Australia
Hydrogen Storage Performance During Underground Hydrogen Storage in Depleted Gas Reservoirs: A Review
Mar 2024
Publication
Hydrogen has emerged as a promising alternative to meet the growing demand for sustainable and renewable energy sources. Underground hydrogen storage (UHS) in depleted gas reservoirs holds significant potential for large-scale energy storage and the seamless integration of intermittent renewable energy sources due to its capacity to address challenges associated with the intermittent nature of renewable energy sources ensuring a steady and reliable energy supply. Leveraging the existing infrastructure and well-characterized geological formations depleted gas reservoirs offer an attractive option for large-scale hydrogen storage implementation. However significant knowledge gaps regarding storage performance hinder the commercialization of UHS operation. Hydrogen deliverability hydrogen trapping and the equation of state are key areas with limited understanding. This literature review critically analyzes and synthesizes existing research on hydrogen storage performance during underground storage in depleted gas reservoirs; it then provides a high-level risk assessment and an overview of the techno-economics of UHS. The significance of this review lies in its consolidation of current knowledge highlighting unresolved issues and proposing areas for future research. Addressing these gaps will advance hydrogen-based energy systems and support the transition to a sustainable energy landscape. Facilitating efficient and safe deployment of UHS in depleted gas reservoirs will assist in unlocking hydrogen’s full potential as a clean and renewable energy carrier. In addition this review aids policymakers and the scientific community in making informed decisions regarding hydrogen storage technologies.
A Review of the Mechanics of Lined Engineered Cavities and their Implications on Hydrogen Storage
Jan 2025
Publication
Large-scale hydrogen storage at scales ranging from gigawatt-hours (GWh) to terawatt-hours (TWh) is currently projected to be an important component of the lowest cost options for a 100% variable renewable energy system driven partly by benefits to the grid from converting variable renewable electricity into hydrogen and partly by the anticipated growing role of hydrogen in a future net-zero energy system. Lined engineered cavities (LEC)s are among the prospective types of underground storage technology because they enable hydrogen storage at highpressure in the gaseous form and are expected to not rely on specific types of rock mass. They fill a niche in moderate storage capacity and cost because of their complementary advantages. An overview of various possible configurations and materials suitable for LECs for storing hydrogen is first reviewed to identify potential cost savings and performance improvements. Amongst the various LEC configurations lined engineered shafts (LES) are identified as having the greatest potential for cost reduction in softer rock masses such as sedimentary formations due to reduced excavation and construction complexity. Despite these advantages significant gaps remain in understanding the long-term behaviour of LES under cyclical loading as revealed through a review of the theoretical and experimental techniques used to study similar LEC configurations. This review paper con cludes with several recommendations for future research in numerical model formulation and material advancement with strong potential to increase the feasibility of LESs for hydrogen storage.
A Study on Hydrogen Embrittlement of a High-strength Pipeline Steel Weldment after Microstructure Manipulation by Targeted Heat Treatments
Dec 2024
Publication
Hydrogen embrittlement (HE) is a major concern when steel pipelines are used for hydrogen transportation and storage. The weldments of steel pipelines are of particular concern because they are reported to have higher HE susceptibility compare to the base metal. In this work targeted heat treatments were used to manipulate the microstructure in a pipeline steel weldment to examine the effects of different microstructural features on HE susceptibility. Complementary analyses of the microstructure mechanical testing and fracture surface identified inclusions and ferrite morphology as the most dominant microstructural features that affect the susceptibility to HE. Specimens with different microstructures but sharing similar Ti-rich inclusions exhibited significant re ductions in elongation to failure after hydrogen charging and showed brittle fracture surfaces decorated with multiple ‘fish-eye’ features. In addition co-existence of bainitic microstructure with Ti-rich inclusions resulted in the highest susceptibility to HE.
An Overview of Hydrogen Storage Technologies - Key Challenges and Opportunities
Jul 2024
Publication
Hydrogen energy has been proposed as a reliable and sustainable source of energy which could play an integral part in demand for foreseeable environmentally friendly energy. Biomass fossil fuels waste products and clean energy sources like solar and wind power can all be employed for producing hydrogen. This comprehensive review paper provides a thorough overview of various hydrogen storage technologies available today along with the benefits and drawbacks of each technology in context with storage capacity efficiency safety and cost. Since safety concerns are among the major barriers to the broad application of H2 as a fuel source special attention has been paid to the safety implications of various H2 storage techniques. In addition this paper highlights the key challenges and opportunities facing the development and commercialization of hydrogen storage technologies including the need for improved materials enhanced system integration increased awareness and acceptance. Finally recommendations for future research and development with a particular focus on advancing these technologies towards commercial viability.
Advancing a Hydrogen Economy in Australia: Public Perceptions and Aspirations
Nov 2023
Publication
Supporters of hydrogen energy urge scaling up technology and reducing costs for competitiveness. This paper explores how hydrogen energy technologies (HET) are perceived by Australia’s general population and considers the way members of the public imagine their role in the implementation of hydrogen energy now and into the future. The study combines a nationally representative survey (n = 403) and semi-structured interviews (n = 30). Results show age and gender relationships with self-reported hydrogen knowledge. Half of the participants obtained hydrogen information from televised media. Strong support was observed for renewable hydrogen while coal (26%) and natural gas (41%) versions had less backing. Participants sought more safety-related information (41% expressed concern). Most felt uncertain about influencing hydrogen decisions and did not necessarily recognise they had agency beyond their front fence. Exploring the link between political identity and agency in energy decision-making is needed with energy democracy a potentially productive direction.
Techno-economic Analysis and Dynamic Operation of Green Hydrogen-integrated Microgrid: An Application Study
Aug 2025
Publication
The shift to renewable energy sources requires systems that are not only environmentally sustainable but also cost-effective and reliable. Mitigating the inherent intermittency of renewable energy optimally managing the hybrid energy storage efficiently integrating the microgrid with the power grid and maximizing the lifespan of system components are the significant challenges that need to be addressed. With this aim the paper proposes an economic viability assessment framework with an optimized dynamic operation approach to determine the most stable cost-effective and environmentally sound system for a specific location and demand. The green integrated hybrid microgrid combines photovoltaic (PV) generation battery storage an electrolyzer a hydrogen tank and a fuel cell tailored for deployment in remote areas with limited access to conventional infrastructure. The study’s control strategy focuses on managing energy flows between the renewable energy resources battery and hydrogen storage systems to maximize autonomy considering real-time changes in weather conditions load variations and the state of charge of both the battery and hydrogen storage units. The core system’s components include the interlinking converter which transfers power between AC and DC grids and the decentralized droop control approach which adjusts the converter’s output to ensure balanced and efficient power sharing particularly during overload conditions. A cloud-based Internet of Things (IoT) platform has been employed allowing continuous monitoring and data analysis of the green integrated microgrid to provide insights into the system's health and performance during the dynamic operation. The results presented in this paper confirmed that the proposed framework enabled the strategic use of energy storage particularly hydrogen systems. The optimal operational control of green hydrogen-integrated microgrid can indeed mitigate voltage and frequency fluctuations caused by variable solar input ensuring stable power delivery without reliance on the main grid or fossil fuel backups.
Hybrid Renewable Multi-generation System Optimization: Attaining Sustainable Development Goals
Jan 2025
Publication
The optimization of hybrid renewable multi-generation systems is crucial for enhancing energy efficiency reducing costs and ensuring sustainable power generation. These factors can be significantly affected by system designs optimization methods climate changes and varying energy demands. The optimization of a stand-alone hybrid renewable energy system (HRES) that integrates various combinations of electricity heating cooling hydrogen and freshwater needs has not been reported in a single comprehensive study. Additionally there has been insufficient attention given to the impact of temporal resolution the recovery of excess energy usage and aligning these efforts with the sustainable development goals (SDGs). This study reviews the recent state-of-theart studies on the stand-alone HRES options for meeting electric heating cooling hydrogen electric vehicles and freshwater demands with various combinations. This study further contributes by examining contemporary literature on sizing optimization reliability analysis sensitivity analysis control techniques detailed modelling and techno-environmental-economic features. It also provides justification for selecting configurations suitable for specific geographical locations along with an analysis of the choice of algorithms and power management systems required to meet the various load demands of a self-sufficient community. By highlighting the im provements and potentials of HRES to achieve various United Nations SDGs this review study aims to bridge existing research gaps.
