Australia
A Review of Sustainable Hydrogen Energy by 2050: Asupply Chain, Export Markets, Circular Economy, Social Dimensions, and Future Prospects: Australia vs. Worldwide
Jul 2025
Publication
Australia’s transition to a sustainable hydrogen economy by 2050 presents a transformative opportunity for decarbonization economic growth and global energy leadership. This review critically examines the state of hydrogen development in Australia covering supply chains export markets circular economy integration social dimensions and policy implications. The analysis highlights the critical interplay between technological innovation strategic government initiatives and market demand as key enablers for large-scale hydrogen deployment by 2050. The paper identifies research gaps in harmonizing hydrogen development with circular economy principles safety social equity and policy alignment. This work outlines clear policy implications including the need for coordinated infrastructure investment domestic market stimulation international certification for exports and integration of hydrogen into broader energy system planning. This work serves as a roadmap synthesizing recent literature and addressing the challenges and opportunities emphasizing cross-sector collaboration regulatory reform and targeted innovation investment. This review contributes a strategic framework to support decision-makers industry partners and researchers in advancing Australia’s hydrogen sector by 2050.
Accelerating the Green Hydrogen Revolution: A Comprehensive Analysis of Technological Advancements and Policy Interventions
Apr 2024
Publication
Promoting green hydrogen has emerged as a pivotal discourse in the contemporary energy landscape driven by pressing environmental concerns and the quest for sustainable energy solutions. This paper delves into the multifaceted domain of C-Suite issues about green hydrogen encompassing both technological advancements and policy considerations. The question of whether green hydrogen is poised to become the focal point of the upcoming energy race is explored through an extensive analysis of its potential as a clean and versatile energy carrier. The transition from conventional fossil fuels to green hydrogen is considered a fundamental shift in energy paradigms with far-reaching implications for global energy markets. The paper provides a comprehensive overview of state-of-the-art green hydrogen technologies including fuel cells photocatalysts photo electrocatalysts and hydrogen panels. In tandem with technological advancements the role of policy and strategy in fostering the development of green hydrogen energy assumes paramount significance. The paper elucidates the critical interplay between government policies market dynamics and corporate strategies in shaping the green hydrogen landscape. It delves into policy mechanisms such as subsidies carbon pricing and renewable energy mandates shedding light on their potential to incentivize the production and adoption of green hydrogen. This paper offers a nuanced exploration of C-Suite issues surrounding green hydrogen painting a comprehensive picture of the technological and policy considerations that underpin its emergence as a transformative energy source. As the global community grapples with the imperatives of climate change mitigation and the pursuit of sustainable energy solutions understanding these issues becomes imperative for executives policymakers and stakeholders alike.
A Power Dispatch Allocation Strategy to Produce Green Hydrogen in a Grid-integrated Offshore Hybrid Energy System
Mar 2024
Publication
A dedicated grid-tied offshore hybrid energy system for hydrogen production is a promising solution to unlock the full benefit of offshore wind and solar energy and realize decarbonization and sustainable energy security targets in electricity and other sectors. Current knowledge of these offshore hybrid systems is limited particularly in the integration component control and allocation aspects. Therefore a grid-integrated analytical model with a power dispatch allocation strategy between the grid and electrolyzer for the co-production of hydrogen from the offshore hybrid energy system is developed in this paper. While producing hydrogen the proposed offshore hybrid energy system supplies a percentage of its capacity to the onshore grid facility and the amount of the electricity is quantified based on the electricity market price and available total offshore generation. The detailed controls of each component are discussed. A case study considers a hypothetical hybrid offshore energy system of 10 MW situated in a potential offshore off the NSW of Australia based on realistic metrological data. A grid-scale proton-exchange membrane electrolyzer stack is used and a model predictive power controller is implemented on the distributed hydrogen generation scheme. The model is helpful for the assessment or optimization of both the economics and feasibility of the dedicated offshore hybrid energy farm for hydrogen production systems.
