United Arab Emirates
Energy Assessment of an Integrated Hydrogen Production System
Dec 2022
Publication
Hydrogen is believed to be the future energy carrier that will reduce environmental pollution and solve the current energy crisis especially when produced from a renewable energy source. Solar energy is a renewable source that has been commonly utilized in the production process of hydrogen for years because it is inexhaustible clean and free. Generally hydrogen is produced by means of a water splitting process mainly electrolysis which requires energy input provided by harvesting solar energy. The proposed model integrates the solar harvesting system into a conventional Rankine cycle producing electrical and thermal power used in domestic applications and hydrogen by high temperature electrolysis (HTE) using a solid oxide steam electrolyzer (SOSE). The model is divided into three subsystems: the solar collector(s) the steam cycle and an electrolysis subsystem where the performance of each subsystem and their effect on the overall efficiency is evaluated thermodynamically using first and second laws. A parametric study investigating the hydrogen production rate upon varying system operating conditions (e.g. solar flux and area of solar collector) is conducted on both parabolic troughs and heliostat fields as potential solar energy harvesters. Results have shown that heliostat-based systems were able to attain optimum performance with an overall thermal efficiency of 27% and a hydrogen production rate of 0.411 kg/s whereas parabolic trough-based systems attained an overall thermal efficiency of 25.35% and produced 0.332 kg/s of hydrogen.
Utilization of Hydrogen in Gas Turbines: A Comprehensive Review
Feb 2022
Publication
The concerns regarding the consumption of traditional fuels such as oil and coal have driven the proposals for several cleaner alternatives in recent years. Hydrogen energy is one of the most attractive alternatives for the currently used fossil fuels with several superiorities such as zero-emission and high energy content. Hydrogen has numerous advantages compared to conventional fuels and as such has been employed in gas turbines (GTs) in recent years. The main benefit of using hydrogen in power generation with the GT is the considerably lower emission of greenhouse gases. The performance of the GTs using hydrogen as a fuel is influenced by several factors including the performance of the components the operating condition ambient condition etc. These factors have been investigated by several scholars and scientists in this field. In this article studies on hydrogen-fired GTs are reviewed and their results are discussed. Furthermore some recommendations are proposed for the upcoming works in this field.
Effect of Au Plasmonic Material on Poly M-Toluidine for Photoelectrochemical Hydrogen Generation from Sewage Water
Feb 2022
Publication
This study provides H2 gas as a renewable energy source from sewage water splitting reaction using a PMT/Au photocathode. So this study has a dual benefit for hydrogen generation; at the same time it removes the contaminations of sewage water. The preparation of the PMT is carried out through the polymerization process from an acid medium. Then the Au sputter was carried out using the sputter device under different times (1 and 2 min) for PMT/Au-1 min and PMT/Au-2min respectively. The complete analyses confirm the chemical structure such as XRD FTIR HNMR SEM and Vis-UV optical analyses. The prepared electrode PMT/Au is used for the hydrogen generation reaction using Na2S2O3 or sewage water as an electrolyte. The PMT crystalline size is 15 nm. The incident photon to current efficiency (IPCE) efficiency increases from 2.3 to 3.6% (at 390 nm) and the number of H2 moles increases from 8.4 to 33.1 mmol h−1 cm−2 for using Na2S2O3 and sewage water as electrolyte respectively. Moreover all the thermodynamic parameters such as activation energy (Ea) enthalpy (∆H*) and entropy (∆S*) were calculated; additionally a simple mechanism is mentioned for the water-splitting reaction.
