United Arab Emirates
Hydrogen Production Towards a Carbon-free Economy: A Comprehensive Thermodynamic Analysis
Jan 2025
Publication
Sustainable hydrogen production is key to achieving zero-emission targets and a hydrogen-based economy. Hydrogen production methods vary in terms of resource technology and system efficiency. This work analyzes the thermodynamics of fourteen hydrogen production pathways using Gibbs free energy minimization to examine the effects of pressure (1–60 bar) temperature (100–1000 ◦C) and feed composition using reactant conversion and product selectivity as key indicators of reaction performance. The impact of simultaneous reactions on hydrogen production is also discussed. From the results full conversion (100 %) independent of parameter variations at 1 bar pressure was observed for biomass gasification and steam reforming of glycerol methanol ethanol and bio-oil reactions. However H2 selectivity in all tested reactions except for NH3 dissociation and the splitting of water and H2S is greatly affected by side reactions. Finally the thermodynamic results of all reactions are compared and validated with published experiments followed by an evaluation of the challenges and opportunities in hydrogen production. The study provides optimal reaction parameters and a comprehensive comparison of H2 production processes aiding in designing and developing processes based on regional resource availability. Additionally it highlights the potential for both local and remote hydrogen production pathways from various renewable energy sources.
UK Hydrogen Roadmap: Financial and Strategic Insights into Oil and Gas Industry’s Transition
Dec 2024
Publication
Inspired by the announcement of the new Hydrogen Strategy for the UK in 2021 this study aimed to determine how the oil and gas industry responds and adapts to the changes. This paper analyses qualitative and quantitative data from the companies’ annual and energy reports. Four oil and gas companies involved in hydrogen projects in the UK were selected as case studies. The responses from the companies were collected using the content analysis research strategy in 2019–2021. A steady increase was observed based on the code frequency reflecting the increasing discussions and actions the companies took regarding this hydrogen pathway. Although only one company appears to be at the forefront of this transition progress with a score of almost 90% based on the strategy management analysis other companies continue to demonstrate their commitment to supporting the national target.
A Review on the Environmental Performance of Various Hydrogen Production Technologies: An Approach Towards Hydrogen Economy
Nov 2023
Publication
Demand for hydrogen has grown and continues to rise as a versatile energy carrier. Hydrogen can be produced from renewable and non-renewable energy sources. A wide range of technologies to produce hydrogen in an environmentally friendly way have been developed. As the life cycle assessment (LCA) approach has become popular recently including in the hydrogen energy system this paper comprehensively reviews the LCA of hydrogen production technology. A subdivision based on the trends in the LCA studies hydrogen production technology goal and scope definition system boundary and environmental performance of hydrogen production is discussed in this review. Thermochemical hydrogen production is the most studied technology in LCA. However utilizing natural resources especially wind power in the electrolysis process stands out as an environmentally preferable solution when compared to alternative production processes. It is crucial to rethink reactors and other production-related equipment to improve environmental performance and increase hydrogen production efficiency. Since most of the previous LCA studies were conducted in developed countries and only a few were from developing countries a way forward for LCA application on hydrogen in developing countries was also highlighted and discussed. This review provides a comprehensive insight for further research on hydrogen production technology from an LCA perspective.
