Transmission, Distribution & Storage
Inspection of Coated Hydrogen Transportation Pipelines
Sep 2023
Publication
The growing need for hydrogen indicates that there is likely to be a demand for transporting hydrogen. Hydrogen pipelines are an economical option but the issue of hydrogen damage to pipeline steels needs to be studied and investigated. So far limited research has been dedicated to determining how the choice of inspection method for pipeline integrity management changes depending on the presence of a coating. Thus this review aims to evaluate the effectiveness of inspection methods specifically for detecting the defects formed uniquely in coated hydrogen pipelines. The discussion will begin with a background of hydrogen pipelines and the common defects seen in these pipelines. This will also include topics such as blended hydrogen-natural gas pipelines. After which the focus will shift to pipeline integrity management methods and the effectiveness of current inspection methods in the context of standards such as ASME B31.12 and BS 7910. The discussion will conclude with a summary of newly available inspection methods and future research directions.
Material Challenges and Hydrogen Embrittlement Assessment for Hydrogen Utilisation in Industrial Scale
Sep 2023
Publication
Hydrogen has been studied extensively as a potential enabler of the energy transition from fossil fuels to renewable sources. It promises a feasible decarbonisation route because it can act as an energy carrier a heat source or a chemical reactant in industrial processes. Hydrogen can be produced via renewable energy sources such as solar hydro or geothermic routes and is a more stable energy carrier than intermittent renewable sources. If hydrogen can be stored efficiently it could play a crucial role in decarbonising industries. For hydrogen to be successfully implemented in industrial systems its impact on infrastructure needs to be understood quantified and controlled. If hydrogen technology is to be economically feasible we need to investigate and understand the retrofitting of current industrial infrastructure. Currently there is a lack of comprehensive knowledge regarding alloys and components performance in long-term hydrogen-containing environments at industrial conditions associated with high-temperature hydrogen processing/production. This review summarises insights into the gaps in hydrogen embrittlement (HE) research that apply to high-temperature high-pressure systems in industrial processes and applications. It illustrates why it is still important to develop characterisation techniques and methods for hydrogen interaction with metals and surfaces under these conditions. The review also describes the implications of using hydrogen in large-scale industrial processes.
Modelling Hydrogen Storage and Filling Systems: A Dynamic and Customizable Toolkit
Aug 2023
Publication
Hydrogen plays a vital role in decarbonizing the mobility sector. With the number of hydrogen vehicles expected to drastically increase a network of refuelling stations needs to be built to keep up with the hydrogen demand. However further research and development on hydrogen refuelling infrastructure storage and standardization is required to overcome technical and economic barriers. Simulation tools can reduce time and costs during the design phase but existing models do not fully support calculations of complete and arbitrary system layouts. Therefore a flexible simulation toolbox for rapid investigations of hydrogen refuelling and extraction processes as well as development of refuelling infrastructure vehicle tank systems and refuelling protocols for non-standardized applications was developed. Our model library H2VPATT comprises of typical components found in refuelling infrastructure. The key component is the hydrogen tank model. The simulation model was successfully validated with measurement data from refuelling tests of a 320 l type III tank.
Thermal Design and Heat Transfer Optimisation of a Liquid Organic Hydrogen Carrier Batch Reactor for Hydrogen Storage
Aug 2023
Publication
Liquid organic hydrogen carriers (LOHCs) are considered a promising hydrogen storage technology. Heat must be exchanged with an external medium such as a heat transfer fluid for the required chemical reactions to occur. Batch reactors are simple but useful solutions for small-scale storage applications which can be modelled with a lumped parameter approach adequately reproducing their dynamic performance. For such reactors power is consumed to circulate the external heat transfer fluid and stir the organic liquid inside the reactor and heat transfer performance and power consumption are two key parameters in reactor optimisation. Therefore with reference to the hydrogen release phase this paper describes a procedure to optimise the reactor thermal design based on a lumped-parameter model in terms of heat transfer performance and minimum power consumption. Two batch reactors are analysed: a conventional jacketed reactor with agitation nozzles and a half-pipe coil reactor. Heat transfer performance is evaluated by introducing a newly defined dimensionless parameter the Heat Transfer Ratio (HTR) whose value directly correlates to the heat rate required by the carrier's dehydrogenation reaction. The resulting model is a valid tool for adequately reproducing the hydrogen storage behaviour within dynamic models of complex and detailed energy systems.