Environmental Assessment of Hydrogen Utilization in Various Applications and Alternative Renewable Sources for Hydrogen Production: A Review
May 2023
Publication
Rapid industrialization is consuming too much energy and non-renewable energy resources are currently supplying the world’s majority of energy requirements. As a result the global energy mix is being pushed towards renewable and sustainable energy sources by the world’s future energy plan and climate change. Thus hydrogen has been suggested as a potential energy source for sustainable development. Currently the production of hydrogen from fossil fuels is dominant in the world and its utilization is increasing daily. As discussed in the paper a large amount of hydrogen is used in rocket engines oil refining ammonia production and many other processes. This paper also analyzes the environmental impacts of hydrogen utilization in various applications such as iron and steel production rocket engines ammonia production and hydrogenation. It is predicted that all of our fossil fuels will run out soon if we continue to consume them at our current pace of consumption. Hydrogen is only ecologically friendly when it is produced from renewable energy. Therefore a transition towards hydrogen production from renewable energy resources such as solar geothermal and wind is necessary. However many things need to be achieved before we can transition from a fossil-fuel-driven economy to one based on renewable energy
Analysis of CO2 Emissions Reduction on the Future Hydrogen Supply Chain Network for Dubai Buses
Apr 2023
Publication
There is an impetus to decarbonize transportation sector and mitigate climate change. This study examines the effect of adopting hydrogen (H2) as a fuel for Dubai Buses at different penetration scales on carbon dioxide (CO2) emissions reduction. A H2 supply-chain system dynamics model is developed to conduct life cycle cost and environmental analysis and evaluate the efficacy of different carbon prices and subsidies. Gray green and mixed H2 production scenarios were considered. The results show that gray hydrogen reduces 7.1 million tons of CO2 which is half of green hydrogen buses. Replacing diesel fleet at end of lifetime with mixed hydrogen bus fleet was the optimal approach to promote green hydrogen at pump reaching $4/kg in a decade. This gradual transition reduces 62% of the well-to-wheel CO2 emissions of the new bus fleet and creates mass for economies of scale as carbon prices and subsidies cannot promote green hydrogen alone.
Optimal Parameter Determination of Membrane Bioreactor to Boost Biohydrogen Production-Based Integration of ANFIS Modeling and Honey Badger Algorithm
Jan 2023
Publication
Hydrogen is a new promising energy source. Three operating parameters including inlet gas flow rate pH and impeller speed mainly determine the biohydrogen production from membrane bioreactor. The work aims to boost biohydrogen production by determining the optimal values of the control parameters. The proposed methodology contains two parts: modeling and parameter estimation. A robust ANIFS model to simulate a membrane bioreactor has been constructed for the modeling stage. Compared with RMS thanks to ANFIS the RMSE decreased from 2.89 using ANOVA to 0.0183 using ANFIS. Capturing the proper correlation between the inputs and output of the membrane bioreactor process system encourages the constructed ANFIS model to predict the output performance exactly. Then the optimal operating parameters were identified using the honey badger algorithm. During the optimization process inlet gas flow rate pH and impeller speed are used as decision variables whereas the biohydrogen production is the objective function required to be maximum. The integration between ANFIS and HBA boosted the hydrogen production yield from 23.8 L to 25.52 L increasing by 7.22%.
Additive Manufacturing for Proton Exchange Membrane (PEM) Hydrogen Technologies: Merits, Challenges, and Prospects
Jul 2023
Publication
With the growing demand for green technologies hydrogen energy devices such as Proton Exchange Membrane (PEM) fuel cells and water electrolysers have received accelerated developments. However the materials and manufacturing cost of these technologies are still relatively expensive which impedes their widespread commercialization. Additive Manufacturing (AM) commonly termed 3D Printing (3DP) with its advanced capabilities could be a potential pathway to solve the fabrication challenges of PEM parts. Herein in this paper the research studies on the novel AM fabrication methods of PEM components are thoroughly reviewed and analysed. The key performance properties such as corrosion and hydrogen embrittlement resistance of the additively manufactured materials in the PEM working environment are discussed to emphasise their reliability for the PEM systems. Additionally the major challenges and required future developments of AM technologies to unlock their full potential for PEM fabrication are identified. This paper provides insights from the latest research developments on the significance of advanced manufacturing technologies in developing sustainable energy systems to address the global energy challenges and climate change effects.
A Review on the Environmental Performance of Various Hydrogen Production Technologies: An Approach Towards Hydrogen Economy
Nov 2023
Publication
Demand for hydrogen has grown and continues to rise as a versatile energy carrier. Hydrogen can be produced from renewable and non-renewable energy sources. A wide range of technologies to produce hydrogen in an environmentally friendly way have been developed. As the life cycle assessment (LCA) approach has become popular recently including in the hydrogen energy system this paper comprehensively reviews the LCA of hydrogen production technology. A subdivision based on the trends in the LCA studies hydrogen production technology goal and scope definition system boundary and environmental performance of hydrogen production is discussed in this review. Thermochemical hydrogen production is the most studied technology in LCA. However utilizing natural resources especially wind power in the electrolysis process stands out as an environmentally preferable solution when compared to alternative production processes. It is crucial to rethink reactors and other production-related equipment to improve environmental performance and increase hydrogen production efficiency. Since most of the previous LCA studies were conducted in developed countries and only a few were from developing countries a way forward for LCA application on hydrogen in developing countries was also highlighted and discussed. This review provides a comprehensive insight for further research on hydrogen production technology from an LCA perspective.