Green Hydrogen Driven by Wind and Solar—An Australian Case Study
Apr 2024
Publication
The energy transition to wind and solar opens up opportunities for green hydrogen as wind and solar generation tend to bring electricity prices down to very low levels. We evaluate whether green hydrogen can integrate well with wind and solar PVs to improve the South Australian electricity grid. Green hydrogen can use membrane electrolysis plants during periods of surplus renewable energy. This hydrogen can then be electrified or used in industry. The green hydrogen system was analysed to understand the financial viability and technical impact of integrating green hydrogen. We also used system engineering techniques to understand the system holistically including the technical social environmental and economic impacts. The results show opportunities for the system to provide seasonal storage grid firming and reliability services. Financially it would need changes to electricity rules to be viable so at present it would not be viable without subsidy.
Magnesium Based Materials for Hydrogen Based Energy Storage: Past, Present and Future
Jan 2019
Publication
Volodymyr A. Yartys,
Mykhaylo V. Lototskyy,
Etsuo Akiba,
Rene Albert,
V. E. Antonov,
Jose-Ramón Ares,
Marcello Baricco,
Natacha Bourgeois,
Craig Buckley,
José Bellosta von Colbe,
Jean-Claude Crivello,
Fermin Cuevas,
Roman V. Denys,
Martin Dornheim,
Michael Felderhoff,
David M. Grant,
Bjørn Christian Hauback,
Terry D. Humphries,
Isaac Jacob,
Petra E. de Jongh,
Jean-Marc Joubert,
Mikhail A. Kuzovnikov,
Michel Latroche,
Mark Paskevicius,
Luca Pasquini,
L. Popilevsky,
Vladimir M. Skripnyuk,
Eugene I. Rabkin,
M. Veronica Sofianos,
Alastair D. Stuart,
Gavin Walker,
Hui Wang,
Colin Webb,
Min Zhu and
Torben R. Jensen
Magnesium hydride owns the largest share of publications on solid materials for hydrogen storage. The “Magnesium group” of international experts contributing to IEA Task 32 “Hydrogen Based Energy Storage” recently published two review papers presenting the activities of the group focused on magnesium hydride based materials and on Mg based compounds for hydrogen and energy storage. This review article not only overviews the latest activities on both fundamental aspects of Mg-based hydrides and their applications but also presents a historic overview on the topic and outlines projected future developments. Particular attention is paid to the theoretical and experimental studies of Mg-H system at extreme pressures kinetics and thermodynamics of the systems based on MgH2 nanostructuring new Mg-based compounds and novel composites and catalysis in the Mg based H storage systems. Finally thermal energy storage and upscaled H storage systems accommodating MgH2 are presented.
Transferring the Retail of Hydrogen Economy and Missing Safety Assurance
Sep 2019
Publication
Australian regional communities are moving ahead of governments. Enterprising individuals are pushing ahead to find global solutions to local issues that governments (local or state or federal) have abandoned stalled mothballed or failed to resolve. We are faced with a flaw in retail of hydrogen economy as fatal as Walgett running dry or a million fish killed in Murray-Darling. The challenge in Australian regional communities will be to interpret safety assurance requirements in an appropriate manner even in severe economic swings such as drought bushfire or floods. In this context the efficacious cultural embrace by regional communities of three key program elements is essential - Australian Hydrogen Safety Panel Hydrogen Safety Knowledge Tools and Dissemination Hydrogen Safety First Responder Training. What are the odds of no accident in retailing hydrogen for examples to vehicles? Place is everything in regional communities of Australia because in nature (as in the ocean) there is no spin. This paper examines the safety assurance issues associated with the cultural integration of Hydrogen’s three key program elements in a country Australia that is fed-up with government.
Shielded Hydrogen Passivation – A Novel Method for Introducing Hydrogen into Silicon
Sep 2017
Publication
This paper reports a new approach for exposing materials including solar cell structures to atomic hydrogen. This method is dubbed Shielded Hydrogen Passivation (SHP) and has a number of unique features offering high levels of atomic hydrogen at low temperature whilst inducing no damage. SHP uses a thin metallic layer in this work palladium between a hydrogen generating plasma and the sample which shields the silicon sample from damaging UV and energetic ions while releasing low energy neutral atomic hydrogen onto the sample. In this paper the importance of the preparation of the metallic shield either to remove a native oxide or to contaminate intentionally the surface are shown to be potential methods for increasing the amount of atomic hydrogen released. Excellent damage free surface passivation of thin oxides is observed by combining SHP and corona discharge obtaining minority carrier lifetimes of 2.2 ms and J0 values below 5.47 fA/cm2. This opens up a number of exciting opportunities for the passivation of advanced cell architectures such as passivated contacts and heterojunctions.