Assessing Opportunities and Weaknesses of Green Hydrogen Transport via LOHC through a Detailed Techno-economic Analysis
Aug 2023
Publication
In the transition towards a more sustainable energy system hydrogen is seen as the key low-emission energy source. However the limited H2 volumetric density hinders its transportation. To overcome this issue liquid organic hydrogen carriers (LOHCs) molecules that can be hydrogenated and upon arrival dehydrogenated for H2 release have been proposed as hydrogen transport media. Considering toluene and dibenzyltoluene as representative carriers this work offers a systematic methodology for the analysis and the comparison of LOHCs in view of identifying cost-drivers of the overall value-chain. A detailed Aspen Plus process simulation is provided for hydrogenation and dehydrogenation sections. Simulation results are used as input data for the economic assessment. The process economics reveals that dehydrogenation is the most impactful cost-item together with the carrier initial loading the latter related to the LOHC transport distance. The choice of the most suitable molecule as H2 carrier ultimately is a trade-off between its hydrogenation enthalpy and cost.
A Review on Metal Hydride Materials for Hydrogen Storage
Jul 2023
Publication
To achieve the shift to renewable energies efficient energy storage is of the upmost importance. Hydrogen as a chemical energy storage represents a promising technology due to its high gravimetric energy density. However the most efficient form of hydrogen storage still remains an open question. Absorption-based storage of hydrogen in metal hydrides offers high volumetric energy densities as well as safety advantages. In this work technical economic and environmental aspects of different metal hydride materials are investigated. An overview of the material properties production methods as well as possibilities for enhancement of properties are presented. Furthermore impacts on material costs abundance of raw materials and dependency on imports are discussed. Advantages and disadvantages of selected materials are derived and may serve as a decision basis for material selection based on application. Further research on enhancement of material properties as well as on the system level is required for widespread application of metal hydrides.
Hydrogen Storage by Liquid Hydrogen Carriers: Catalyst, Renewable Carrier, and Technology - A Review
Mar 2023
Publication
Hydrogen has attracted widespread attention as a carbon-neutral energy source but developing efficient and safe hydrogen storage technologies remains a huge challenge. Recently liquid organic hydrogen carriers (LOHCs) technology has shown great potential for efficient and stable hydrogen storage and transport. This technology allows for safe and economical large-scale transoceanic transportation and long-cycle hydrogen storage. In particular traditional organic hydrogen storage liquids are derived from nonrenewable fossil fuels through costly refining procedures resulting in unavoidable environmental contamination. Biomass holds great promise for the preparation of LOHCs due to its unique carbon-balance properties and feasibility to manufacture aromatic and nitrogen-doped compounds. According to recent studies almost 100% conversion and 92% yield of benzene could be obtained through advanced biomass conversion technologies showing great potential in preparing biomass-based LOHCs. Overall the present LOHCs systems and their unique applications are introduced in this review and the technical paths are summarized. Furthermore this paper provides an outlook on the future development of LOHCs technology focusing on biomass-derived aromatic and N-doped compounds and their applications in hydrogen storage.
Linking Geological and Infrastructural Requirements for Large-scale Underground Hydrogen Storage in Germany
Jun 2023
Publication
Hydrogen storage might be key to the success of the hydrogen economy and hence the energy transition in Germany. One option for cost-effective storage of large quantities of hydrogen is the geological subsurface. However previous experience with underground hydrogen storage is restricted to salt caverns which are limited in size and space. In contrast pore storage facilities in aquifers -and/or depleted hydrocarbon reservoirs- could play a vital role in meeting base load needs due to their wide availability and large storage capacity but experiences are limited to past operations with hydrogen-bearing town gas. To overcome this barrier here we investigate hydrogen storage in porous storage systems in a two-step process: 1) First we investigate positive and cautionary indicators for safe operations of hydrogen storage in pore storage systems. 2) Second we estimate hydrogen storage capacities of pore storage systems in (current and decommissioned) underground natural gas storage systems and saline aquifers. Our systematic review highlights that optimal storage conditions in terms of energy content and hydrogen quality are found in sandstone reservoirs in absence of carbonate and iron bearing accessory minerals at a depth of approx. 1100 m and a temperature of at least 40°C. Porosity and permeability of the reservoir formation should be at least 20% and 5 × 10−13 m2 (~500 mD) respectively. In addition the pH of the brine should fall below 6 and the salinity should exceed 100 mg/L. Based on these estimates the total hydrogen storage capacity in underground natural gas storages is estimated to be up to 8 billion cubic meters or (0.72 Mt at STP) corresponding to 29 TWh of energy equivalent of hydrogen. Saline aquifers may offer additional storage capacities of 81.6–691.8 Mt of hydrogen which amounts to 3.2 to 27.3 PWh of energy equivalent of hydrogen the majority of which is located in the North German basin. Pore storage systems could therefore become a crucial element of the future German hydrogen infrastructure especially in regions with large industrial hydrogen (storage) demand and likely hydrogen imports via pipelines and ships.