A Moving Window Method for Time Series Optimisation, with Applications to Energy Storage and Hydrogen Production
Jan 2025
Publication
Temporal decomposition methods aim to solve optimisation problems by converting one problem over a large time series into a series of subproblems over shorter time series. This paper introduces one such method where subproblems are defined over a window that moves back and forth repeatedly over the length of the large time series creating a convergent sequence of solutions and mitigating some of the boundary considerations prevalent in other temporal decomposition methods. To illustrate this moving window method it is applied to two models: an energy storage facility trading electricity in a market; and a hydrogen electrolyser powered by renewable electricity produced and potentially stored onsite. The method is simple to implement and it is found that for large optimisation problems it consistently requires less computation time than the base optimisation algorithm used in this study (by factors up to 100 times). In addition it is analytically demonstrated that decomposition methods in which a minimum is attained for each subproblem need not attain a minimum for the overall problem.
Feasibility of Retrofitting a Conventional Vessel with Hydrogen Power Systems: A Case Study in Australia
Feb 2025
Publication
As the pursuit of greener energy solutions continues industries worldwide are turning away from fossil fuels and exploring the development of sustainable alternatives to meet their energy requirements. As a signatory to the Paris Agreement Australia has committed to reducing greenhouse gas emission by 43% by 2030 and reaching net-zero emissions by 2050. Australia’s domestic maritime sector should align with these targets. This paper aims to contribute to ongoing efforts to achieve these goals by examining the technical and commercial considerations involved in retrofitting conventional vessels with hydrogen power. This includes but is not limited to an analysis of cost risk and performance and compliance with classification society rules international codes and Australian regulations. This study was conducted using a small domestic commercial vessel as a reference to explore the feasibility of implementation of hydrogen-fuelled vessels (HFVs) across Australia. The findings indicate that Australia’s existing hydrogen infrastructure requires significant development for HFVs to meet the cost risk and performance benchmarks of conventional vessels. The case study identifies key determining factors for feasible hydrogen retrofitting and provides recommendations for the success criteria.
Green Hydrogen Credit Subsidized Renewable Energy-hydrogen Business Models for Achieving the Carbon Netural Future
Feb 2024
Publication
The global resurgence of hydrogen as a clean energy source particularly green hydrogen derived from renewable energy is pivotal for achieving a carbon-neutral future. However scalability poses a significant challenge. This research proposes innovative business models leveraging the low-emission property of green hydrogen to reduce its financial costs thereby fostering its widespread adoption. Key components of the business workflow are elaborated mathematical formulations of market parameters are derived and case studies are presented to demonstrate the feasibility and efficiency of these models. Results demonstrate that the substantial costs associated with the current hydrogen industry can be effectively subsidized via the implementation of proposed business models. When the carbon emission price falls within the range of approximately 86–105 USD/ton free access to hydrogen becomes a viable option for end-users. This highlights the significance and promising potential of the proposed business models within the green hydrogen credit framework.
Renewable Hydrogen Requirements and Impacts for Network Balancing: A Queensland Cae Study
Dec 2023
Publication
Hydrogen is the gas of the moment: an abundant element that can be created using renewable energy transported in gaseous or liquid form and offering the ability to provide energy with only water vapour as an emission. Hydrogen can also be used in a fuel blend in electricity generation gas turbines providing a low carbon option for providing the peak electricity to cover high demand and firming.<br/>While the electricity grid is itself transforming to decarbonising hard-to-abate industries such as cement and bauxite refineries are slower to reduce emissions constrained by their high temperature process requirements. Hydrogen offers a solution allowing onsite production process heat with waste heat recovery supporting blended gas turbine generation for onsite electricity supply.<br/>This article builds on decarbonisation pathway simulation results from an ANEM model of the electricity grid identifying the amount of peak demand energy required from gas turbines. The research then examines the quantity flow rate storage requirements and emissions reduction if this peak generation were supplied by open cycle hydrogen capable gas turbines.
Fuelling the Future: An In-depth Review of Recent Trends, Challenges and Opportunities of Hydrogen Fuel Cell for a Sustainable Hydrogen Economy
Sep 2023
Publication
Hydrogen has gained tremendous momentum worldwide as an energy carrier to transit to a net zero emission energy sector. It has been widely adopted as a promising large-scale renewable energy (RE) storage solution to overcome RE resources’ variability and intermittency nature. The fuel cell (FC) technology became in focus within the hydrogen energy landscape as a cost-effective pathway to utilize hydrogen for power generation. Therefore FC technologies’ research and development (R&D) expanded into many pathways such as cost reduction efficiency improvement fixed and mobile applications lifetime safety and regulations etc. Many publications and industrial reports about FC technologies and applications are available. This raised the necessity for a holistic review study to summarize the state-of-the-art range of FC stacks such as manufacturing the balance of plant types technologies applications and R&D opportunities. At the beginning the principal technologies to compare the well known types followed by the FC operating parameters are presented. Then the FC balance of the plant i.e. building components and materials with its functionality and purpose types and applications are critically reviewed with their limitations and improvement opportunities. Subsequently the electrical properties of FCs with their key features including advantages and disadvantages were investigated. Applications of FCs in different sectors are elaborated with their key characteristics current status and future R&D opportunities. Economic attributes of fuel cells with a pathway towards low cost are also presented. Finally this study identifies the research gaps and future avenues to guide researchers and the hydrogen industry.
Comprehensive Review of Development and Applications of Hydrogen Energy Technologies in China for Carbon Neutrality: Technology Advances and Challenges
Jul 2024
Publication
Concerning the transition from a carbon-based energy economy to a renewable energy economy hydrogen is considered an essential energy carrier for efficient and broad energy systems in China in the near future. China aims to gradually replace fossil fuel-based power generation with renewable energy technologies to achieve carbon neutrality by 2060. This ambitious undertaking will involve building an industrial production chain spanning the production storage transportation and utilisation of hydrogen energy by 2030 (when China’s carbon peak will be reached). This review analyses the current status of technological R&D in China’s hydrogen energy industry. Based on published data in the open literature we compared the costs and carbon emissions for grey blue and green hydrogen production. The primary challenges concerning hydrogen transportation and storage are highlighted in this study. Given that primary carbon emissions in China are a result of power generation using fossil fuels we provide an overview of the advances in hydrogen-to-power industry technology R&D including hydrogen-related power generation technology hydrogen fuel cells hydrogen internal combustion engines hydrogen gas turbines and catalytic hydrogen combustion using liquid hydrogen carriers (e.g. ammonia methanol and ethanol).
Optimal Planning of Renewable Energy Park for Green Hydrogen Production Using Detailed Cost and Efficiency Curves of PEM Electrolyzer
Jul 2024
Publication
Installing multi-renewable energy (RE) power plants at designated locations known as RE parks is a promising solution to address their intermittent power. This research focuses on optimizing RE parks for three scenarios: photovoltaic (PV)-only wind-only and hybrid PV-wind with the aim of generating green hydrogen in locations with different RE potentials. To ensure rapid response to RE fluctuations a Proton Exchange Membrane (PEM) electrolyzer is employed. Furthermore this research proposes detailed models for manufacturer-provided wind power curves electrolyzer efficiency against its operating power and electrolyzer cost towards its capacity. Two optimization cases are conducted in MATLAB evaluating the optimum sizes of the plants in minimizing levelized cost of hydrogen (LCOH) using classical discrete combinatorial method and determining the ideal PV-to-wind capacity ratio for operating PEM electrolyzer within hybrid PV-wind parks using particle swarm optimization. Numerical simulations show that wind power-based hydrogen production is more cost-effective than PV-only RE parks. The lowest LCOH $4.26/kg H2 and the highest LCOH $14.378/kg H2 are obtained from wind-only and PV-only configurations respectively. Both occurred in Adum-Kirkeby Denmark as it has highest average wind speed and lowest irradiance level. Notably LCOH is reduced with the hybrid PV-wind configuration. The results suggest the optimum PV-to-wind capacity ratio is 65:35 on average and indicate that LCOH is more sensitive to electrolyzer’s cost than to electricity tariff variation. This study highlights two important factors i.e. selecting the suitable location based on the available RE resources and determining the optimum size ratio between the plants within the RE park.