Closing the Regulatory Gaps and Advancing Hydrogen Infrastructure Deployment in Australia
Sep 2019
Publication
With downward trends in Australian equipment manufacturing there are increased numbers of overseas designed manufactured and certified hydrogen systems being introduced into Australia. In parallel there are also opportunities for hydrogen and its carriers to be exported to overseas. Certainty of reputable codes and standards is important to meet regulatory requirements and community safety expectations locally and overseas.
This paper is a progress report of Hydrogen Mobility Australia’s (HMA) Technical Committee on mapping the regulatory codes and standards (RCS) gaps in Australia and establishing a pathway together with Standards Australia and Commonwealth and State Governments. This paper will discuss the benefits of the pathway covering the areas of:
This paper is a progress report of Hydrogen Mobility Australia’s (HMA) Technical Committee on mapping the regulatory codes and standards (RCS) gaps in Australia and establishing a pathway together with Standards Australia and Commonwealth and State Governments. This paper will discuss the benefits of the pathway covering the areas of:
- Safety – Enable Australia to implement consensual rules to minimise avoidable risks to persons and goods to an acceptable level
- Environment – Ensure protection of the environment from unacceptable damage due to the operation and effects of products processes and services linked to hydrogen
- Elimination of barriers to trade – Provide consistency between international jurisdictions enabling streamlined entry of hydrogen related equipment from overseas
- Upskilling of Australian industry participants – Gain useful learnings from countries more advanced in their progress in implementing ISO standards and hydrogen sector development
Future Fuels Strategy: Discussion Paper Powering Choice
Feb 2021
Publication
New vehicle technologies and fuels will drive the future of road transport in Australia. Increased availability of battery electric vehicles hydrogen fuel cell vehicles biofuels and associated recharging and refuelling infrastructure will:
- give consumers more choice
- provide productivity emissions reduction fuel security and air quality benefits
100% Renewable Energy in Japan
Feb 2022
Publication
Low-cost solar photovoltaics and wind offer a reliable and affordable pathway to deep decarbonization of energy which accounts for three quarters of global emissions. However large-scale deployment of solar photovoltaics and wind requires space and may be challenging for countries with dense population and high per capita energy consumption. This study investigates the future role of renewable energy in Japan as a case study. A 40-year hourly energy balance model is presented of a hypothetical 100% renewable Japanese electricity system using representative demand data and historical meteorological data. Pumped hydro energy storage high voltage interconnection and dispatchable capacity (existing hydro and biomass and hydrogen energy produced from curtailed electricity) are included to balance variable generation and demand. Differential evolution is used to find the least-cost solution under various constraints. This study shows that Japan has 14 times more solar and offshore wind resources than needed to supply 100% renewable electricity and vast capacity for off-river pumped hydro energy storage. Assuming significant cost reductions of solar photovoltaics and offshore wind towards global norms in the coming decades driven by large-scale deployment locally and global convergence of renewable generation costs the levelized cost of electricity is found to be US$86/Megawatt-hour for a solar-dominated system and US$110/Megawatt-hour for a wind-dominated system. These costs can be compared with 2020 average system prices on the spot market in Japan of US$102/Megawatt-hour. Cost of balancing 100% renewable electricity in Japan ranges between US$20–27/Megawatt-hour for a range of scenarios. In summary Japan can be self-sufficient for electricity supply at competitive costs provided that the barriers to the mass deployment of solar photovoltaics and offshore wind in Japan are overcome.