Numerical Simulation of Hydrogen Diffusion in Cement Sheath of Wells Used for Underground Hydrogen Storage
Jul 2023
Publication
The negative environmental impact of carbon emissions from fossil fuels has promoted hydrogen utilization and storage in underground structures. Hydrogen leakage from storage structures through wells is a major concern due to the small hydrogen molecules that diffuse fast in the porous well cement sheath. The second-order parabolic partial differential equation describing the hydrogen diffusion in well cement was solved numerically using the finite difference method (FDM). The numerical model was verified with an analytical solution for an ideal case where the matrix and fluid have invariant properties. Sensitivity analyses with the model revealed several possibilities. Based on simulation studies and underlying assumptions such as non-dissolvable hydrogen gas in water present in the cement pore spaces constant hydrogen diffusion coefficient cement properties such as porosity and saturation etc. hydrogen should take about 7.5 days to fully penetrate a 35 cm cement sheath under expected well conditions. The relatively short duration for hydrogen breakthrough in the cement sheath is mainly due to the small molecule size and high hydrogen diffusivity. If the hydrogen reaches a vertical channel behind the casing a hydrogen leak from the well is soon expected. Also the simulation result reveals that hydrogen migration along the axial direction of the cement column from a storage reservoir to the top of a 50 m caprock is likely to occur in 500 years. Hydrogen diffusion into cement sheaths increases with increased cement porosity and diffusion coefficient and decreases with water saturation (and increases with hydrogen saturation). Hence cement with a low water-to-cement ratio to reduce water content and low cement porosity is desirable for completing hydrogen storage wells.
Implementation of Formic Acid as a Liquid Organic Hydrogen Carrier (LOHC): Techno-Economic Analysis and Life Cycle Assessment of Formic Acid Produced via CO2 Utilization
Sep 2022
Publication
To meet the global climate goals agreed upon regarding the Paris Agreement governments and institutions around the world are investigating various technologies to reduce carbon emissions and achieve a net-negative energy system. To this end integrated solutions that incorporate carbon utilization processes as well as promote the transition of the fossil fuel-based energy system to carbon-free systems such as the hydrogen economy are required. One of the possible pathways is to utilize CO2 as the base chemical for producing a liquid organic hydrogen carrier (LOHC) using CO2 as a mediating chemical for delivering H2 to the site of usage since gaseous and liquid H2 retain transportation and storage problems. Formic acid is a probable candidate considering its high volumetric H2 capacity and low toxicity. While previous studies have shown that formic acid is less competitive as an LOHC candidate compared to other chemicals such as methanol or toluene the results were based on out-of-date process schemes. Recently advances have been made in the formic acid production and dehydrogenation processes and an analysis regarding the recent process configurations could deem formic acid as a feasible option for LOHC. In this study the potential for using formic acid as an LOHC is evaluated with respect to the state-of-the-art formic acid production schemes including the use of heterogeneous catalysts during thermocatalytic and electrochemical formic acid production from CO2 . Assuming a hydrogen distribution system using formic acid as the LOHC each of the production transportation dehydrogenation and CO2 recycle sections are separately modeled and evaluated by means of techno-economic analysis (TEA) and life cycle assessment (LCA). Realistic scenarios for hydrogen distribution are established considering the different transportation and CO2 recovery options; then the separate scenarios are compared to the results of a liquefied hydrogen distribution scenario. TEA results showed that while the LOHC system incorporating the thermocatalytic CO2 hydrogenation to formic acid is more expensive than liquefied H2 distribution the electrochemical CO2 reduction to formic acid system reduces the H2 distribution cost by 12%. Breakdown of the cost compositions revealed that reduction of steam usage for thermocatalytic processes in the future can make the LOHC system based on thermocatalytic CO2 hydrogenation to formic acid to be competitive with liquefied H2 distribution if the production cost could be reduced by 23% and 32% according to the dehydrogenation mode selected. Using formic acid as a LOHC was shown to be less competitive compared to liquefied H2 delivery in terms of LCA but producing formic acid via electrochemical CO2 reduction was shown to retain the lowest global warming potential among the considered options.