Techno-economic Analysis of Green-H2@Scale Production
Sep 2023
Publication
The International Energy Agency (IEA) established the "H2 Implementing Agreement (HIA)" to promote H2 transition in various economic sectors. Today less than one percent of the world's H2 production is “Green”. Lack of regulations high production costs and inadequate infrastructure are significant impediments. The U.S. Department of Energy set a "111-target" which translates into $1/kg-H2 in the next decade. Many countries in the Middle East and North Africa (MENA) region have announced ambitious plans to produce green H2. Through techno-economic metrics and the impact of economies of scale this study investigates H2@Scale production. H2 Production Analysis and the System Advisor Model developed by the U.S. Department of Energy were used for analysis. The results demonstrate a significant decrease in the levelized cost of H2 (LCOH) when the production volume is scaled up. It was determined that the key cost drivers are capital cost energy installed balance of the plant and mechanical and electrical subsystems. The studied location is found promising for scaled production and developing its commodity status. The findings could serve as a benchmark for key stakeholders investors policymakers and the developer of relevant strategies in the infrastructure and H2 value chain.
Mathematical Model for the Placement of Hydrogen Refueling Stations to Support Future Fuel Cell Trucks
Nov 2021
Publication
Fuel cell- and electric-powered trucks are promising technologies for zero-emission heavyduty transportation. Recently Fuel Cell Trucks (FCT) have gained wider acceptance as the technology of choice for long-distance trips due to their lighter weight and shorter fueling time than electric-powered trucks. Broader adoption of Fuel Cell Trucks (FCT) requires planning strategies for locating future hydrogen refueling stations (HRS) especially for fleets that transport freight along intercity and inter-country highways. Existing mathematical models of HRS placement often focus on inner-city layouts which make them inadequate when studying the intercity and intercountry FCT operation scale of FCT. Furthermore the same models rarely consider decentralized hydrogen production from renewable energy sources essential for decarbonizing the transportation sector. This paper proposes a mathematical model to guide the planning of the hydrogen infrastructure to support future long-haul FCTs. First the model uses Geographic Information System (GIS) data to determine the HRS’s optimal number and location placement. Then the model categorizes and compares potential hydrogen production sources including off-site delivery and on-site solar-to-hydrogen production. The proposed model is illustrated through a case study of the west coastal area of the United States (from Baja California Mexico to British Columbia Canada). Different geospatial scenarios were tested ranging from the current operational distance of FCEV (250km) and future releases of hydrogen FCT (up to 1500km). Results highlight the capabilities of the model in identifying the number and location of the HRS based on operation distances in addition to determining the optimal hydrogen production technology for each HRS. The findings also confirm the viability of green hydrogen production through solar energy which could play a critical role in a low-carbon transportation future.
Green Hydrogen Production Plants: A Techno-economic Review
Aug 2024
Publication
Green hydrogen stands as a promising clean energy carrier with potential net-zero greenhouse gas emissions. However different system-level configurations for green hydrogen production yield different levels of efficiency cost and maturity necessitating a comprehensive assessment. This review evaluates the components of hydrogen production plants from technical and economic perspectives. The study examines six renewable energy sources—solar photovoltaics solar thermal wind biomass hydro and geothermal—alongside three types of electrolyzers (alkaline proton exchange membrane and solid oxide electrolyzer cells) and five hydrogen storage methods (compressed hydrogen liquid hydrogen metal hydrides ammonia and liquid organic hydrogen carriers). A comprehensive assessment of 90 potential system configurations is conducted across five key performance indicators: the overall system cost efficiency emissions production scale and technological maturity. The most cost-effective configurations involve solar photovoltaics or wind turbines combined with alkaline electrolyzers and compressed hydrogen storage. For enhanced system efficiency geothermal sources or biomass paired with solid oxide electrolyzer cells utilizing waste heat show significant promise. The top technologically mature systems feature combinations of solar photovoltaics wind turbines geothermal or hydroelectric power with alkaline electrolyzers using compressed hydrogen or ammonia storage. The highest hydrogen production scales are observed in systems with solar PV wind or hydro power paired with alkaline or PEM electrolyzers and ammonia storage. Configurations using hydro geothermal wind or solar thermal energy sources paired with alkaline electrolyzers and compressed hydrogen or liquid organic hydrogen carriers yield the lowest life cycle GHG emissions. These insights provide valuable decision-making tools for researchers business developers and policymakers guiding the optimization of system efficiency and the reduction of system costs.