Enabling Safe and Sustainable Hydrogen Mobility: Circular Economy-Driven Management of Hydrogen Vehicle Safety
Sep 2023
Publication
Hydrogen vehicles encompassing fuel cell electric vehicles (FCEVs) are pivotal within the UK’s energy landscape as it pursues the goal of net-zero emissions by 2050. By markedly diminishing dependence on fossil fuels FCEVs including hydrogen vehicles wield substantial influence in shaping the circular economy (CE). Their impact extends to optimizing resource utilization enabling zero-emission mobility facilitating the integration of renewable energy sources supplying adaptable energy storage solutions and interconnecting diverse sectors. The widespread adoption of hydrogen vehicles accelerates the UK’s transformative journey towards a sustainable CE. However to fully harness the benefits of this transition a robust investigation and implementation of safety measures concerning hydrogen vehicle (HV) use are indispensable. Therefore this study takes a holistic approach integrating quantitative risk assessment (QRA) and an adaptive decision-making trial and evaluation laboratory (DEMATEL) framework as pragmatic instruments. These methodologies ensure both the secure deployment and operational excellence of HVs. The findings underscore that the root causes of HV failures encompass extreme environments material defects fuel cell damage delivery system impairment and storage system deterioration. Furthermore critical driving factors for effective safety intervention revolve around cultivating a safety culture robust education/training and sound maintenance scheduling. Addressing these factors is pivotal for creating an environment conducive to mitigating safety and risk concerns. Given the intricacies of conducting comprehensive hydrogen QRAs due to the absence of specific reliability data this study dedicates attention to rectifying this gap. A sensitivity analysis encompassing a range of values is meticulously conducted to affirm the strength and reliability of our approach. This robust analysis yields precise dependable outcomes. Consequently decision-makers are equipped to discern pivotal underlying factors precipitating potential HV failures. With this discernment they can tailor safety interventions that lay the groundwork for sustainable resilient and secure HV operations. Our study navigates the intersection of HVs safety and sustainability amplifying their importance within the CE paradigm. Using the careful amalgamation of QRA and DEMATEL methodologies we chart a course towards empowering decision-makers with the insights to steer the hydrogen vehicle domain to safer horizons while ushering in an era of transformative eco-conscious mobility.
A Review of Gas Phase Inhibition of Gaseous Hydrogen Embrittlement in Pipeline Steels
Feb 2024
Publication
The addition of small amounts of certain gases such as O2 CO and SO2 may mitigate hydrogen embrittlement in high-pressure gas transmission pipelines that transport hydrogen. To practically implement such inhibition in gas transmission pipelines a comprehensive understanding and quantification of this effect are essential. This review examines the impact of various added gases to hydrogen including typical odorants on gaseous hydrogen embrittlement of steels and evaluates their inhibition effectiveness. O2 CO and SO2 were found to be effective inhibitors of hydrogen embrittlement. Yet the results in the literature have not always been consistent partly because of the diverse range of mechanical tests and their parameters. The absence of systematic studies hinders the evaluation of the feasibility of using gas phase inhibitors for controlling gaseous hydrogen embrittlement. A method to quantify the effectiveness of gas phase inhibition is proposed using gas phase permeation studies.
Greenhouse Gas Emissions Performance of Electric, Hydrogen and Fossil-Fuelled Freight Trucks with Uncertainty Estimates Using a Probabilistic Life-Cycle Assessment (pLCA)
Jan 2024
Publication
This research conducted a probabilistic life-cycle assessment (pLCA) into the greenhouse gas (GHG) emissions performance of nine combinations of truck size and powertrain technology for a recent past and a future (largely decarbonised) situation in Australia. This study finds that the relative and absolute life-cycle GHG emissions performance strongly depends on the vehicle class powertrain and year of assessment. Life-cycle emission factor distributions vary substantially in their magnitude range and shape. Diesel trucks had lower life-cycle GHG emissions in 2019 than electric trucks (battery hydrogen fuel cell) mainly due to the high carbon-emission intensity of the Australian electricity grid (mainly coal) and hydrogen production (mainly through steam–methane reforming). The picture is however very different for a more decarbonised situation where battery electric trucks in particular provide deep reductions (about 75–85%) in life-cycle GHG emissions. Fuel-cell electric (hydrogen) trucks also provide substantial reductions (about 50–70%) but not as deep as those for battery electric trucks. Moreover hydrogen trucks exhibit the largest uncertainty in emissions performance which reflects the uncertainty and general lack of information for this technology. They therefore carry an elevated risk of not achieving the expected emission reductions. Battery electric trucks show the smallest (absolute) uncertainty which suggests that these trucks are expected to deliver the deepest and most robust emission reductions. Operational emissions (on-road driving and vehicle maintenance combined) dominate life-cycle emissions for all vehicle classes. Vehicle manufacturing and upstream emissions make a relatively small contribution to life-cycle emissions from diesel trucks (
Opportunities and Challenges of Hydrogen Ports: An Empirical Study in Australia and Japan
Jul 2024
Publication
This paper investigated the opportunities and challenges of integrating ports into hydrogen (H2 ) supply chains in the context of Australia and Japan because they are leading countries in the field and are potential leaders in the upcoming large-scale H2 trade. Qualitative interviews were conducted in the two countries to identify opportunities for H2 ports necessary infrastructure and facilities key factors for operations and challenges associated with the ports’ development followed by an online survey investigating the readiness levels of H2 export and import ports. The findings reveal that there are significant opportunities for both countries’ H2 ports and their respective regions which encompass business transition processes and decarbonisation. However the ports face challenges in areas including infrastructure training standards and social licence and the sufficiency and readiness levels of port infrastructure and other critical factors are low. Recommendations were proposed to address the challenges and barriers encountered by H2 ports. To optimise logistics operations within H2 ports and facilitate effective integration of H2 applications this paper developed a user-oriented working process framework to provide guidance to ports seeking to engage in the H2 economy. Its findings and recommendations contribute to filling the existing knowledge gap pertaining to H2 ports.
Material Challenges and Hydrogen Embrittlement Assessment for Hydrogen Utilisation in Industrial Scale
Sep 2023
Publication
Hydrogen has been studied extensively as a potential enabler of the energy transition from fossil fuels to renewable sources. It promises a feasible decarbonisation route because it can act as an energy carrier a heat source or a chemical reactant in industrial processes. Hydrogen can be produced via renewable energy sources such as solar hydro or geothermic routes and is a more stable energy carrier than intermittent renewable sources. If hydrogen can be stored efficiently it could play a crucial role in decarbonising industries. For hydrogen to be successfully implemented in industrial systems its impact on infrastructure needs to be understood quantified and controlled. If hydrogen technology is to be economically feasible we need to investigate and understand the retrofitting of current industrial infrastructure. Currently there is a lack of comprehensive knowledge regarding alloys and components performance in long-term hydrogen-containing environments at industrial conditions associated with high-temperature hydrogen processing/production. This review summarises insights into the gaps in hydrogen embrittlement (HE) research that apply to high-temperature high-pressure systems in industrial processes and applications. It illustrates why it is still important to develop characterisation techniques and methods for hydrogen interaction with metals and surfaces under these conditions. The review also describes the implications of using hydrogen in large-scale industrial processes.
