Transmission, Distribution & Storage
Hydrogen Impact on Transmission Pipeline Risk: Probabilistic Analysis of Failure Cases
Jan 2025
Publication
Transmission pipelines are the safest and most economical solution for long-distance hydrogen delivery. However safety and reliability issues such as hydrogen’s impact on material properties including fracture toughness and fatigue crack growth could restrict pipeline development. This impact may also increase the risk of several pipeline failure causes including excavation damage corrosion earth movement material failures and other hydrogen damage mechanisms. While many quantitative risk assessment (QRA) studies exist for natural gas pipelines limited work focuses on hydrogen pipelines; the influence of hydrogen must be considered. This work presents a systematic causal model for hydrogen pipeline failures that incorporates multiple failure causes quantifying hydrogen influence on pipeline failures and analyzing how changes in hydrogen effects or operating conditions impact multiple failure causes. According to the results (1) hydrogen has a relatively minor impact on corrosion-related failure; (2) hydrogen greatly affects crack damage (the failure probability can increase by over 1000 times); (3) excavation damage is nearly independent of hydrogen’s effects; (4) earth movement damage shows increased susceptibility (the failure probability can increase by over 10 times). The hydrogen effects change the relative susceptibility of pipelines to these failure causes therefore to implement tailored safety measures under varying operating conditions.
High-Entropy Alloys: Innovative Materials with Unique Properties for Hydrogen Storage and Technologies for Their Production
Jan 2025
Publication
This paper presents a review of a number of works devoted to the studies of high-entropy alloys (HEAs). As is known HEAs represent a new class of materials that have attracted the attention of scientists due to their unique properties and prospects of application in hydrogen power engineering. The peculiarity of HEAs is their high entropy of mixing which provides phase stability and flexibility in developing materials with given characteristics. The main focus of this paper is on the application of HEAs for solid-state hydrogen storage their physicochemical and mechanical properties and synthesis technologies. Recent advances in the hydrogen absorption properties of HEAs are analyzed including their ability to efficiently absorb and desorb hydrogen at moderate temperatures and pressures. Prospects for their use in the development of environmentally safe and efficient hydrogen storage systems are considered. The work also includes a review of synthesis methods aimed at optimizing the properties of HEAs for hydrogen energy applications.
New Flow Simulation Framework for Underground Hydrogen Storage Modelling Considering Microbial and Geochemical Reactions
Jul 2025
Publication
The widespread use of hydrogen as an energy source relies on efficient large-scale storage techniques. Underground Hydrogen Storage (UHS) is a promising solution to balance the gap between renewable energy production and constant energy demand. UHS employs geological structures like salt caverns depleted reservoirs or aquifers for hydrogen storage enabling long-term and scalable storage capacity. Therefore robust and reliable predictive tools are essential to assess the risks associated with geological hydrogen storage. This paper presents a novel reactive transport model called “Underground Gas Flow simulAtions with Coupled bio-geochemical reacTions” or “UGFACT” designed for various gas injection processes accounting for geochemical and microbial reactions. The flow module and geochemical reactions in the UGFACT model were verified against two commercial reservoir simulators E300 and CMG-GEM showing excellent agreement in fluid flow variables and geochemical behaviour. A major step forward of this model is to integrate flow dynamics geochemical reactions and microbial activity. UGFACT was used to conduct a simple storage cycle in a 1D geometry across three different reservoirs each with different mineralogies and water compositions: Bentheimer sandstone Berea sandstone and Grey Berea sandstone under three microbial conditions (“No Reaction” “Moderate Rate” “High Rate”). The findings suggest that Bentheimer sandstone and Berea sandstone sites may experience severe effects from ongoing microbial and geochemical reactions whereas Grey Berea sandstone shows no significant H2 loss. Additionally the model predicts that under the high-rate microbial conditions the hydrogen consumption rate can reach to as much as 11 mmol of H2 per kilogram of water per day (mmol / kg⋅day) driven by methanogenesis and acetogenesis.