Utilization of Hydrogen and Methane as Energy Carriers with Exhaust Gas Recirculation for Sustainable Diesel Engines
May 2024
Publication
Hydrogen and methane as secondary fuels in diesel engines can be promising solutions to meet energy demand. The current study investigated the effect of the specialty gases of different compositions on diesel engine performance and exhaust gases. Four gases with various compositions of exhaust gas recirculation (Carbon monoxide Carbon dioxide and Nitrogen) and fuels (Hydrogen and Methane) were used at various mass flow rates of 10 20 and 25 LPM (liter per minute) and various engine speeds of 2000 2500 3000 and 3500 rpm (revolutions per minute). The procured results revealed that adding specialty gases improved brake thermal efficiency and power. Similarly the brake-specific fuel consumption was also massively retarded compared to diesel due to the influence of the hydrogen and methane composition. However the fuel with the higher nitrogen reported less BTE (brake thermal efficiency) and comparatively higher exhaust gas temperature owing to the higher presence of nitrogen in their composition. Regarding emissions including exhaust gas recirculation dropped the formation of pollutants efficiently compared to diesel. Among various fuels Case 1 (30 % H2 5 % CH4 5 CO2 and 60 % CO) reported the lowest emission of NOx and Case 2 (25 % H2 5 % CH4 5 CO2 30 % CO and 35 % N2) of CO and CO2 emissions. Generally specialty gases with a variable composition of exhaust gas recirculation gases can be a promising sustainable replacement for existing fossil fuels.
Techno-economic Analysis of Stand-alone Hybrid PV-Hydrogen-Based Plug-in Electric Vehicle Charging Station
Sep 2024
Publication
The increase in the feasibility of hydrogen-based generation makes it a promising addition to the realm of renewable energies that are being employed to address the issue of electric vehicle charging. This paper presents technical and an economical approach to evaluate a newer off-grid hybrid PV-hydrogen energy-based recharging station in the city of Jamshoro Pakistan to meet the everyday charging needs of plug-in electric vehicles. The concept is designed and simulated by employing HOMER software. Hybrid PV-hydrogen and PV-hydrogenbattery are the two different scenarios that are carried out and compared based on their both technical as well as financial standpoints. The simulation results are evident that the hybrid PV- hydrogen-battery energy system has much more financial and economic benefits as compared with the PV-hydrogen energy system. Moreover it is also seen that costs of energy from earlier from hybrid PV-hydrogen-battery is more appealing i.e. 0.358 $/kWh from 0.412 $/kWh cost of energy from hybrid PV-hydrogen. The power produced by the hybrid PV- hydrogen - battery energy for the daily load demand of 1700 kWh /day consists of two powers produced independently by the PV and fuel cells of 87.4 % and 12.6 % respectively.
Optimal Multi-layer Economical Schedule for Coordinated Multiple Mode Operation of Wind-solar Microgrids with Hybrid Energy Storage Systems
Nov 2023
Publication
The aim of this paper is the design and implementation of an advanced model predictive control (MPC) strategy for the management of a wind–solar microgrid (MG) both in the islanded and grid-connected modes. The MG includes energy storage systems (ESSs) and interacts with external hydrogen and electricity consumers as an extra feature. The system participates in two different electricity markets i.e. the daily and real-time markets characterized by different time-scales. Thus a high-layer control (HLC) and a low-layer control (LLC) are developed for the daily market and the real-time market respectively. The sporadic characteristics of renewable energy sources and the variations in load demand are also briefly discussed by proposing a controller based on the stochastic MPC approach. Numerical simulations with real wind and solar generation profiles and spot prices show that the proposed controller optimally manages the ESSs even when there is a deviation between the predicted scenario determined at the HLC and the real-time one managed by the LLC. Finally the strategy is tested on a lab-scale MG set up at Khalifa University Abu Dhabi UAE.
Adaptive Network Fuzzy Inference System and Particle Swarm Optimization of Biohydrogen Production Process
Sep 2022
Publication
Green hydrogen is considered to be one of the best candidates for fossil fuels in the near future. Bio-hydrogen production from the dark fermentation of organic materials including organic wastes is one of the most cost-effective and promising methods for hydrogen production. One of the main challenges posed by this method is the low production rate. Therefore optimizing the operating parameters such as the initial pH value operating temperature N/C ratio and organic concentration (xylose) plays a significant role in determining the hydrogen production rate. The experimental optimization of such parameters is complex expensive and lengthy. The present research used an experimental data asset adaptive network fuzzy inference system (ANFIS) modeling and particle swarm optimization to model and optimize hydrogen production. The coupling between ANFIS and PSO demonstrated a robust effect which was evident through the improvement in the hydrogen production based on the four input parameters. The results were compared with the experimental and RSM optimization models. The proposed method demonstrated an increase in the biohydrogen production of 100 mL/L compared to the experimental results and a 200 mL/L increase compared to the results obtained using ANOVA.