Impact of Experimentally Measured Relative Permeability Hysteresis on Reservoir-scale Performance of Undergound Hydrogen Storage (UHS)
Jan 2024
Publication
Underground Hydrogen Storage (UHS) is an emerging large-scale energy storage technology. Researchers are investigating its feasibility and performance including its injectivity productivity and storage capacity through numerical simulations. However several ad-hoc relative permeability and capillary pressure functions have been used in the literature with no direct link to the underlying physics of the hydrogen storage and production process. Recent relative permeability measurements for the hydrogen-brine system show very low hydrogen relative permeability and strong liquid phase hysteresis very different to what has been observed for other fluid systems for the same rock type. This raises the concern as to what extend the existing studies in the literature are able to reliably quantify the feasibility of the potential storage projects. In this study we investigate how experimentally measured hydrogen-brine relative permeability hysteresis affects the performance of UHS projects through numerical reservoir simulations. Relative permeability data measured during a hydrogen-water core-flooding experiment within ADMIRE project is used to design a relative permeability hysteresis model. Next numerical simulation for a UHS project in a generic braided-fluvial water-gas reservoir is performed using this hysteresis model. A performance assessment is carried out for several UHS scenarios with different drainage relative permeability curves hysteresis model coefficients and injection/production rates. Our results show that both gas and liquid relative permeability hysteresis play an important role in UHS irrespective of injection/production rate. Ignoring gas hysteresis may cause up to 338% of uncertainty on cumulative hydrogen production as it has negative effects on injectivity and productivity due to the resulting limited variation range of gas saturation and pressure during cyclic operations. In contrast hysteresis in the liquid phase relative permeability resolves this issue to some extent by improving the displacement of the liquid phase. Finally implementing relative permeability curves from other fluid systems during UHS performance assessment will cause uncertainty in terms of gas saturation and up to 141% underestimation on cumulative hydrogen production. These observations illustrate the importance of using relative permeability curves characteristic of hydrogen-brine system for assessing the UHS performances.
Flame Visibility in Hydrogen Appliances
Sep 2023
Publication
One of the benefits of the direct use of hydrogen is its ability to be burned in a similar way to natural gas using appliances with which the community is already familiar. This is particularly true for applications where electrification is neither practicable nor desirable. One common example is domestic cooking stoves where the open flame offers numerous real and perceived benefits to the chef. Similarly many commercial and industrial appliances rely on the unique properties of combustion to achieve a desired purpose that cannot readily be replaced by an alternative to an open flame. Despite the enormous decarbonisation potential of the direct replacement of natural gas with hydrogen there are some operational constraints due to the different burning characteristics of hydrogen. One of the challenges is the low visible light emission from hydrogen flames. The change in visible radiation from the combustion of hydrogen compared with natural gas is a safety concern whereby visual observation of a flame may be difficult. This paper aims to provide clarity on the visual appearance of hydrogen flames via a series of measurements of flame visibility and emission spectra accompanied by the assessment of strategies to improve the safe use of hydrogen.
Large-scale Production of Green Hydrogen from Solar Energy in Australia: Operation and Control of a Multi-unit PEM Electrolyser System
Dec 2024
Publication
Large-scale production of hydrogen using clean electricity from renewable energy sources (RESs) is gaining more momentum in attempts to foster the growth of the nascent hydrogen energy market. However the inherited intermittency of RESs constitutes a significant challenge for the reliable and economic operation of electrolysers and consequently the overall hydrogen production plant. This paper proposes a power allocation control strategy to regulate the operation of a multi-unit electrolyser plant fed by a solar power system for improved efficiency and economic hydrogen production. Proper implementation of the proposed control strategy can decrease the number of switching times increase hydrogen production raise the efficiency and extend the operational lifespan of the utilised electrolyser units. A solar-hydrogen system comprising a 1 MW electrolyser plant and a battery system is designed and implemented in MATLAB/Simulink environment to validate the efficacy of the proposed control strategy in improving the performance and reliability of an Industrial Green Hydrogen Hub (IGHH). The simulation results showed an improvement of 52.85% in the daily production of hydrogen with an increase of 71.088 kg/day a 68.67% improvement in the efficiency and an enhancement of more than 80% in the utilisation factor of the IGHH compared to other control techniques (traditional choppy control).
The Possibility of Powering a Light Aircraft by Releasing the Energy Stored in Hydrogen within a Fuel Cell Stack
Jun 2024
Publication
In this work we examine the possibility of converting a light propeller-driven aircraft powered by a spark-ignition reciprocating piston and internal combustion engine running on AVGAS into one powered by an electric motor driven by a proton exchange membrane fuel cell stack running on hydrogen. Our studies suggest that storing hydrogen cryogenically is a better option than storing hydrogen under pressure. In comparison to cryogenic tanks high-pressure tanks are extremely heavy and unacceptable for light aircraft. We show that the modified aircraft (including batteries) is no heavier than the original and that the layout of the major components results in lower movement of the aircraft center-of-gravity as the aircraft consumes hydrogen. However we acknowledge that our fuel cell aircraft cannot store the same amount of energy as the original running on AVGAS. Therefore despite the fact that the fuel cell stack is markedly more efficient than an internal combustion engine there is a reduction in the range of the fuel cell aircraft. One of our most important findings is that the quantity of energy that we need to dissipate to the surroundings via heat transfer is significantly greater from a fuel cell stack than from an internal combustion engine. This is particularly the case when we attempt to run the fuel cell stack at high current densities. To control this problem our strategy during the cruise phase is to run the fuel cell stack at its maximum efficiency where the current density is low. We size the fuel cell stack to produce at least enough power for cruise and when we require excess power we add the energy stored in batteries to make up the difference.
Hydrogen Storage in Unlined Rock Caverns: An Insight on Opportunities and Challenges
Jun 2024
Publication
Transitioning to a sustainable energy future necessitates innovative storage solutions for renewable energies where hydrogen (H₂) emerges as a pivotal energy carrier for its low emission potential. This paper explores unlined rock caverns (URCs) as a promising alternative for underground hydrogen storage (UHS) overcoming the geographical and technical limitations of UHS methods like salt rock caverns and porous media. Drawing from the experiences of natural gas (NG) and compressed air energy storage (CAES) in URCs we explore the viability of URCs for storing hydrogen at gigawatt-hour scales (>100 GWh). Despite challenges such as potential uplift failures (at a depth of approximately less than 1000 m) and hydrogen reactivity with storage materials at typical conditions (below temperatures of 100◦C and pressures of 15 MPa) URCs present a flexible scalable option closely allied with green hydrogen production from renewable sources. Our comprehensive review identifies critical design considerations including hydraulic containment and the integrity of fracture sealing materials under UHS conditions. Addressing identified knowledge gaps particularly around the design of hydraulic containment systems and the interaction of hydrogen with cavern materials will be crucial for advancing URC technology. The paper underscores the need for further experimental and numerical studies to refine URC suitability for hydrogen storage highlighting the role of URCs in enhancing the compatibility of renewable energy sources with the grid.
Hydrogen Embrittlement Susceptibility of Additively Manufactured High-strength Low-alloy AISI 4340 Steel
Jul 2025
Publication
Hydrogen embrittlement (HE) poses a significant challenge for high-strength steels. Although HE of wrought steels has been extensively studied it remains limited in steels processed by additive manufacturing (AM). The present work (i) compares the HE susceptibility of AISI 4340 ultra-high-strength steel fabricated by selective laser melting (SLM) with its wrought counterpart; (ii) investigates the predominant factors and possible HE mechanisms in the AM-fabricated material; and (iii) correlates microstructures produced with different SLM processing parameters to HE susceptibility of the steel. Generally conventionally processed AISI 4340 steel is used with a tempered martensitic structure to ensure the ultrahigh strength and therefore is susceptible to HE. In contrast SLM-fabricated 4340 exhibits a uniform refined bainitic microstructure. How this change of microstructure influences the HE susceptibility of the steel is unknown and needs investigation. Our results demonstrate that at the same level of strength the SLM-fabricated 4340 steel exhibits significantly lower HE susceptibility than its wrought counterpart. The SLM-fabricated steel showed a higher hydrogen diffusion rate. Furthermore the refined microstructure of the SLM-fabricated steel contributes to enhanced ductility even with hydrogen. These findings indicate that AM of high-strength steels has strong potential to improve HE resistance providing a pathway to solve this long-term problem. This study highlights the critical role of microstructure in influencing HE and offers valuable insights for developing steels for hydrogen applications.