Application of Hydrides in Hydrogen Storage and Compression: Achievements, Outlook and Perspectives
Feb 2019
Publication
José Bellosta von Colbe,
Jose-Ramón Ares,
Jussara Barale,
Marcello Baricco,
Craig Buckley,
Giovanni Capurso,
Noris Gallandat,
David M. Grant,
Matylda N. Guzik,
Isaac Jacob,
Emil H. Jensen,
Julian Jepsen,
Thomas Klassen,
Mykhaylo V. Lototskyy,
Kandavel Manickam,
Amelia Montone,
Julian Puszkiel,
Martin Dornheim,
Sabrina Sartori,
Drew Sheppard,
Alastair D. Stuart,
Gavin Walker,
Colin Webb,
Heena Yang,
Volodymyr A. Yartys,
Andreas Züttel and
Torben R. Jensen
Metal hydrides are known as a potential efficient low-risk option for high-density hydrogen storage since the late 1970s. In this paper the present status and the future perspectives of the use of metal hydrides for hydrogen storage are discussed. Since the early 1990s interstitial metal hydrides are known as base materials for Ni – metal hydride rechargeable batteries. For hydrogen storage metal hydride systems have been developed in the 2010s [1] for use in emergency or backup power units i. e. for stationary applications.<br/>With the development and completion of the first submarines of the U212 A series by HDW (now Thyssen Krupp Marine Systems) in 2003 and its export class U214 in 2004 the use of metal hydrides for hydrogen storage in mobile applications has been established with new application fields coming into focus.<br/>In the last decades a huge number of new intermetallic and partially covalent hydrogen absorbing compounds has been identified and partly more partly less extensively characterized.<br/>In addition based on the thermodynamic properties of metal hydrides this class of materials gives the opportunity to develop a new hydrogen compression technology. They allow the direct conversion from thermal energy into the compression of hydrogen gas without the need of any moving parts. Such compressors have been developed and are nowadays commercially available for pressures up to 200 bar. Metal hydride based compressors for higher pressures are under development. Moreover storage systems consisting of the combination of metal hydrides and high-pressure vessels have been proposed as a realistic solution for on-board hydrogen storage on fuel cell vehicles.<br/>In the frame of the “Hydrogen Storage Systems for Mobile and Stationary Applications” Group in the International Energy Agency (IEA) Hydrogen Task 32 “Hydrogen-based energy storage” different compounds have been and will be scaled-up in the near future and tested in the range of 500 g to several hundred kg for use in hydrogen storage applications.
Concepts for Improving Hydrogen Storage in Nanoporous Materials
Feb 2019
Publication
Hydrogen storage in nanoporous materials has been attracting a great deal of attention in recent years as high gravimetric H2 capacities exceeding 10 wt% in some cases can be achieved at 77 K using materials with particularly high surface areas. However volumetric capacities at low temperatures and both gravimetric and volumetric capacities at ambient temperature need to be improved before such adsorbents become practically viable. This article therefore discusses approaches to increasing the gravimetric and volumetric hydrogen storage capacities of nanoporous materials and maximizing the usable capacity of a material between the upper storage and delivery pressures. In addition recent advances in machine learning and data science provide an opportunity to apply this technology to the search for new materials for hydrogen storage. The large number of possible component combinations and substitutions in various porous materials including Metal-Organic Frameworks (MOFs) is ideally suited to a machine learning approach; so this is also discussed together with some new material types that could prove useful in the future for hydrogen storage applications.
Promotion Effect of Proton-conducting Oxide BaZr0.1Ce0.7Y0.2O3−δ on the Catalytic Activity of Ni Towards Ammonia Synthesis from Hydrogen and Nitrogen
Aug 2018
Publication
In this report for the first time it has been observed that proton-conducting oxide BaZr0.1Ce0.7Y0.2O3−δ (BZCY) has significant promotion effect on the catalytic activity of Ni towards ammonia synthesis from hydrogen and nitrogen. Renewable hydrogen can be used for ammonia synthesis to save CO2 emission. By investigating the operating parameters of the reaction the optimal conditions for this catalyst were identified. It was found that at 620 °C with a total flow rate of 200 mL min−1 and a H2/N2 mol ratio of 3 an activity of approximately 250 μmol g−1 h−1 can be achieved. This is ten times larger than that for the unpromoted Ni catalyst under the same conditions although the stability of both catalysts in the presence of steam was not good. The specific activity of Ni supported on proton-conducting oxide BZCY is approximately 72 times higher than that of Ni supported on non-proton conductor MgO-CeO2. These promotion effects were suspected to be due to the proton conducting nature of the support. Therefore it is proposed that the use of proton conducting support materials with highly active ammonia synthesis catalysts such as Ru and Fe will provide improved activity of at lower temperatures.