Prediction of Hydrogen Production in Proton Exchange Membrane Water Electrolysis via Neural Networks
Sep 2024
Publication
Advancements in water electrolysis technologies are crucial for green hydrogen production. Proton exchange membrane water electrolysis (PEMWE) is characterized by its efficiency and environmental benefits. The pre diction and optimization of hydrogen production rates (HPRs) in PEMWE systems is difficult and still challenging because of the complexity of the system as well as the operational parameters. The integration of artificial in telligence (AI) and machine learning (ML) appears to be effective in optimization within the energy sector. Hence this work employs the artificial neural network (ANN) to develop a model that accurately predicts HPR in PEMWE setups. A novel approach is introduced by employing the Levenberg–Marquardt backpropagation (LMBP) algorithm for training the ANN. This model is designed to predict HPR based on critical operational parameters including anode and cathode areas (mm2 ) cell voltage (V) and current (A) water flow rate (mL/ min) power (W) and temperature (K). The optimized ANN configuration features an architecture with 7 input nodes two hidden layers of 64 neurons each and a single output node. The performance of the ANN model was evaluated against conventional regression models using key metrics: mean squared error (MSE) coefficient of determination (R2 ) and mean absolute error (MAE). The findings of this study reveal that the developed ANN model significantly outperforms traditional models achieving an R2 value of 0.9989 and an MAE of 0.012. In comparison random forest (R2 = 0.9795) linear regression (R2 = 0.9697) and support vector machines (R2 = − 0.4812) show lower predictive accuracy underscoring the ANN model’s superior performance. This work demonstrates the efficiency of the LMBP in enhancing hydrogen production forecasts and sets a foundation for future improvements in PEMWE efficiency. By enabling precise control and optimization of operational pa rameters this study contributes to the broader goal of advancing green hydrogen production as a viable and scalable alternative to fossil fuels offering both immediate and long-term benefits to sustainable energy initiatives.
UK Hydrogen Roadmap: Financial and Strategic Insights into Oil and Gas Industry’s Transition
Dec 2024
Publication
Inspired by the announcement of the new Hydrogen Strategy for the UK in 2021 this study aimed to determine how the oil and gas industry responds and adapts to the changes. This paper analyses qualitative and quantitative data from the companies’ annual and energy reports. Four oil and gas companies involved in hydrogen projects in the UK were selected as case studies. The responses from the companies were collected using the content analysis research strategy in 2019–2021. A steady increase was observed based on the code frequency reflecting the increasing discussions and actions the companies took regarding this hydrogen pathway. Although only one company appears to be at the forefront of this transition progress with a score of almost 90% based on the strategy management analysis other companies continue to demonstrate their commitment to supporting the national target.
Hydrogen Liquefaction and Storage: Recent Progress and Perspectives
Feb 2023
Publication
The global energy sector accounts for ~75% of total greenhouse gas (GHG) emissions. Low-carbon energy carriers such as hydrogen are seen as necessary to enable an energy transition away from the current fossilderived energy paradigm. Thus the hydrogen economy concept is a key part of decarbonizing the global en ergy system. Hydrogen storage and transport are two of key elements of hydrogen economy. Hydrogen can be stored in various forms including its gaseous liquid and solid states as well as derived chemical molecules. Among these liquid hydrogen due to its high energy density ambient storage pressure high hydrogen purity (no contamination risks) and mature technology (stationary liquid hydrogen storage) is suitable for the transport of large-volumes of hydrogen over long distances and has gained increased attention in recent years. However there are critical obstacles to the development of liquid hydrogen systems namely an energy intensive liquefaction process (~13.8 kWh/kgLH2) and high hydrogen boil-off losses (liquid hydrogen evaporation during storage 1–5% per day). This review focuses on the current state of technology development related to the liquid hydrogen supply chain. Hydrogen liquefaction cryogenic storage technologies liquid hydrogen transmission methods and liquid hydrogen regasification processes are discussed in terms of current industrial applications and underlying technologies to understand the drivers and barriers for liquid hydrogen to become a commer cially viable part of the emerging global hydrogen economy. A key finding of this technical review is that liquid hydrogen can play an important role in the hydrogen economy - as long as necessary technological transport and storage innovations are achieved in parallel to technology demonstrations and market development efforts by countries committed liquid hydrogen as part of their hydrogen strategies.
No more items...