Hydrogen Liquefaction and Storage: Recent Progress and Perspectives
Feb 2023
Publication
The global energy sector accounts for ~75% of total greenhouse gas (GHG) emissions. Low-carbon energy carriers such as hydrogen are seen as necessary to enable an energy transition away from the current fossilderived energy paradigm. Thus the hydrogen economy concept is a key part of decarbonizing the global en ergy system. Hydrogen storage and transport are two of key elements of hydrogen economy. Hydrogen can be stored in various forms including its gaseous liquid and solid states as well as derived chemical molecules. Among these liquid hydrogen due to its high energy density ambient storage pressure high hydrogen purity (no contamination risks) and mature technology (stationary liquid hydrogen storage) is suitable for the transport of large-volumes of hydrogen over long distances and has gained increased attention in recent years. However there are critical obstacles to the development of liquid hydrogen systems namely an energy intensive liquefaction process (~13.8 kWh/kgLH2) and high hydrogen boil-off losses (liquid hydrogen evaporation during storage 1–5% per day). This review focuses on the current state of technology development related to the liquid hydrogen supply chain. Hydrogen liquefaction cryogenic storage technologies liquid hydrogen transmission methods and liquid hydrogen regasification processes are discussed in terms of current industrial applications and underlying technologies to understand the drivers and barriers for liquid hydrogen to become a commer cially viable part of the emerging global hydrogen economy. A key finding of this technical review is that liquid hydrogen can play an important role in the hydrogen economy - as long as necessary technological transport and storage innovations are achieved in parallel to technology demonstrations and market development efforts by countries committed liquid hydrogen as part of their hydrogen strategies.
Environmental Assessment of Hydrogen Utilization in Various Applications and Alternative Renewable Sources for Hydrogen Production: A Review
May 2023
Publication
Rapid industrialization is consuming too much energy and non-renewable energy resources are currently supplying the world’s majority of energy requirements. As a result the global energy mix is being pushed towards renewable and sustainable energy sources by the world’s future energy plan and climate change. Thus hydrogen has been suggested as a potential energy source for sustainable development. Currently the production of hydrogen from fossil fuels is dominant in the world and its utilization is increasing daily. As discussed in the paper a large amount of hydrogen is used in rocket engines oil refining ammonia production and many other processes. This paper also analyzes the environmental impacts of hydrogen utilization in various applications such as iron and steel production rocket engines ammonia production and hydrogenation. It is predicted that all of our fossil fuels will run out soon if we continue to consume them at our current pace of consumption. Hydrogen is only ecologically friendly when it is produced from renewable energy. Therefore a transition towards hydrogen production from renewable energy resources such as solar geothermal and wind is necessary. However many things need to be achieved before we can transition from a fossil-fuel-driven economy to one based on renewable energy
Green Hydrogen as a Clean Energy Resource and Its Applications as an Engine Fuel
Jan 2024
Publication
The world’s economy heavily depends on the energy resources used by various countries. India is one of the promising developing nations with very low crude reserves actively looking for new renewable energy resources to power its economy. Higher energy consumption and environmental pollution are two big global challenges for our sustainable development. The world is currently facing a dual problem of an energy crisis as well as environmental degradation. So there is a strong need to reduce our dependency on fossil fuels and greenhouse gas emissions. This can be achieved to a great extent by universally adopting clean fuels for all daily life uses like ethanol or liquified natural gas (LNG) as these burn very clean and do not emit many pollutants. Nowadays green hydrogen has emerged as a new clean energy source which is abundantly available and does not pollute much. This article explores the various benefits of green hydrogen with respect to fossil fuels various techniques of producing it and its possible use in different sectors such as industry transport and aviation as well as in day-to-day life. Finally it explores the use of green hydrogen as fuel in automobile engines its blending with CNG gas and its benefits in reducing emissions compared to fossil fuels. On combustion green hydrogen produces only water vapours and is thus a highly clean fuel. Thus it can potentially help humanity preserve the environment due to its ultra-low emissions and can be a consistent and reliable source of energy for generations to come thereby ending the clean energy security debate forever.
Analysis of CO2 Emissions Reduction on the Future Hydrogen Supply Chain Network for Dubai Buses
Apr 2023
Publication
There is an impetus to decarbonize transportation sector and mitigate climate change. This study examines the effect of adopting hydrogen (H2) as a fuel for Dubai Buses at different penetration scales on carbon dioxide (CO2) emissions reduction. A H2 supply-chain system dynamics model is developed to conduct life cycle cost and environmental analysis and evaluate the efficacy of different carbon prices and subsidies. Gray green and mixed H2 production scenarios were considered. The results show that gray hydrogen reduces 7.1 million tons of CO2 which is half of green hydrogen buses. Replacing diesel fleet at end of lifetime with mixed hydrogen bus fleet was the optimal approach to promote green hydrogen at pump reaching $4/kg in a decade. This gradual transition reduces 62% of the well-to-wheel CO2 emissions of the new bus fleet and creates mass for economies of scale as carbon prices and subsidies cannot promote green hydrogen alone.