Optimal Design of Electrolysis-based Hydrogen Hubs: Impact of Different Hydrogen Demand Profile Assumptions on System Flexibility and Investment Portfolios
Jul 2025
Publication
Green hydrogen (H2) produced from renewable energy sources (RES) through electrolysis offers a promising solution to decarbonize hard-to-abate sectors paving the way for H2 hubs. The agility of electrolyzers especially proton-exchange membrane (PEM) technology can be leveraged to provide flexibility to future integrated electricity and H2 systems. More flexibility can be unlocked by optimizing the designs of H2 hubs which generally consist of electrolyzers H2 storage tanks H2 liquefiers and battery energy storage systems (BESSs). This paper introduces a generic optimization framework for finding the least-cost designs of H2 hubs that also minimizes system operating costs under arbitrary H2 demand profiles. The proposed electrolyzer model incorporates a variable efficiency to avoid overestimating the power consumption and the true size of electrolyzers. In RES-rich countries like Australia envisaged H2 export demand may constitute a significant source of demand flexibility. The proposed framework is therefore demonstrated on a case study involving the Australian National Electricity Market (NEM) under a future large-scale green H2 export scenario assessing the impact of three different H2 export profile assumptions on H2 hub investment costs system operating costs and system flexibility. These profiles include: (a) a realistic one based on historical liquefied natural gas (LNG) ship schedules and a pilot H2 export project (b) an inflexible constant demand across the year and (c) a flexible monthly target without intraday and interday restrictions. Numerical analysis demonstrates that the optimal H2 hub designs obtained under the more realistic H2 export profile assumptions enjoy the lowest system operating costs and the highest flexibility the latter of which is evidenced by a substantial increase in availability of reserves.
Expert Views on the Legitimacy of Renewable Hydrogen Certification Schemes
Feb 2025
Publication
In this article we draw on findings from a mixed-methods international survey of experts in the energy sector (n = 179) to better understand the role of legitimacy theory in informing the development of renewable hydrogen standards certification and labelling (SCL). The investigation is viewed through two conceptions of legitimacy: the sociological legitimacy of increasing the availability of renewable hydrogen technologies and the normative legitimacy of democratic SCL governance. Results revealed that respondents reacted positively to survey state ments representing sociological legitimacy whereas qualitative data exposed some concerns with pragmatic and cognitive legitimacy such as a lack of immediate benefits and poor comprehensibility stemming from sources including economics and energy strategy. Respondents' ratings of the democratic legitimacy of hydrogen SCLs indicated inputs were perceived to have the most legitimacy followed by throughputs then outputs. The analysis revealed some evidence that features of scheme design and governance may influence experts' evaluations of schemes. Moreover results indicated an opportunity to increase awareness and knowledge of SCLs within the expert community and societally. This study provides evidence to support the premise that hydrogen SCLs would benefit from pursuing diversity in stakeholder participation enhancing process transparency and judging the efficacy of outputs against both decarbonisation and sustainability goals. Attention to these democratic factors among others would enhance the capacity of SCLs to contribute to the sociological legitimation of renewable hydrogen technologies.
Techno-economic Analysis of Hydrogen Production in the Sugarcane Industry by Steam Reforming of Ethanol with Carbon Capture
Feb 2025
Publication
Renewable hydrogen production is a pivotal technology in transitioning to sustainable energy and is essential for global decarbonisation efforts. This study explores the integration of hydrogen production into sugarcane bio refineries which have shifted from traditional sugar production to integrated bioenergy hubs. Specifically steam reforming of ethanol was selected as the process for hydrogen generation. A comprehensive techno-economic analysis was developed to address research gaps and guide future work. A scenario of hydrogen production coupled with carbon capture was analysed illustrating the potential to reduce the carbon footprint and utilise carbon dioxide for producing chemicals. The minimum selling price for hydrogen was determined to be 4.6 US $/kg for the base case scenario and 4.9 US$/kg for the comparison scenario with carbon capture positioning it below the current average market price of 7.2 US$/kg. The capital and operating expenditures were determined to be US$ 273.1 million and 157.8 million for a 42400 t/y hydrogen plant and integrating carbon capture considering 282800 t/y of carbon co-product yield was calculated at US$ 344.1 million and US$ 167.8 million respectively. This dual approach of hydrogen production and carbon capture presents a strategy for imple menting low-carbon processes that future biorefineries may consider. The primary impact highlighted by this integration is the enhancement of the sugarcane biorefineries’ value proposition leveraging undervalued energy sources such as electricity and biogas. This study underscores the economic and environmental benefits of incorporating hydrogen production into sugarcane biorefineries on a large scale offering a framework for future research and technological development.
A Review of Influence of Hydrogen on Fracture Toughness and Mechanical Properties of Gas Transmission Pipeline Steels
Jan 2025
Publication
The existing gas transmission pipeline network can be a convenient and cost-effective way to transport hydrogen. However hydrogen can cause hydrogen embrittlement (HE) of the steels used in pipeline construction. HE is typically manifested as a reduction in fracture toughness and ductility. To ensure structural integrity it is thus important to understand the fracture toughness of pipeline steels in hydrogen gas at pipeline pressures. This paper reviews (i) the influence of hydrogen on the fracture toughness of pipeline steels and (ii) the phenomena that occurs during fracture toughness tests of pipeline steel in air and hydrogen. Also reviewed are (i) the in fluence of hydrogen on tensile properties and (ii) the diffusion and solubility of hydrogen in pipeline steels under conditions relevant to hydrogen transport in gas transmission pipelines.
Performance, Emissions, and Economic Analyses of Hydrogen Fuel Cell Vehicles
May 2024
Publication
The transport sector is considered to be a significant contributor to greenhouse gas emissions as this sector emits about one-fourth of global CO2 emissions. Transport emissions contribute toward climate change and have been linked to adverse health impacts. Therefore alternative and sustainable transport options are urgent for decarbonising the transport sector and mitigating those issues. Hydrogen fuel cell vehicles are a potential alternative to conventional vehicles which can play a significant role in decarbonising the future transport sector. This study critically analyses the recent works related to hydrogen fuel cell integration into vehicles modelling and experimental investigations of hydrogen fuel cell vehicles with various powertrains. This study also reviews and analyses the performance energy management strategies lifecycle cost and emissions of fuel cell vehicles. Previous literature suggested that the fuel consumption and well-to-wheel greenhouse gas emissions of hydrogen fuel cell-powered vehicles are significantly lower than that of conventional internal combustion vehicles. Hydrogen fuel cell vehicles consume about 29–66 % less energy and cause approximately 31–80 % less greenhouse gas emissions than conventional vehicles. Despite this the lifecycle cost of hydrogen fuel cell vehicles has been estimated to be 1.2–12.1 times higher than conventional vehicles. Even though there has been recent progress in energy management in hydrogen fuel cell electric vehicles there are a number of technical and economic challenges to the commercialisation of hydrogen fuel cell vehicles. This study presents current knowledge gaps and details future research directions in relation to the research advancement of hydrogen fuel cell vehicles.