Hydrogen Underground Storage in Silica-Clay Shales: Experimental and Density Functional Theory Investigation
Nov 2023
Publication
In the context of reducing the global emissions of greenhouse gaseshydrogen (H2) has become an attractive alternative to substitute the current fossil fuels.However its properties seasonal fluctuations and the lack of extended energy stabilitymade it extremely difficult to be economically and safely stored for a long term in recentyears. Therefore this paper investigated the potential of shale gas reservoirs (rich andlow clay−rich silica minerals) to store hydrogen upon demand. Density functional theorymolecular simulation was employed to explore hydrogen adsorption on the silica−kaolinite interface and the physisorption of hydrogen on the shale surface is revealed.This is supported by low adsorption energies on different adsorption configurations(0.01 to −0.21 eV) and the lack of charge transfer showed by Bader charge analysis.Moreover the experimental investigation was employed to consider the temperature(50−100 °C) and pressure (up to 20 bar) impact on hydrogen uptake on Midra shalespecifically palygorskite (100%) which is rich in silicate clay minerals (58.83% SiO2).The results showed that these formations do not chemically or physically maintainhydrogen; hence hydrogen can be reversibly stored. The results highlight the potential of shale gas reservoirs to store hydrogen asno hydrogen is adsorbed on the shale surface so there will be no hydrogen loss and no adverse effect on the shale’s structuralintegrity and it can be safely stored in shale reservoirs and recovered upon demand.
The Case of Renewable Methane by and with Green Hydrogen as the Storage and Transport Medium for Intermittent Wind and Solar PV Energy
May 2024
Publication
Long-duration energy storage is the key challenge facing renewable energy transition in the future of well over 50% and up to 75% of primary energy supply with intermittent solar and wind electricity while up to 25% would come from biomass which requires traditional type storage. To this end chemical energy storage at grid scale in the form of fuel appears to be the ideal option for wind and solar power. Renewable hydrogen is a much-considered fuel along with ammonia. However these fuels are not only difficult to transport over long distances but they would also require totally new and prohibitively expensive infrastructure. On the other hand the existing natural gas pipeline infrastructure in developed economies can not only transmit a mixture of methane with up to 20% hydrogen without modification but it also has more than adequate long-duration storage capacity. This is confirmed by analyzing the energy economies of the USA and Germany both possessing well-developed natural gas transmission and storage systems. It is envisioned that renewable methane will be produced via well-established biological and/or chemical processes reacting green hydrogen with carbon dioxide the latter to be separated ideally from biogas generated via the biological conversion of biomass to biomethane. At the point of utilization of the methane to generate power and a variety of chemicals the released carbon dioxide would be also sequestered. An essentially net zero carbon energy system would be then become operational. The current conversion efficiency of power to hydrogen/methane to power on the order of 40% would limit the penetration of wind and solar power. Conversion efficiencies of over 75% can be attained with the on-going commercialization of solid oxide electrolysis and fuel cells for up to 75% penetration of intermittent renewable power. The proposed hydrogen/methane system would then be widely adopted because it is practical affordable and sustainable.
High-pressure Gaseous Hydrogen Permeation Test Method - Property of Polymeric Materials for High-pressure Hydrogen Devices
Aug 2020
Publication
Polymeric materials are widely used in hydrogen energy system such as FCEV and hydrogen refueling stations under high-pressure condition. The permeation property (coefficients of permeation diffusion and solubility) of polymers under high-pressure hydrogen condition should be discussed as parameters to develop those devices. Also the property should be determined to understand influence of the compression by the pressure on polymer materials. A device which can measure gas permeation property of polymer materials accurately in equilibrium state under high-pressure environment is developed and the reliability of the measurements is ensured. High-pressure hydrogen gas permeability characteristics up to 100 MPa are measured for high-density polyethylene. An advantage of the method is discussed comparing with the non-equilibrium state method focusing on the hydrostatic pressure effect. Deterioration of hydrogen permeability is observed along with the decrease of diffusion coefficient which is supposedly affected by hydrostatic compression effect with the increase of environment pressure.