Techno-economic Analysis of Green-H2@Scale Production
Sep 2023
Publication
The International Energy Agency (IEA) established the "H2 Implementing Agreement (HIA)" to promote H2 transition in various economic sectors. Today less than one percent of the world's H2 production is “Green”. Lack of regulations high production costs and inadequate infrastructure are significant impediments. The U.S. Department of Energy set a "111-target" which translates into $1/kg-H2 in the next decade. Many countries in the Middle East and North Africa (MENA) region have announced ambitious plans to produce green H2. Through techno-economic metrics and the impact of economies of scale this study investigates H2@Scale production. H2 Production Analysis and the System Advisor Model developed by the U.S. Department of Energy were used for analysis. The results demonstrate a significant decrease in the levelized cost of H2 (LCOH) when the production volume is scaled up. It was determined that the key cost drivers are capital cost energy installed balance of the plant and mechanical and electrical subsystems. The studied location is found promising for scaled production and developing its commodity status. The findings could serve as a benchmark for key stakeholders investors policymakers and the developer of relevant strategies in the infrastructure and H2 value chain.
Mathematical Model for the Placement of Hydrogen Refueling Stations to Support Future Fuel Cell Trucks
Nov 2021
Publication
Fuel cell- and electric-powered trucks are promising technologies for zero-emission heavyduty transportation. Recently Fuel Cell Trucks (FCT) have gained wider acceptance as the technology of choice for long-distance trips due to their lighter weight and shorter fueling time than electric-powered trucks. Broader adoption of Fuel Cell Trucks (FCT) requires planning strategies for locating future hydrogen refueling stations (HRS) especially for fleets that transport freight along intercity and inter-country highways. Existing mathematical models of HRS placement often focus on inner-city layouts which make them inadequate when studying the intercity and intercountry FCT operation scale of FCT. Furthermore the same models rarely consider decentralized hydrogen production from renewable energy sources essential for decarbonizing the transportation sector. This paper proposes a mathematical model to guide the planning of the hydrogen infrastructure to support future long-haul FCTs. First the model uses Geographic Information System (GIS) data to determine the HRS’s optimal number and location placement. Then the model categorizes and compares potential hydrogen production sources including off-site delivery and on-site solar-to-hydrogen production. The proposed model is illustrated through a case study of the west coastal area of the United States (from Baja California Mexico to British Columbia Canada). Different geospatial scenarios were tested ranging from the current operational distance of FCEV (250km) and future releases of hydrogen FCT (up to 1500km). Results highlight the capabilities of the model in identifying the number and location of the HRS based on operation distances in addition to determining the optimal hydrogen production technology for each HRS. The findings also confirm the viability of green hydrogen production through solar energy which could play a critical role in a low-carbon transportation future.
Optimal Parameter Determination of Membrane Bioreactor to Boost Biohydrogen Production-Based Integration of ANFIS Modeling and Honey Badger Algorithm
Jan 2023
Publication
Hydrogen is a new promising energy source. Three operating parameters including inlet gas flow rate pH and impeller speed mainly determine the biohydrogen production from membrane bioreactor. The work aims to boost biohydrogen production by determining the optimal values of the control parameters. The proposed methodology contains two parts: modeling and parameter estimation. A robust ANIFS model to simulate a membrane bioreactor has been constructed for the modeling stage. Compared with RMS thanks to ANFIS the RMSE decreased from 2.89 using ANOVA to 0.0183 using ANFIS. Capturing the proper correlation between the inputs and output of the membrane bioreactor process system encourages the constructed ANFIS model to predict the output performance exactly. Then the optimal operating parameters were identified using the honey badger algorithm. During the optimization process inlet gas flow rate pH and impeller speed are used as decision variables whereas the biohydrogen production is the objective function required to be maximum. The integration between ANFIS and HBA boosted the hydrogen production yield from 23.8 L to 25.52 L increasing by 7.22%.