Towards Climate Resilient Urban Energy Systems: A Review
Jun 2020
Publication
Climate change and increased urban population are two major concerns for society. Moving towards more sustainable energy solutions in the urban context by integrating renewable energy technologies supports decarbonizing the energy sector and climate change mitigation. A successful transition also needs adequate consideration of climate change including extreme events to ensure the reliable performance of energy systems in the long run. This review provides an overview of and insight into the progress achieved in the energy sector to adapt to climate change focusing on the climate resilience of urban energy systems. The state-of-the-art methodology to assess impacts of climate change including extreme events and uncertainties on the design and performance of energy systems is described and discussed. Climate resilience is an emerging concept that is increasingly used to represent the durability and stable performance of energy systems against extreme climate events. However it has not yet been adequately explored and widely used as its definition has not been clearly articulated and assessment is mostly based on qualitative aspects. This study reveals that a major limitation in the state-of-the-art is the inadequacy of climate change adaptation approaches in designing and preparing urban energy systems to satisfactorily address plausible extreme climate events. Furthermore the complexity of the climate and energy models and the mismatch between their temporal and spatial resolutions are the major limitations in linking these models. Therefore few studies have focused on the design and operation of urban energy infrastructure in terms of climate resilience. Considering the occurrence of extreme climate events and increasing demand for implementing climate adaptation strategies the study highlights the importance of improving energy system models to consider future climate variations including extreme events to identify climate resilient energy transition pathways.
Advances in Reforming and Partial Oxidation of Hydrocarbons for Hydrogen Production and Fuel Cell Applications
May 2019
Publication
One of the most attractive routes for the production of hydrogen or syngas for use in fuel cell applications is the reforming and partial oxidation of hydrocarbons. The use of hydrocarbons in high temperature fuel cells is achieved through either external or internal reforming. Reforming and partial oxidation catalysis to convert hydrocarbons to hydrogen rich syngas plays an important role in fuel processing technology. The current research in the area of reforming and partial oxidation of methane methanol and ethanol includes catalysts for reforming and oxidation methods of catalyst synthesis and the effective utilization of fuel for both external and internal reforming processes. In this paper the recent progress in these areas of research is reviewed along with the reforming of liquid hydrocarbons from this an overview of the current best performing catalysts for the reforming and partial oxidizing of hydrocarbons for hydrogen production is summarized.
Sustainability Implications of Using Hydrogen as an Automotive Fuel in Western Australia
Jul 2020
Publication
Hydrogen is regarded as a potential solution to address future energy demands and environmental protection challenges. This study assesses the triple bottom line (TBL) sustainability performance of hydrogen as an automotive fuel for Western Australia (WA) using a life cycle approach. Hydrogen is considered to be produced through water electrolysis. Two scenarios current grid electricity and future renewable-based hydrogen were compared with gasoline as a base case. The results show that locally produced grid electricity-based hydrogen is good for local jobs but exhibits higher environmental impacts and negative economic benefits for consumers when compared to gasoline. After incorporating wind-generated electricity reductions of around 69% and 65% in global warming potential (GWP) and fossil fuel depletion (FFD) respectively were achieved compared to the base case gasoline. The land utilization for the production of hydrogen is not a problem as Western Australia has plenty of land to accommodate renewable energy projects. Water for hydrogen feedstock could be sourced through seawater desalination or from wastewater treatment plants in WA. Hydrogen also performed better than gasoline in terms of human health and conservation of fossil fuel indicators under the renewable energy scenario. Local job creation potential of hydrogen was estimated to be 1.29E-03 man-hours/VKT. It has also been found that the cost of hydrogen fuel cell vehicles (HFCV) needs to be similar to that of gasoline vehicles (GV) in order to be comparable with the gasoline life cycle cost per vehicle kilometre travel (VKT).
The Global Status of CCS 2020: Vital to Achieve Net Zero
Dec 2020
Publication
The Global Status of CCS Report 2020 demonstrates the vital role of carbon capture and storage technologies (CCS) in reducing emissions to net-zero by 2050 as well as documenting the current status and important milestones for the technology over the past 12 months.<br/>The report provides detailed information on and analyses of the global CCS facility pipeline international policy perspectives CO2 storage and the CCS legal and regulatory environment.<br/>In addition four regional updates provide further detail about CCS progress across the Americas Europe Asia Pacific and the Gulf Cooperation Council States and a Technology section provides updates on key innovations and applications of CCS.
Hydrogen for Transport Prospective Australian Use Cases
Oct 2019
Publication
The Australian transport sector is under increasing pressure to reduce carbon emissions whilst also managing a fuel supply chain that relies heavily on foreign import partners.