A Design Guide to Tapered Conformable Pressure Tanks for Liquid Hydrogen Storage
Feb 2025
Publication
Liquid hydrogen has the potential to significantly reduce in-flight carbon emissions in the aviation industry. Among the most promising aircraft configurations for future hydrogen-powered aviation are the blended wing body and the pure flying wing configurations. However their tapered and flattened airframe designs pose a challenge in accommodating liquid hydrogen storage tanks. This paper presents a design guide to tapered conformable pressure tanks for liquid hydrogen storage. The proposed tank configurations feature a multi-bubble layout and are subject to low internal differential pressure. The objective is to provide tank designers with simple geometric rules and practical guidelines to simplify the design process of tapered multi-bubble pressure tanks. Various tank configurations are discussed starting with a simple tapered two-bubble tank and advancing to more complex tapered configurations with a multi-segment and multi-bubble layout. A comprehensive design methodology is established providing tank designers with a step-by-step design procedure and highlighting the practical guidelines in each step of the design process.
Hydrogen Liquefaction and Storage: Recent Progress and Perspectives
Feb 2023
Publication
The global energy sector accounts for ~75% of total greenhouse gas (GHG) emissions. Low-carbon energy carriers such as hydrogen are seen as necessary to enable an energy transition away from the current fossilderived energy paradigm. Thus the hydrogen economy concept is a key part of decarbonizing the global en ergy system. Hydrogen storage and transport are two of key elements of hydrogen economy. Hydrogen can be stored in various forms including its gaseous liquid and solid states as well as derived chemical molecules. Among these liquid hydrogen due to its high energy density ambient storage pressure high hydrogen purity (no contamination risks) and mature technology (stationary liquid hydrogen storage) is suitable for the transport of large-volumes of hydrogen over long distances and has gained increased attention in recent years. However there are critical obstacles to the development of liquid hydrogen systems namely an energy intensive liquefaction process (~13.8 kWh/kgLH2) and high hydrogen boil-off losses (liquid hydrogen evaporation during storage 1–5% per day). This review focuses on the current state of technology development related to the liquid hydrogen supply chain. Hydrogen liquefaction cryogenic storage technologies liquid hydrogen transmission methods and liquid hydrogen regasification processes are discussed in terms of current industrial applications and underlying technologies to understand the drivers and barriers for liquid hydrogen to become a commer cially viable part of the emerging global hydrogen economy. A key finding of this technical review is that liquid hydrogen can play an important role in the hydrogen economy - as long as necessary technological transport and storage innovations are achieved in parallel to technology demonstrations and market development efforts by countries committed liquid hydrogen as part of their hydrogen strategies.
Hydrogen Supply Chain for Future Hydrogen-fuelled Railway in the UK: Transport Sector Focused
Aug 2024
Publication
Though being attractive on railway decarbonisation for regional lines excessive cost caused by immature hydrogen supply chain is one of the significant hurdles for promoting hydrogen traction to rolling stocks. Therefore we conduct bespoke research on the UK’s hydrogen supply chain for railway concentrating on hydrogen transportation. Firstly a map for the planned hydrogen production plants and potential hydrogen lines is developed with the location capacity and usage. A spatially explicit model for the hydrogen supply chain is then introduced which optimises the existing grid-based methodology on accuracy and applicability. Compressed hydrogen at three pressures and liquid hydrogen are considered as the mediums incorporating by road and rail transport. Furthermore three scenarios for hydrogen rail penetration are simulated respectively to discuss the levelised cost and the most suitable national transport network. The results show that the developed model with mix-integer linear programming (MILP) can well design the UK’s hydrogen distribution for railway traction. Moreover the hydrogen transport medium and vehicle should adjust to suit for different era where the penetration of hydrogen traction varies. The levelised cost of hydrogen (LCOH) decreases from 6.13 £/kg to 5.13 £/kg on average from the conservative scenario to the radical scenario. Applying different transport combinations according to the specific situation can satisfy the demand while reducing cost for multi-supplier and multitargeting hydrogen transport.