Utilization of Hydrogen in Gas Turbines: A Comprehensive Review
Feb 2022
Publication
The concerns regarding the consumption of traditional fuels such as oil and coal have driven the proposals for several cleaner alternatives in recent years. Hydrogen energy is one of the most attractive alternatives for the currently used fossil fuels with several superiorities such as zero-emission and high energy content. Hydrogen has numerous advantages compared to conventional fuels and as such has been employed in gas turbines (GTs) in recent years. The main benefit of using hydrogen in power generation with the GT is the considerably lower emission of greenhouse gases. The performance of the GTs using hydrogen as a fuel is influenced by several factors including the performance of the components the operating condition ambient condition etc. These factors have been investigated by several scholars and scientists in this field. In this article studies on hydrogen-fired GTs are reviewed and their results are discussed. Furthermore some recommendations are proposed for the upcoming works in this field.
Developments in Hydrogen Fuel Cells
Mar 2023
Publication
The rapid growth in fossil fuels has resulted in climate change that needs to be controlled in the near future. Several methods have been proposed to control climate change including the development of efficient energy conversion devices. Fuel cells are environmentally friendly energy conversion devices that can be fuelled by green hydrogen with only water as a by-product or by using different biofuels such as biomass in wastewater urea in wastewater biogas from municipal and agricultural wastes syngas from agriculture wastes and waste carbon. This editorial discusses the fundamentals of the operation of the fuel cell and their application in various sectors such as residential transportation and power generation.
Adaptive Network Fuzzy Inference System and Particle Swarm Optimization of Biohydrogen Production Process
Sep 2022
Publication
Green hydrogen is considered to be one of the best candidates for fossil fuels in the near future. Bio-hydrogen production from the dark fermentation of organic materials including organic wastes is one of the most cost-effective and promising methods for hydrogen production. One of the main challenges posed by this method is the low production rate. Therefore optimizing the operating parameters such as the initial pH value operating temperature N/C ratio and organic concentration (xylose) plays a significant role in determining the hydrogen production rate. The experimental optimization of such parameters is complex expensive and lengthy. The present research used an experimental data asset adaptive network fuzzy inference system (ANFIS) modeling and particle swarm optimization to model and optimize hydrogen production. The coupling between ANFIS and PSO demonstrated a robust effect which was evident through the improvement in the hydrogen production based on the four input parameters. The results were compared with the experimental and RSM optimization models. The proposed method demonstrated an increase in the biohydrogen production of 100 mL/L compared to the experimental results and a 200 mL/L increase compared to the results obtained using ANOVA.
Energy Storage: From Fundamental Principles to Industrial Applications
Jun 2025
Publication
The increasing global energy demand and the transition toward sustainable energy systems have highlighted the importance of energy storage technologies by ensuring efficiency reliability and decarbonization. This study reviews chemical and thermal energy storage technologies focusing on how they integrate with renewable energy sources industrial applications and emerging challenges. Chemical Energy Storage systems including hydrogen storage and power-to-fuel strategies enable long-term energy retention and efficient use while thermal energy storage technologies facilitate waste heat recovery and grid stability. Key contributions to this work are the exploration of emerging technologies challenges in large-scale implementation and the role of artificial intelligence in optimizing Energy Storage Systems through predictive analytics real-time monitoring and advanced control strategies. This study also addresses regulatory and economic barriers that hinder widespread adoption emphasizing the need for policy incentives and interdisciplinary collaboration. The findings suggest that energy storage will be a fundamental pillar of the sustainable energy transition. Future research should focus on improving material stability enhancing operational efficiency and integrating intelligent management systems to maximize the benefits of these technologies for a resilient and low-carbon energy infrastructure.