Biohydrogen Production from Biomass Sources: Metabolic Pathways and Economic Analysis
Sep 2021
Publication
The commercialization of hydrogen as a fuel faces severe technological economic and environmental challenges. As a method to overcome these challenges microalgal biohydrogen production has become the subject of growing research interest. Microalgal biohydrogen can be produced through different metabolic routes the economic considerations of which are largely missing from recent reviews. Thus this review briefly explains the techniques and economics associated with enhancing microalgae-based biohydrogen production. The cost of producing biohydrogen has been estimated to be between $10 GJ-1 and $20 GJ−1 which is not competitive with gasoline ($0.33 GJ−1 ). Even though direct biophotolysis has a sunlight conversion efficiency of over 80% its productivity is sensitive to oxygen and sunlight availability. While the electrochemical processes produce the highest biohydrogen (>90%) fermentation and photobiological processes are more environmentally sustainable. Studies have revealed that the cost of producing biohydrogen is quite high ranging between $2.13 kg−1 and 7.24 kg−1 via direct biophotolysis $1.42kg−1 through indirect biophotolysis and between $7.54 kg−1 and 7.61 kg−1 via fermentation. Therefore low-cost hydrogen production technologies need to be developed to ensure long-term sustainability which requires the optimization of critical experimental parameters microalgal metabolic engineering and genetic modification.
Hydrogen Addition to a Commercial Self-aspirating Burner and Assessment of a Practical Burner Modification Strategy to Improve Performance
Jul 2023
Publication
The ability for existing burners to operate safely and efficiently on hydrogen-blended fuels is a primary concern for the many industries looking to adopt hydrogen as an alternative fuel. This study investigates the efficacy of increasing fuel injector diameter as a simple modification strategy to extend the hydrogen-blending limits before flashback. The collateral effects of this modification are quantified with respect to a set of key performance criteria. The results show that the unmodified burner can sustain up to 50 vol% hydrogen addition before flashback. Increasing the fuel injector diameter reduces primary aeration allowing for stable operation on up to 100% hydrogen. The flame length visibility and radiant heat transfer properties are all increased as a result of the reduced air entrainment with a trade-off reported for NOx emissions where in addition to the effects of hydrogen reducing air entrainment further increases NOx emissions.
Advancements in Hydrogen Production, Storage, Distribution and Refuelling for a Sustainable Transport Sector: Hydrogen Fuel Cell Vehicles
Jul 2023
Publication
Hydrogen is considered as a promising fuel in the 21st century due to zero tailpipe CO2 emissions from hydrogen-powered vehicles. The use of hydrogen as fuel in vehicles can play an important role in decarbonising the transport sector and achieving net-zero emissions targets. However there exist several issues related to hydrogen production efficient hydrogen storage system and transport and refuelling infrastructure where the current research is focussing on. This study critically reviews and analyses the recent technological advancements of hydrogen production storage and distribution technologies along with their cost and associated greenhouse gas emissions. This paper also comprehensively discusses the hydrogen refuelling methods identifies issues associated with fast refuelling and explores the control strategies. Additionally it explains various standard protocols in relation to safe and efficient refuelling analyses economic aspects and presents the recent technological advancements related to refuelling infrastructure. This study suggests that the production cost of hydrogen significantly varies from one technology to others. The current hydrogen production cost from fossil sources using the most established technologies were estimated at about $0.8–$3.5/kg H2 depending on the country of production. The underground storage technology exhibited the lowest storage cost followed by compressed hydrogen and liquid hydrogen storage. The levelised cost of the refuelling station was reported to be about $1.5–$8/kg H2 depending on the station's capacity and country. Using portable refuelling stations were identified as a promising option in many countries for small fleet size low-to-medium duty vehicles. Following the current research progresses this paper in the end identifies knowledge gaps and thereby presents future research directions.
Ignore Variability, Overestimate Hydrogen Production - Quantifying the Effects of Electrolyzer Efficiency Curves on Hydrogen Producton from Renewable Energy Sources
May 2024
Publication
This study investigates the impact of including (or neglecting) the variable efficiency of hydrogen electrolyzers as a function of operating power in the modelling of green hydrogen produced from variable renewable energy sources. Results show that neglecting the variable electrolyzer efficiency as is commonly done in studies of green hydrogen leads to significant overestimation of hydrogen production in the range of 5–24%. The effects of the time resolution used in models are also investigated as well as the impact of including the option for the electrolyzer to switch to stand-by mode instead of powering down and electrolyzer ramp rate constraints. Results indicate that these have a minor effect on overall hydrogen production with the use of hour resolution data leading to overestimation in the range of 0.2–2% relative to using 5-min data. This study used data from three solar farms and three wind in Australia from which it is observed that wind farms produced 55% more hydrogen than the solar farms. The results in this study highlight the critical importance of including the variable efficiency of electrolyzers in the modelling of green hydrogen production. As this industry scales continuing to neglect this effect would lead to the overestimation of hydrogen production by tens of megatonnes.
Shorter Message, Stronger Framing Increases Societal Acceptance for Hydrogen
Feb 2024
Publication
With the question of ‘can short messages be effective in increasing public support for a complex new technology (hydrogen)?‘ this study uses a representative national survey in Australia to analyze the differences and variations in subjective support for hydrogen in response to four differently framed short messages. The findings of this study show that short messages can increase social acceptance but the effects depend on how strongly the message is framed in terms of its alignment with either an economic or environmental values framework. Furthermore the effects depend on the social and cultural context of the receiver of the message.
Geomechanics of Hydrogen Storage in a Depleted Gas Field
Feb 2024
Publication
We perform a simulation study of hydrogen injection in a depleted gas reservoir to assess the geomechanical impact of hydrogen storage relative to other commonly injected gases (methane CO2). A key finding is that the differences in hydrogen density compressibility viscosity and thermal properties compared to the other gases result in significantly less thermal perturbation at reservoir level. The risks of fault reactivation and wellbore fractures due to thermally-induced stress changes are significantly lower when storing hydrogen compared to results observed in CO2 scenarios. This implies that hydrogen injection and production has a much smaller geomechanical footprint with benefits for operational safety. We also find that use of nitrogen cushion gas ensures efficient deliverability and phase separation in the reservoir. However in this study a large fraction of cushion gas was back-produced in each cycle demonstrating the need for further studies of the surface processing requirements and economic implications.
Stable Electrolytic Hydrogen Production Using Renewable Energy
Oct 2024
Publication
The inherent intermittency of upstream solar and wind power can result in fluctuating electrolytic hydrogen production which is incompatible with the feedstock requirements of many downstream hydrogen storage and utilisation applications. Suitable backup power or storage (hydrogen or energy) strategies are thus needed in overall system design. This work conducts technoeconomic modelling to design electrolytic production systems featuring stable hydrogen output for various locations across Australia based on hourly weather data and determines the levelised cost of hydrogen (LCOH) emissions intensities and annual electrolyser usage factors. A stable truly green hydrogen supply is consistently achieved by imposing annual usage factor requirements on the system which forces the system modules (i.e. solar wind electrolyser and hydrogen storage) to be oversized in order to achieve the desired usage factor. Whilst the resultant system designs are however very location-specific a design that ensures a 100% usage factor costs approximately 22% more on average than a system design which is optimised for cost alone.
The Impact of Water Injection and Hydrogen Fuel on Performance and Emissions in a Hydrogen/Diesel Dual-Fuel Engine
Nov 2024
Publication
As the need for alternative energy sources and reduced emissions grows proven technologies are often sidelined in favour of emerging solutions that lack the infrastructure for mass adoption. This study explores a transitional approach by modifying existing compression ignition engines to run on a hydrogen/diesel mixture for performance improvement utilising water injection to mitigate the drawbacks associated with hydrogen combustion. This approach can yield favourable results with current technology. In this modelling study ten hydrogen energy ratios (0–90%) and nine water injection rates (0–700 mg/cycle) were tested in a turbocharged Cummins ISBe 220 31 six-cylinder diesel engine. An engine experiment was conducted to validate the model. Key performance indicators such as power mechanical efficiency thermal efficiency indicated mean effective pressure (IMEP) and brake-specific fuel consumption (BSFC) were measured. Both water injection and hydrogen injection led to slight improvements in all performance metrics except BSFC due to hydrogen’s lower energy density. In terms of emissions CO and CO2 levels significantly decreased as hydrogen content increased with reductions of 94% and 96% respectively at 90% hydrogen compared to the baseline diesel. Water injection at peak rates further reduced CO emissions by approximately 40% though it had minimal effect on CO2 . As expected NOx (which is a typical challenge with hydrogen combustion and also with diesel engines in general) increased with hydrogen fuelling resulting in an approximately 70% increase in total NOx emissions over the range of 0–90% hydrogen energy. Similar increases were observed in NO and NO2 e.g. 90% and 57% increases with 90% hydrogen respectively. However water injection reduced NO and NO2 levels by up to 16% and 83% respectively resulting in a net decrease in NOX emissions in many combined cases not only with hydrogen injection but also when compared to baseline diesel.