Diffusive Mixing Between Hydrogen and Carbon Dioxide: Implications for Underground Hydrogen Storage
Feb 2025
Publication
The diffusive process between hydrogen (H2) and cushion gas affects the purity of H2 stored in the subsurface porous media. It is essential to understand the diffusive mass transfer and its impact on the migration of H2. Carbon dioxide (CO2) serves as a promising option for cushion gas. However due to experimental challenges there has been limited research conducted to quantify the diffusion between H2 and CO2 under reservoir conditions. For the first time we quantitatively measured the horizontal diffusive process between H2 and CO2 without convection interference in a high-pressure optical cell. The Raman spectroscopy is used to monitor the diffusive process in real-time and the diffusion coefficient is determined based on the measured concentration profiles. We showed that the Fick’s second law with a constant diffusion coefficient describes adequately the observed diffusive process. The resulting diffusion coefficient scales linearly with the reciprocal viscosity of CO2. Based on the measured diffusion coefficient we conducted a numerical study at field-scale. Results suggest that the dispersive mixing plays a role in the purity of produced H2.
Modelling Hydrogen Storage and Filling Systems: A Dynamic and Customizable Toolkit
Aug 2023
Publication
Hydrogen plays a vital role in decarbonizing the mobility sector. With the number of hydrogen vehicles expected to drastically increase a network of refuelling stations needs to be built to keep up with the hydrogen demand. However further research and development on hydrogen refuelling infrastructure storage and standardization is required to overcome technical and economic barriers. Simulation tools can reduce time and costs during the design phase but existing models do not fully support calculations of complete and arbitrary system layouts. Therefore a flexible simulation toolbox for rapid investigations of hydrogen refuelling and extraction processes as well as development of refuelling infrastructure vehicle tank systems and refuelling protocols for non-standardized applications was developed. Our model library H2VPATT comprises of typical components found in refuelling infrastructure. The key component is the hydrogen tank model. The simulation model was successfully validated with measurement data from refuelling tests of a 320 l type III tank.
Review on the Thermal Neutrality of Application-orientated Liquid Organic Hydrogen Carrier for Hydrogen Energy Storage and Delivery
Aug 2023
Publication
The depletion and overuse of fossil fuels present formidable challenge to energy supply system and environment. The human society is in great need of clean renewable and sustainable energy which can guarantee the long-term utilization without leading to escalation of greenhouse effect. Hydrogen as an extraordinary secondary energy is capable of realizing the target of environmental protection and transferring the intermittent primary energy to the application terminal while its nature of low volumetric energy density and volatility need suitable storage method and proper carrier. In this context liquid organic hydrogen carrier (LOHC) among a series of storage methods such as compressed and liquefied hydrogen provokes a considerable amount of research interest since it is proven to be a suitable carrier for hydrogen with safety and stability. However the dehydrogenation of hydrogen-rich LOHC materials is an endothermic process and needs large energy consumption which hampers the scale up of the LOHC system. The heat issue is thus essential to be addressed for fulfilling the potential of LOHC. In this work several strategies of heat intensification and management for LOHC system including the microwave irradiation circulation of exhaust heat and direct LOHC fuel cell are summarized and analyzed to provide suggestions and directions for future research.
Recent Developments in Materials for Physical Hydrogen Storage: A Review
Jan 2024
Publication
The depletion of reliable energy sources and the environmental and climatic repercussions of polluting energy sources have become global challenges. Hence many countries have adopted various renewable energy sources including hydrogen. Hydrogen is a future energy carrier in the global energy system and has the potential to produce zero carbon emissions. For the non-fossil energy sources hydrogen and electricity are considered the dominant energy carriers for providing end-user services because they can satisfy most of the consumer requirements. Hence the development of both hydrogen production and storage is necessary to meet the standards of a “hydrogen economy”. The physical and chemical absorption of hydrogen in solid storage materials is a promising hydrogen storage method because of the high storage and transportation performance. In this paper physical hydrogen storage materials such as hollow spheres carbon-based materials zeolites and metal– organic frameworks are reviewed. We summarize and discuss the properties hydrogen storage densities at different temperatures and pressures and the fabrication and modification methods of these materials. The challenges associated with these physical hydrogen storage materials are also discussed.
