing and receding contact angles of respectively 13◦–39◦ and 6◦–23◦ . It was found that the contact angles decrease with increasing channel widths. The receding contact angle measured in the 50 μm channel agrees well with the results presented in the literature by conducting a core-flood test for a sandstone rock. Furthermore the N2 /water and CO2 /water systems showed similar characteristics as the H2 /water system. In addition to the important characterization of the dynamic wettability the results are also crucially important for accurate construction of pore-scale simulators.
Experimental Investigation on CO2 Methanation Process for Solar Energy Storage Compared to CO2-Based Methanol Synthesis
Jun 2017
Publication
The utilization of the captured CO2 as a carbon source for the production of energy storage media offers a technological solution for overcoming crucial issues in current energy systems. Solar energy production generally does not match with energy demand because of its intermittent and non-programmable nature entailing the adoption of storage technologies. Hydrogen constitutes a chemical storage for renewable electricity if it is produced by water electrolysis and is also the key reactant for CO2 methanation (Sabatier reaction). The utilization of CO2 as a feedstock for producing methane contributes to alleviate global climate changes and sequestration related problems. The produced methane is a carbon neutral gas that fits into existing infrastructure and allows issues related to the aforementioned intermittency and non-programmability of solar energy to be overcome. In this paper an experimental apparatus composed of an electrolyzer and a tubular fixed bed reactor is built and used to produce methane via Sabatier reaction. The objective of the experimental campaign is the evaluation of the process performance and a comparison with other CO2 valorization paths such as methanol production. The investigated pressure range was 2–20 bar obtaining a methane volume fraction in outlet gaseous mixture of 64.75% at 8 bar and 97.24% at 20 bar with conversion efficiencies of respectively 84.64% and 99.06%. The methanol and methane processes were compared on the basis of an energy parameter defined as the spent energy/stored energy. It is higher for the methanol process (0.45) with respect to the methane production process (0.41–0.43) which has a higher energy storage capability.
No more items...