Energy Advancements and Integration Strategies in Hydrogen and Battery Storage for Renewable Energy Systems
Mar 2025
Publication
The long term and large-scale energy storage operations require quick response time and round-trip efficiency which is not feasible with conventional battery systems. To address this issue while endorsing high energy density long term storage and grid adaptability the hydrogen energy storage (HES) is preferred. This proposed work makes a comprehensive review on HES while synthesizing recent research on energy storage technologies and integration into renewable energy (RE) applications. The proposed research also identifies critical challenges related to system optimization energy management strategies and economic viability while featuring emerging technologies like artificial intelligence (AI) and machine learning (ML) for energy management. The proposed survey also discusses key advancements in battery technologies (lithium-ion Ni-Cd Ni/MH and flow batteries) which are examined alongside innovations in HES methods. The proposed survey utilizes an extensive list of publications to date in the open literature to canvass and portray various developments in this area.
Optimization of Interfacial Bonding between Graphene-enhanced Polyethylene Liners and CFRP Composites using Plasma Treatment for Hydrogen Storage Applications
Oct 2025
Publication
As the need for sustainable hydrogen storage solutions increases enhancing the bonding interface between polymer liners and carbon fiber-reinforced polymer (CFRP) in Type IV hydrogen tanks is essential to ensure tank integrity and safety. This study investigates the effect of plasma treatment on polyethylene (PE) and PE/graphene nanoplatelets (GNP) composites to optimize bonding with CFRP simulating the liner-CFRP interface in hydrogen tanks. Initially plasma treatment effects on PE surfaces were assessed focusing on plasma energy and exposure time with key surface modifications characterized and bonding performance being evaluated. Plasma treatment on PE/GNP composites with increasing GNP content was then examined comparing the bonding effectiveness of untreated and plasma-treated samples. Wedge peel tests revealed that plasma treatment significantly enhanced PE-CFRP bonding with optimal conditions at 510 W and 180 s resulting in 212 % and 165 % increases in the wedge peel strength and fracture energy respectively. Plasma-treated PE/GNP composites with 0.75 wt.% GNP achieved a notable bonding enhancement with CFRP showing 528 % and 269 % improvements in strength and fracture energy over untreated neat PE-CFRP samples. These findings offer practical implications for improving the mechanical performance of hydrogen storage tanks contributing to safer and more efficient hydrogen storage systems for a sustainable energy future.
Performance Analysis of Yellow Hydrogen Production in the UAE
Jan 2025
Publication
This study offers a novel techno-economic evaluation of a small hydrogen generation system included into a residential villa in Sharjah. The system is designed to utilize solar energy for hydrogen production using an electrolyzer. The study assesses two scenarios: one lacking a fuel cell and the other incorporating a fuel cell stack for backup power. The initial scenario employs a solar-powered electrolyzer for hydrogen production attaining a competitive levelized cost of energy (LCOE) of $0.1846 per kWh and a hydrogen cost of $4.65 per kg. These data underscore the economic viability of utilizing electrolyzers for hydrogen generation. The system produces around 1230 kg of hydrogen per annum rendering it appropriate for many uses. Nevertheless the original investment expenditure of $73980 necessitates more optimization. The second scenario includes a 10 kW fuel cell for energy autonomy. This scenario has a marginally reduced LCOE of 0.1811 $/kWh and a cumulative net present cost of $72600. The fuel cell runs largely at night proving the efficiency of the downsizing option in decreasing capital expense. The system generates electricity from solar panels (66.1 MWh/year) and the fuel cell (16.9 MWh/year) exhibiting a multi-source power generating technique. The results indicate that scaled-down hydrogen generation systems both with and without fuel cells may offer sustainable and possibly lucrative renewable energy options for household use especially in areas with ample solar resources such as Sharjah.