Research Progress and Application Prospects of Solid-State Hydrogen Storage Technology
Apr 2024
Publication
Solid-state hydrogen storage technology has emerged as a disruptive solution to the “last mile” challenge in large-scale hydrogen energy applications garnering significant global research attention. This paper systematically reviews the Chinese research progress in solid-state hydrogen storage material systems thermodynamic mechanisms and system integration. It also quantitatively assesses the market potential of solid-state hydrogen storage across four major application scenarios: on-board hydrogen storage hydrogen refueling stations backup power supplies and power grid peak shaving. Furthermore it analyzes the bottlenecks and challenges in industrialization related to key materials testing standards and innovation platforms. While acknowledging that the cost and performance of solid-state hydrogen storage are not yet fully competitive the paper highlights its unique advantages of high safety energy density and potentially lower costs showing promise in new energy vehicles and distributed energy fields. Breakthroughs in new hydrogen storage materials like magnesium-based and vanadium-based materials coupled with improved standards specifications and innovation mechanisms are expected to propel solid-state hydrogen storage into a mainstream technology within 10–15 years with a market scale exceeding USD 14.3 billion. To accelerate the leapfrog development of China’s solid-state hydrogen storage industry increased investment in basic research focused efforts on key core technologies and streamlining the industry chain from materials to systems are recommended. This includes addressing challenges in passenger vehicles commercial vehicles and hydrogen refueling stations and building a collaborative innovation ecosystem involving government industry academia research finance and intermediary entities to support the achievement of carbon peak and neutrality goals and foster a clean low-carbon safe and efficient modern energy system.
Outlook and Challenges for Hydrogen Storage in Nanoporous Materials
Feb 2016
Publication
Darren P. Broom,
Colin Webb,
Katherine Hurst,
P. A. Parilla,
Thomas Gennett,
C. M. Brown,
Renju Zacharia,
E. Tylianakis,
E. Klontzas,
George E. Froudakis,
Th. A. Steriotis,
Pantelis N. Trikalitis,
Donald L. Anton,
B. Hardy,
David A. Tamburello,
Claudio Corgnale,
B. A. van Hassel,
D. Cossement,
Richard Chahine and
Michael Hirscher
Considerable progress has been made recently in the use of nanoporous materials for hydrogen storage. In this article the current status of the field and future challenges are discussed ranging from important open fundamental questions such as the density and volume of the adsorbed phase and its relationship to overall storage capacity to the development of new functional materials and complete storage system design. With regard to fundamentals the use of neutron scattering to study adsorbed H2 suitable adsorption isotherm equations and the accurate computational modelling and simulation of H2 adsorption are discussed. The new materials covered include flexible metal–organic frameworks core–shell materials and porous organic cage compounds. The article concludes with a discussion of the experimental investigation of real adsorptive hydrogen storage tanks the improvement in the thermal conductivity of storage beds and new storage system concepts and designs.
Hydrogen Trapping and Embrittlement in Metals - A Review
Apr 2024
Publication
Hydrogen embrittlement in metals (HE) is a serious challenge for the use of high strength materials in engineering practice and a major barrier to the use of hydrogen for global decarbonization. Here we describe the factors and variables that determine HE susceptibility and provide an overview of the latest understanding of HE mechanisms. We discuss hydrogen uptake and how it can be managed. We summarize hydrogen trapping and the techniques used for its characterization. We also review literature that argues that hydrogen trapping can be used to decrease HE susceptibility. We discuss the future research that is required to advance the understanding of HE and hydrogen trapping and to develop HE-resistant alloys.