Economics of Renewable Hydrogen Production Using Wind and Solar Energy: A Case Study for Queensland, Australia
Dec 2023
Publication
This study presents a technoeconomic analysis of renewables-based hydrogen production in Queensland Australia under Optimistic Reference and Pessimistic scenarios to address uncertainty in cost predictions. The goal of the work was to ascertain if the target fam-gate cost of AUD 3/kg (approx. USD 2/kg) could be reached. Economies of scale and the learning rate concept were factored into the economic model to account for the effect of scale-up and cost reductions as electrolyser manufacturing capacity grows. The model assumes that small-scale to large-scale wind turbine (WT)-based and photovoltaic (PV)-based power generation plants are directly coupled with an electrolyser array and utilises hourly generation data for the Gladstone hydrogen-hub region. Employing first a commonly used simplified approach the electrolyser array was sized based on the maximum hourly power available for hydrogen production. The initial results indicated that scale-up is very beneficial: the levelised cost of green hydrogen (LCOH) could decrease by 49% from $6.1/kg to $3.1/kg when scaling PV-based plant from 10 MW to 1 GW and for WT-based plant by 36% from $5.8/kg to $3.7/kg. Then impacts on the LCOH of incorporating curtailment of ineffective peak power and electrolyser overload capacity were investigated and shown to be significant. Also significant was the beneficial effect of recognising that electrolyser efficiency depends on input power. The latter two factors have mostly been overlooked in the literature. Incorporating in the model the influence on the LCOH of real-world electrolyser operational characteristics overcomes a shortcoming of the simplified sizing method namely that a large portion of electrolyser capacity is under-utilised leading to unnecessarily high values of the LCOH. It was found that AUD 3/kg is achievable if the electrolyser array is properly sized which should help to incentivise large-scale renewable hydrogen projects in Australia and elsewhere.
Storage Integrity During Underground Hydrogen Storage in Depleted Gas Reservoirs
Nov 2023
Publication
The transition from fossil fuels to renewable energy sources particularly hydrogen has emerged as a central strategy for decarbonization and the pursuit of net-zero carbon emissions. Meeting the demand for large-scale hydrogen storage a crucial component of the hydrogen supply chain has led to the exploration of underground hydrogen storage as an economically viable solution to global energy needs. In contrast to other subsurface storage options such as salt caverns and aquifers which are geographically limited depleted gas reservoirs have garnered increasing attention due to their broader distribution and higher storage capacity. However the safe storage and cycling of hydrogen in depleted gas reservoirs require the preservation of high stability and integrity in the caprock reservoir and wellbore. Nevertheless there exists a significant gap in the current research concerning storage integrity in underground hydrogen storage within depleted gas reservoirs and a systematic approach is lacking. This paper aims to address this gap by reviewing the primary challenges associated with storage integrity including geochemical reactions microbial activities faults and fractures and perspectives on hydrogen cycling. The study comprehensively reviews the processes and impacts such as abiotic and biotic mineral dissolution/precipitation reactivation and propagation of faults and fractures in caprock and host-rock wellbore instability due to cement degradation and casing corrosion and stress changes during hydrogen cycling. To provide a practical solution a technical screening tool has been developed considering controlling variables risks and consequences affecting storage integrity. Finally this paper highlights knowledge gaps and suggests feasible methods and pathways to mitigate these risks facilitating the development of large-scale underground hydrogen storage in depleted gas reservoirs.
Empowering Fuel Cell Electric Vehicles Towards Sustainable Transportation: An Analytical Assessment, Emerging Energy Management, Key Issues, and Future Research Opportunities
Oct 2024
Publication
Fuel cell electric vehicles (FCEVs) have received significant attention in recent times due to various advantageous features such as high energy efficiency zero emissions and extended driving range. However FCEVs have some drawbacks including high production costs; limited hydrogen refueling infrastructure; and the complexity of converters controllers and method execution. To address these challenges smart energy management involving appropriate converters controllers intelligent algorithms and optimizations is essential for enhancing the effectiveness of FCEVs towards sustainable transportation. Therefore this paper presents emerging energy management strategies for FCEVs to improve energy efficiency system reliability and overall performance. In this context a comprehensive analytical assessment is conducted to examine several factors including research trends types of publications citation analysis keyword occurrences collaborations influential authors and the countries conducting research in this area. Moreover emerging energy management schemes are investigated with a focus on intelligent algorithms optimization techniques and control strategies highlighting contributions key findings issues and research gaps. Furthermore the state-of-the-art research domains of FCEVs are thoroughly discussed in order to explore various research domains relevant outcomes and existing challenges. Additionally this paper addresses open issues and challenges and offers valuable future research opportunities for advancing FCEVs emphasizing the importance of suitable algorithms controllers and optimization techniques to enhance their performance. The outcomes and key findings of this review will be helpful for researchers and automotive engineers in developing advanced methods control schemes and optimization strategies for FCEVs towards greener transportation.
Assessment of Wettability and Rock-fluid Interfacial Tension of Caprock: Implications for Hydrogen and Carbon Dioxide Geo-storage
Mar 2022
Publication
Underground hydrogen (H2) storage (UHS) and carbon dioxide (CO2) geo-storage (CGS) are prominent methods of meeting global energy needs and enabling a low-carbon global economy. The pore-scale distribution reservoir-scale storage capacity and containment security of H2 and CO2 are significantly influenced by interfacial properties including the equilibrium contact angle (θE) and solid-liquid and solid-gas interfacial tensions (γSL and γSG). However due to the technical constraints of experimentally determining these parameters they are often calculated based on advancing and receding contact angle values. There is a scarcity of θE γSL and γSG data particularly related to the hydrogen structural sealing potential of caprock which is unavailable in the literature. Young's equation and Neumann's equation of state were combined in this study to theoretically compute these three parameters (θE γSL and γSG) at reservoir conditions for the H2 and CO2 geo-storage potential. Pure mica organic-aged mica and alumina nano-aged mica substrates were investigated to explore the conditions for rock wetting phenomena and the sealing potential of caprock. The results reveal that θE increases while γSG decreases with increasing pressure organic acid concentration and alkyl chain length. However γSG decreases with increasing temperatures for H2 gas and vice versa for CO2. In addition θE and γSL decrease whereas γSG increases with increasing alumina nanofluid concentration from 0.05 to 0.25 wt%. Conversely θE and γSL increase whereas γSG decreases with increasing alumina nanofluid concentration from 0.25 to 0.75 wt%. The hydrogen wettability of mica (a proxy of caprock) was generally less than the CO2 wettability of mica at similar physio-thermal conditions. The interfacial data reported in this study are crucial for predicting caprock wettability alterations and the resulting structural sealing capacity for UHS and CGS.