Energy Storage Strategy - Phase 2
Feb 2023
Publication
This document is phase 2 of the energy storage strategy study and it covers the storage challenges of the energy transition. We start in section 3 by covering historical and current natural gas imports into the UK and what these could look like in the future. In section 4 we explore what demand for hydrogen could look like – this has a high level of uncertainty and future policy decisions will have significant impacts on hydrogen volumes and annual variations. We generated two hydrogen storage scenarios based on National Grid’s Future Energy Scenarios and the Climate Change Committee’s Sixth Carbon Budget to assess the future need for hydrogen storage in the UK. We also looked at an extreme weather scenario resulting from an area of high-pressure settled over the British Isles resulting in very low ambient temperatures an unusually high demand for heating and almost no wind generation. In section 5 we investigate options for hydrogen storage and build on work previously carried out by SGN. We discuss the differences between the properties of hydrogen and natural gas and how this affects line pack and depletion of line pack. We discuss flexibility on the supply and demand side and how this can impact on hydrogen storage. We provide a summary table which compares the various options for storage. In section 5 we explore hydrogen trade and options for import and export. Using information from other innovation projects we also discuss production of hydrogen from nuclear power and the impact of hybrid appliances on gas demand for domestic heat. In section 7 we discuss the outputs from a stakeholder workshop with about 40 stakeholders across industry academia and government. The workshop covered UK gas storage strategy to date hydrogen demand and corresponding storage scenarios to 2050 including consideration of seasonal variation and storage options.
Energy Storage Strategy - Phase 3
Feb 2023
Publication
This report evaluates the main options to provide required hydrogen storage capacity including the relevant system-level considerations and provides recommendations for further actions including low-regrets actions that are needed in a range of scenarios.
Underground Storage of Hydrogen and Hydrogen/methane Mixtures in Porous Reservoirs: Influence of Reservoir Factors and Engineering Choices on Deliverability and Storage Operations
Jul 2023
Publication
Seasonal storage of natural gas (NG) which primarily consists of methane (CH4) has been practiced for more than a hundred years at underground gas storage (UGS) facilities that use depleted hydrocarbon reservoirs saline aquifers and salt caverns. To support a transition to a hydrogen (H2) economy similar facilities are envisioned for long-duration underground H2 storage (UHS) of either H2 or H2/CH4 mixtures. Experience with UGS can be used to guide the deployment of UHS so we identify and quantify factors (formation/fluid properties and engineering choices) that influence reservoir behavior (e.g. viscous fingering and gravity override) the required number of injection/withdrawal wells and required storage volume contrasting the differences between the storage of CH4 H2 and H2/CH4 mixtures. The most important engineering choices are found to be the H2 fraction in H2/CH4 mixtures storage depth and injection rate. Storage at greater depths (higher pressure) but with relatively lower temperature is more favorable because it maximizes volumetric energy-storage density while minimizing viscous fingering and gravity override due to buoyancy. To store an equivalent amount of energy storing H2/CH4 mixtures in UHS facilities will require more wells and greater reservoir volume than corresponding UGS facilities. We use our findings to make recommendations about further research needed to guide deployment of UHS in porous reservoirs.
Comparative Techno-economic Analysis of Large-scale Renewable Energy Storage Technologies
Jun 2023
Publication
Energy storage is an effective way to address the instability of renewable energy generation modes such as wind and solar which are projected to play an important role in the sustainable and low-carbon society. Economics and carbon emissions are important indicators that should be thoroughly considered for evaluating the feasibility of energy storage technologies (ESTs). In this study we study two promising routes for large-scale renewable energy storage electrochemical energy storage (EES) and hydrogen energy storage (HES) via technical analysis of the ESTs. The levelized cost of storage (LCOS) carbon emissions and uncertainty assessments for EESs and HESs over the life cycle are conducted with full consideration of the critical links for these routes. In order to reduce the evaluation error we use the Monte Carlo method to derive a large number of data for estimating the economy and carbon emission level of ESTs based on the collected data. The results show that lithium ion (Li-ion) batteries show the lowest LCOS and carbon emissions at 0.314 US$ kWh-1 and 72.76 gCO2e kWh-1 compared with other batteries for EES. Different HES routes meaning different combinations of hydrogen production delivery and refueling methods show substantial differences in economics and the lowest LCOS and carbon emissions at 0.227 US$ kWh-1 and 61.63 gCO2e kWh-1 are achieved using HES routes that involve hydrogen production by alkaline electrolyzer (AE) delivery by hydrogen pipeline and corresponding refueling. The findings of this study suggest that HES and EES have comparable levels of economics and carbon emissions that should be both considered for large-scale renewable energy storage to achieve future decarbonization goals.