Assessing Opportunities and Weaknesses of Green Hydrogen Transport via LOHC through a Detailed Techno-economic Analysis
Aug 2023
Publication
In the transition towards a more sustainable energy system hydrogen is seen as the key low-emission energy source. However the limited H2 volumetric density hinders its transportation. To overcome this issue liquid organic hydrogen carriers (LOHCs) molecules that can be hydrogenated and upon arrival dehydrogenated for H2 release have been proposed as hydrogen transport media. Considering toluene and dibenzyltoluene as representative carriers this work offers a systematic methodology for the analysis and the comparison of LOHCs in view of identifying cost-drivers of the overall value-chain. A detailed Aspen Plus process simulation is provided for hydrogenation and dehydrogenation sections. Simulation results are used as input data for the economic assessment. The process economics reveals that dehydrogenation is the most impactful cost-item together with the carrier initial loading the latter related to the LOHC transport distance. The choice of the most suitable molecule as H2 carrier ultimately is a trade-off between its hydrogenation enthalpy and cost.
The Potential Role of Ammonia for Hydrogen Storage and Transport: A Critical Review of Challenges and Opportunities
Aug 2023
Publication
Hydrogen is being included in several decarbonization strategies as a potential contributor in some hard-to-abate applications. Among other challenges hydrogen storage represents a critical aspect to be addressed either for stationary storage or for transporting hydrogen over long distances. Ammonia is being proposed as a potential solution for hydrogen storage as it allows storing hydrogen as a liquid chemical component at mild conditions. Nevertheless the use of ammonia instead of pure hydrogen faces some challenges including the health and environmental issues of handling ammonia and the competition with other markets such as the fertilizer market. In addition the technical and economic efficiency of single steps such as ammonia production by means of the Haber–Bosch process ammonia distribution and storage and possibly the ammonia cracking process to hydrogen affects the overall supply chain. The main purpose of this review paper is to shed light on the main aspects related to the use of ammonia as a hydrogen energy carrier discussing technical economic and environmental perspectives with the aim of supporting the international debate on the potential role of ammonia in supporting the development of hydrogen pathways. The analysis also compares ammonia with alternative solutions for the long-distance transport of hydrogen including liquefied hydrogen and other liquid organic carriers such as methanol.
Prospects for Long-Distance Cascaded Liquid—Gaseous Hydrogen Delivery: An Economic and Environmental Assessment
Oct 2024
Publication
As an important energy source to achieve carbon neutrality green hydrogen has always faced the problems of high use cost and unsatisfactory environmental benefits due to its remote production areas. Therefore a liquid-gaseous cascade green hydrogen delivery scheme is proposed in this article. In this scheme green hydrogen is liquefied into high-density and low-pressure liquid hydrogen to enable the transport of large quantities of green hydrogen over long distances. After longdistance transport the liquid hydrogen is stored and then gasified at transfer stations and converted into high-pressure hydrogen for distribution to the nearby hydrogen facilities in cities. In addition this study conducted a detailed model evaluation of the scheme around the actual case of hydrogen energy demand in Chengdu City in China and compared it with conventional hydrogen delivery methods. The results show that the unit hydrogen cost of the liquid-gaseous cascade green hydrogen delivery scheme is only 51.58 CNY/kgH2 and the dynamic payback periods of long- and short-distance transportation stages are 13.61 years and 7.02 years respectively. In terms of carbon emissions this scheme only generates indirect carbon emissions of 2.98 kgCO2/kgH2 without using utility electricity. In sum both the economic and carbon emission analyses demonstrate the advantages of the liquidgaseous cascade green hydrogen delivery scheme. With further reductions in electricity prices and liquefication costs this scheme has the potential to provide an economically/environmentally superior solution for future large-scale green hydrogen applications.
Energy Storage Strategy - Phase 3
Feb 2023
Publication
This report evaluates the main options to provide required hydrogen storage capacity including the relevant system-level considerations and provides recommendations for further actions including low-regrets actions that are needed in a range of scenarios.
No more items...