Transport in Australia equates to a significant proportion (approximately 18%) of the country’s total greenhouse gas emissions. Due to ongoing population growth these emissions have been steadily rising with the increase of cars on our roads and freight trucks in transit. Coupled with this the transport fuel supply chain is highly reliant on overseas partners – Australia currently imports 90% of its liquid fuel. These two challenges present an interesting dichotomy for the industry incentivising research and development into new technologies that can address one or both of these issues.
Hydrogen is one technology that has the potential to provide a reduction in greenhouse gas emissions as well as a more reliable domestic fuel supply. Hydrogen fuel cell electric vehicles (FCEVs) are an emerging zero-emission alternative for the transport sector which offer a variety of benefits.
You can read the full report on the Aurecon Australasia website at this link
Transport in Australia equates to a significant proportion (approximately 18%) of the country’s total greenhouse gas emissions. Due to ongoing population growth these emissions have been steadily rising with the increase of cars on our roads and freight trucks in transit. Coupled with this the transport fuel supply chain is highly reliant on overseas partners – Australia currently imports 90% of its liquid fuel. These two challenges present an interesting dichotomy for the industry incentivising research and development into new technologies that can address one or both of these issues.
Hydrogen is one technology that has the potential to provide a reduction in greenhouse gas emissions as well as a more reliable domestic fuel supply. Hydrogen fuel cell electric vehicles (FCEVs) are an emerging zero-emission alternative for the transport sector which offer a variety of benefits.
You can read the full report on the Aurecon Australasia website at this link
Indicative Analysis of Blending Hydrogen in Gas Networks
May 2020
Publication
Frontier Economics has been engaged by the Commonwealth Department of the Environment and Energy (now Industry Science Energy and Resources) (the Department) to undertake an indicative analysis of the economics of blending hydrogen in Australian natural gas distribution networks. Our analysis is limited to a specific gas distribution network servicing urban areas of Melbourne.
We have investigated the economics of blending hydrogen in a natural gas distribution network by examining a number of energy supply options including options that involve blending hydrogen. While we consider that these cases we have examined are useful for understanding the economics of hydrogen blending at low rates in Victoria and for understanding the factors that are likely to drive the economics of blending at higher rates or in other regions it cannot be assumed that the results we find for the cases we investigate will necessarily apply in other regions or for blending at other rates. This report should be read as an assessment of the specific cases we have investigated and our findings cannot necessarily be extended to other cases (such as other locations or other rates of blending)"
The full report can be found via the website of the Australian government at this link
We have investigated the economics of blending hydrogen in a natural gas distribution network by examining a number of energy supply options including options that involve blending hydrogen. While we consider that these cases we have examined are useful for understanding the economics of hydrogen blending at low rates in Victoria and for understanding the factors that are likely to drive the economics of blending at higher rates or in other regions it cannot be assumed that the results we find for the cases we investigate will necessarily apply in other regions or for blending at other rates. This report should be read as an assessment of the specific cases we have investigated and our findings cannot necessarily be extended to other cases (such as other locations or other rates of blending)"
The full report can be found via the website of the Australian government at this link
Hydrogen Diffusion in Coal: Implications for Hydrogen Geo-storage
Oct 2021
Publication
Hypothesis: Hydrogen geo-storage is considered as an option for large scale hydrogen storage in a full-scale hydrogen economy. Among different types of subsurface formations coal seams look to be one of the best suitable options as coal’s micro/nano pore structure can adsorb a huge amount of gas (e.g. hydrogen) which can be withdrawn again once needed. However literature lacks fundamental data regarding H2 diffusion in coal. Experiments: In this study we measured H2 adsorption rate in an Australian anthracite coal sample at isothermal conditions for four different temperatures (20 C 30 C 45 C and 60 C) at equilibrium pressure 13 bar and calculated H2 diffusion coefficient (DH2 ) at each temperature. CO2 adsorption rates were measured for the same sample at similar temperatures and equilibrium pressure for comparison. Findings: Results show that H2 adsorption rate and consequently DH2 increases by temperature. DH2 values are one order of magnitude larger than the equivalent DCO2 values for the whole studied temperature range 20–60 C. DH2 / DCO2 also shows an increasing trend versus temperature. CO2 adsorption capacity at equilibrium pressure is about 5 times higher than that of H2 in all studied temperatures. Both H2 and CO2 adsorption capacities at equilibrium pressure slightly decrease as temperature rises.
No more items...