Potential of Salt Caverns for Hydrogen Storage in Southern Ontario, Canada
Jul 2023
Publication
Salt caverns produced by solution mining in Southern Ontario provide ideal spaces for gas storage due to their low permeability. Underground hydrogen storage (UHS) is an important part of the future renewable energy market in Ontario in order to achieve global carbon neutrality and to fill the gap left by retiring nuclear power plants. However large-scale hydrogen storage is still restricted by limited storage space on the ground’s surface. In this study hydrogen’s physical and chemical properties are first introduced and characterized by low molecular weight high diffusivity low solubility and low density. Then the geological conditions of the underground reservoirs are analyzed especially salt caverns. Salt caverns with their inert cavity environments and stable physical properties offer the most promising options for future hydrogen storage. The scales heights and thicknesses of the roof and floor salt layers and the internal temperatures and pressures conditions of salt caverns can affect stabilities and storage capacities. Finally several potential problems that may affect the safe storage of hydrogen in salt caverns are discussed. Through the comprehensive analysis of the influencing factors of hydrogen storage in salt caverns this study puts forward the most appropriate development strategy for salt caverns which provides theoretical guidance for UHS in the future and helps to reduce the risk of large-scale storage design.
Leakage and Diffusion Characteristics of Underground Hydrogen Pipeline
Jun 2023
Publication
Soil corrosion and hydrogen embrittlement are the main factors of hydrogen pipeline failure. The gas escapes diffuses and accumulating in the soil and entering the atmosphere when leak occurs. The mechanism of gas diffusion in buried pipelines is very complicated. Mastering the evolution law of hydrogen leakage diffusion is conducive to quickly locating the leakage point and reducing the loss. The leakage model of the underground hydrogen pipeline is established in this paper. Effect of leakage hole soil type pipeline pressure pipeline diameter on hydrogen leakage diffusion were investigated. The results show that when the hydrogen pipeline leaks the hydrogen concentration increases with the increase of leakage time showing a symmetrical distribution trend. With the pipeline pressure increase hydrogen leakage speed is accelerated and longitudinal diffusion gradually becomes the dominant direction. With the leakage diameter increases hydrogen leakage per unit of time increases sharply. Hydrogen diffuses more easily in sandy soil and diffusion speed concentration and range are higher than that in clay soil. The research content provides a reference and basis for the detection and evaluation of buried hydrogen pipeline leakage.
Benchmark Study for the Simulation of Underground Hydrogen Storage Operations
Aug 2022
Publication
While the share of renewable energy sources increased within the last years with an ongoing upward trend the energy sector is facing the problem of storing large amounts of electrical energy properly. To compensate daily and seasonal fluctuations a sufficient storage system has to be developed. The storage of hydrogen in the subsurface referred to as Underground Hydrogen Storage (UHS) shows potential to be a solution for this problem. Hydrogen produced from excess energy via electrolysis is injected into a subsurface reservoir and withdrawn when required. As hydrogen possesses unique thermodynamic properties many commonly used correlations can not be simply transferred to a system with a high hydrogen content. Mixing processes with the present fluids are essential to be understood to achieve high storage efficiencies. Additionally in the past microbial activity e.g. by methanogenic archaea was observed leading to a changing fluid composition over time. To evaluate the capability of reservoir simulators to cover these processes the present study establishes a benchmark scenario of an exemplary underground hydrogen storage scenario. The benchmark comprises of a generic sandstone gas reservoir and a typical gas storage schedule is defined. Based on this benchmark the present study assesses the capabilities of the commercial simulator Schlumberger ECLIPSE and the open-source simulator DuMux to mimic UHS related processes such as hydrodynamics but also microbial activity. While ECLIPSE offers a reasonable mix of user-friendliness and computation time DuMux allows for a better adjustment of correlations and the implementation of biochemical reactions. The corresponding input data (ECLIPSE format) and relevant results are provided in a repository to allow this simulation study’s reproduction and extension.