Advancement in Hydrogen Production, Application and Strategy Towards Sustainable Energy: Malaysian Case Study
Aug 2025
Publication
Biohydrogen is known for its clean fuel properties with zero emissions. It serves as a reliable alternative to fossil fuel. This paper analyses the status of bio-hydrogen production in Malaysia and the on-going efforts on its advancement. Critical discussions were put forward on biohydrogen production from thermochemical and biological technologies governing associated technological issues and development. Moreover a comprehensive and vital overview has been made on Malaysian and global polices with road maps for the development of biohydrogen and its application in different sectors. This review article provides a framework for researchers on bio-hydrogen production technologies investors and the government to align policies for the biohydrogen based economy. Current biohydrogen energy outlook for production installation units and storage capacity are the key points to be highlighted from global and Malaysia’s perspectives. This critical and comprehensive review provides a strategic route for the researcher to research towards sustainable technology. Current policies related to hydrogen as fuel infrastructure in Malaysia and commercialization are highlighted. Malaysia is also gearing towards clean and decarbonization planning.
Hydrogen Production from H2S-steam Reforming using Recycled Sour Water: Insights from Thermodynamic and Kinetic Modeling
Sep 2025
Publication
Given the rising interest in hydrogen economy alternative feedstocks are explored for their potential use for hydrogen production such as H2S a notable byproduct from oil and gas operations. This study presents a computational investigation on the thermodynamics kinetics and mechanisms of non-catalytic H2S-steam reforming (H2SSR) as a pathway for H2S-to-H2 benchmarked to H2S thermal decomposition (H2SPyrol) (as a limiting case without water). The mechanism integrates key elementary steps form different reaction pathways including H2S partial oxidation H2O reduction and H2S thermal decomposition. Results from the model are validated using available experimental data for H2SPyrol and H2SSR. Homogeneous gas-phase reactions are modelled at different H2O:H2S ratios reaction temperatures pressure and times. Thermodynamically the H2SSR reaction is unfavorable due to the presence of water and its role in increasing the reaction complexity and endothermicity; however kinetically water contributes to increasing the hydrogen yield at least 9 times that from H2SPyrol achieving 99.23 % H2S conversion at 1473 K with an excess H2O:H2S feed ratio of 200:1. The contribution of water during the H2SSR reaction is interpreted using reaction path and rate of production analyses demonstrating its role in producing an abundant pool of OH and H radicals. These radicals catalyze the cleavage of H2S-SH bonds accelerating hydrogen production at an optimal reaction time of 0.07–0.105 s. This study paves the path for future kinetic and catalytic research to optimize the technical viability of H2SSR as a promising H2S-to-H2 conversion pathway for sour wastewater reutilization.
Integrating Scenario-based Stochastic-model Predictive Control and Load Forecasting for Energy Management of Grid-connected Hybrid Energy Storage Systems
Jun 2023
Publication
In the context of renewable energy systems microgrids (MG) are a solution to enhance the reliability of power systems. In the last few years there has been a growing use of energy storage systems (ESSs) such as hydrogen and battery storage systems because of their environmentally-friendly nature as power converter devices. However their short lifespan represents a major challenge to their commercialization on a large scale. To address this issue the control strategy proposed in this paper includes cost functions that consider the degradation of both hydrogen devices and batteries. Moreover the proposed controller uses scenarios to reflect the stochastic nature of renewable energy resources (RESs) and load demand. The objective of this paper is to integrate a stochastic model predictive control (SMPC) strategy for an economical/environmental MG coupled with hydrogen and battery ESSs which interacts with the main grid and external consumers. The system's participation in the electricity market is also managed. Numerical analyses are conducted using RESs profiles and spot prices of solar panels and wind farms in Abu Dhabi UAE to demonstrate the effectiveness of the proposed controller in the presence of uncertainties. Based on the results the developed control has been proven to effectively manage the integrated system by meeting overall constraints and energy demands while also reducing the operational cost of hydrogen devices and extending battery lifetime.
No more items...