A Comparative Study on Energy Efficiency of the Maritime Supply Chains for Liquefied Hydrogen, Ammonia, Methanol and Natural Gas
Jun 2023
Publication
To cope with climate change emerging fuels- hydrogen ammonia and methanol- have been proposed as promising energy carriers that will replace part of the liquefied natural gas (LNG) in future maritime scenarios. Energy efficiency is an important indicator for evaluating the system but the maritime supply system for emerging fuels has yet to be revealed. In this study the energy efficiency of the maritime supply chain of hydrogen ammonia methanol and natural gas is investigated considering processes including production storage loading transport and unloading. A sensitivity analysis of parameters such as ambient temperature storage time pipeline length and sailing time is also carried out. The results show that hydrogen (2.366%) has the highest daily boil-off gas (BOG) rate and wastes more energy than LNG (0.413%) with ammonia and methanol both being lower than LNG. The recycling of BOG is of great importance to the hydrogen supply chain. When produced from renewable energy sources methanol (98.02%) is the most energy efficient followed by ammonia with hydrogen being the least (89.10%). This assessment shows from an energy efficiency perspective that ammonia and methanol have the potential to replace LNG as the energy carrier of the future and that hydrogen requires efficient BOG handling systems to increase competitiveness. This study provides some inspirations for the design of global maritime supply systems for emerging fuels.
CFD Thermo‑Hydraulic Evaluation of a Liquid Hydrogen Storage Tank with Different Insulation Thickness in a Small‑Scale Hydrogen Liquefier
Aug 2023
Publication
Accurate evaluation of thermo‑fluid dynamic characteristics in tanks is critically important for designing liquid hydrogen tanks for small‑scale hydrogen liquefiers to minimize heat leakage into the liquid and ullage. Due to the high costs most future liquid hydrogen storage tank designs will have to rely on predictive computational models for minimizing pressurization and heat leakage. Therefore in this study to improve the storage efficiency of a small‑scale hydrogen liquefier a three‑ dimensional CFD model that can predict the boil‑off rate and the thermo‑fluid characteristics due to heat penetration has been developed. The prediction performance and accuracy of the CFD model was validated based on comparisons between its results and previous experimental data and a good agreement was obtained. To evaluate the insulation performance of polyurethane foam with three different insulation thicknesses the pressure changes and thermo‑fluid characteristics in a partially liquid hydrogen tank subject to fixed ambient temperature and wind velocity were investigated nu‑ merically. It was confirmed that the numerical simulation results well describe not only the temporal variations in the thermal gradient due to coupling between the buoyance and convection but also the buoyancy‑driven turbulent flow characteristics inside liquid hydrogen storage tanks with differ‑ ent insulation thicknesses. In the future the numerical model developed in this study will be used for optimizing the insulation systems of storage tanks for small‑scale hydrogen liquefiers which is a cost‑effective and highly efficient approach.
The Potential Role of Ammonia for Hydrogen Storage and Transport: A Critical Review of Challenges and Opportunities
Aug 2023
Publication
Hydrogen is being included in several decarbonization strategies as a potential contributor in some hard-to-abate applications. Among other challenges hydrogen storage represents a critical aspect to be addressed either for stationary storage or for transporting hydrogen over long distances. Ammonia is being proposed as a potential solution for hydrogen storage as it allows storing hydrogen as a liquid chemical component at mild conditions. Nevertheless the use of ammonia instead of pure hydrogen faces some challenges including the health and environmental issues of handling ammonia and the competition with other markets such as the fertilizer market. In addition the technical and economic efficiency of single steps such as ammonia production by means of the Haber–Bosch process ammonia distribution and storage and possibly the ammonia cracking process to hydrogen affects the overall supply chain. The main purpose of this review paper is to shed light on the main aspects related to the use of ammonia as a hydrogen energy carrier discussing technical economic and environmental perspectives with the aim of supporting the international debate on the potential role of ammonia in supporting the development of hydrogen pathways. The analysis also compares ammonia with alternative solutions for the long-distance transport of hydrogen including liquefied hydrogen and other liquid organic carriers such as methanol.
No more items...