Numerical Modelling of Hydrogen Release and Dispersion in Under-deck Compressed Hydrogen Storage of Marine Ships
Feb 2024
Publication
There is growing interest in using hydrogen (H2) as a marine fuel. Fire and explosion risks depend on hydrogen release and dispersion characteristics. Based on a validated Computational Fluid Dynamics (CFD) model this study performed hydrogen release and dispersion analysis on an under-deck compressed H2 storage system for a Live-Fish Carrier. A realistic under-deck H2 storage room was modelled based on the ship’s main dimensions and operational profile. Det Norske Veritas (DNV) Rules and Regulations for natural gas storage as a marine fuel were employed as base design guidelines. Case studies were developed to study the effect of two ceiling types (flat and slanted) in terms of flammable cloud formation and dissipation. During the leak’s duration it was found that the recommended ventilation rate was insufficient to dilute the average H2 concentration below 25% of the flammable range as required by DNV (1.2% required against 1.3% slanted and 1.4% flat). However after 35 s of gas extraction the H2 concentration was reduced to 0.5% and 0.6% in the slanted and flat cases respectively. The proposed methodology remains valid to improve the ventilation system and assess mitigation alternatives or other leakage scenarios in confined or semi-confined spaces containing compressed hydrogen gas.
Towards Safer Hydrogen Refuelling Stations: Insights from Computational Fluid Dynamics LH2 Leakage
May 2024
Publication
The transition to a sustainable future with hydrogen as a key energy carrier necessitates a comprehensive understanding of the safety aspects of hydrogen including liquid hydrogen (LH₂). Hence this study presents a detailed computational fluid mechanics analysis to explore accidental LH₂ leakage and dispersion in a hydrogen refuelling station under varied conditions which is essential to prevent fire and explosion. The correlated impact of influential parameters including wind direction wind velocity leak direction and leak rate were analysed. The study shows that hydrogen dispersion is significantly impacted by the combined effect of wind direction and surrounding structures. Additionally the leak rate and leak direction have a significant effect on the development of the flammable cloud volume (FCV) which is critical for estimating the explosion hazards. Increasing wind velocity from 2 to 4 m/s at a constant leak rate of 0.06 kg/s results in an 82% reduction in FCV. The minimum FCV occurs when leak and wind directions oppose at 4 m/s. The most critical situation concerning FCV arises when the leak and wind directions are perpendicular with a leak rate of 0.06 kg/s and a wind velocity of 2 m/s. These findings can aid in the development of optimised sensing and monitoring systems and operational strategies to reduce the risk of catastrophic fire and explosion consequences.
A 500 kW Hydrogen Fuel Cell-powered Vessel: From Concept to Sailing
Sep 2024
Publication
This paper presents the “Three Gorges Hydrogen Boat No. 1” a novel green hydrogen-powered vessel that has been successfully delivered and is currently sailing. This vessel integrated with a hydrogen production and bunkering station at its dedicated dock achieves zero-carbon emissions. It stores 240 kg of 35 MPa gaseous hydrogen and has a fuel cell system rated at 500 kW. We analysed the engineering details of the marine hydrogen system including hydrogen bunkering storage supply fuel cell and the hybrid power system with lithium-ion batteries. In the first bunkering trial the vessel was safely refuelled with 200 kg of gaseous hydrogen in 156 min via a bunkering station 13 m above the water surface. The maximum hydrogen pressure and temperature recorded during bunkering were 35.05 MPa and 39.04 ◦C respectively demonstrating safe and reliable shore-toship bunkering. For the sea trial the marine hydrogen system operated successfully during a 3-h voyage achieving a maximum speed of 28.15 km/h (15.2 knots) at rated propulsion power. The vessel exhibited minimal noise and vibration and its dynamic response met load change requirements. To prevent rapid load changes to the fuel cells 68 s were used to reach 483 kW from startup and 62 s from 480 kW to zero. The successful bunkering and operation of this hydrogen-powered vessel demonstrates the feasibility of zero-carbon emission maritime transport. However four lessons were identified concerning bunkering speed hydrogen cylinder leakage hydrogen pressure regulator malfunctions and fuel cell room space. The novelty of this work lies in the practical demonstration of a fully operational hydrogen-powered maritime vessel achieving zero emissions encompassing its design building operation and lessons learned. These parameters and findings can be used as a baseline for further engineering research.
A Holistic Green System Coupling Hydrogen Production with Wastewater Valorisation
May 2022
Publication
Green hydrogen represents a critical underpinning technology for achievingcarbon neutrality. Although researchers often fixate on its energy inputs atruly ‘green’ hydrogen production process would also be sustainable in termsof water and materials inputs. To address this holistic challenge we demon-strate a new green hydrogen production system which can utilize secondarywastewater as the input (preserving scarce fresh water supplies for drinkingand sanitation). The enabling feature of the proposed system is a self-grownbifunctional CoNi electrode which consists of ultrathin spontaneously depos-ited CoNi nanosheets on a three-dimensional nickel foam. As such a greensynthesis process was developed using an immersion procedure at room-temperature with zero net energy input. Testing revealed that the synthesizedCoNi electrodes can reach a current density of 10 mA cm2 at a small overpo-tential of 197 mV for the hydrogen evolution reaction and 315 mV for the oxy-gen evolution reaction in alkalified wastewater. The values are 16.5%and 6.5% smaller than that from precious catalysts (20 wt% Pt/C and RuO 2 respectively). Importantly this CoNi catalyst offers outstanding durability foroverall wastewater splitting. A prototype solar-energy-powered rooftop waste-water splitting system was constructed and can produce more than 100 Lhydrogen on a sunny day in Sydney Australia. Taken together these resultsindicate that it is promising to unlock holistically green routes for hydrogenproduction by wastewater uplifting with regards to water energy and mate-rials synthesis.
Sustainability Certification for Renewable Hydrogen: An International Survey of Energy Professionals
Jun 2024
Publication
Hydrogen produced from renewable energy is being promoted to decarbonise global energy systems. To support this energy transition standards certification and labelling schemes (SCLs) aim to differentiate hydrogen products based on their system-wide carbon emissions and method of production characteristics. However being certified as low-carbon clean or green hydrogen does not guarantee broader sustainability across economic environmental social or governance dimensions. Through an international survey of energy-sector and sustainability professionals (n = 179) we investigated the desirable sustainability features for renewable hydrogen SCLs and the perceived advantages and disadvantages of sustainability certification. Our mixed-method study revealed general accordance on the feasible inclusion of diverse sustainability criteria in SCLs albeit with varying degrees of perceived essentiality. Within the confines of the data some differences in viewpoints emerged based on respondents’ geographical and supply chain locations which were associated with the sharing of costs and benefits. Qualitatively respondents found the idea of SCL harmonisation attractive but weighed this against the risks of duplication complicated administrative procedures and contradictory regulation. The implications of this research centre on the need for further studies to inform policy recommendations for an overarching SCL sustainability framework that embodies the principles of harmonisation in the context of multistakeholder governance.
Techno-economics of Renewable Hydrogen Export: A Case Study for Australia-Japan
Jul 2024
Publication
The shift from fossil fuels to clean energy carriers such as renewable H2 is imminent. Consequently a global H2 market is taking shape involving countries with limited or insufficient energy resources importing from renewable-rich countries. This study evaluates the techno-economics of renewable hydrogen (H2) export in a globally significant scenario in which Australia exports to Japan. To gain insight into the immediate realisable future the base year was selected as 2030 with a consequently small (in export terms) hydrogen production rate of 100 t/day landed capacity. Electricity was generated by photovoltaic arrays (PV) connected directly to proton exchange membrane (PEM) electrolyser plant allowing for flexible gaseous hydrogen (GH2) production. To enhance the fidelity of the technoeconomic model we incorporated rarely applied but impactful parameters including dynamic efficiency and the overload capacity of PEM electrolysers. The GH2 produced was assumed to be converted into condensed forms suitable for export by sea: liquid hydrogen (LH2) and the chemical carriers liquid ammonia (LNH3) methanol (MeOH) methylcyclohexane (MCH). These were assumed to be reconverted to GH2 at the destination. LNH3 and MCH emerged as promising carriers for export yielding the lowest landed levelised cost of hydrogen (LCOH). LH2 yielded the highest LCOH unless boiloff gas could be managed effectively and cheaply. A sensitivity analysis showed that a lower weighted average cost of capital (WACC) and scale-up can significantly reduce the landed LCOH. Increasing the production rate to 1000 t/day landed capacity very significantly lowered the landed LCOH providing a strong incentive to scale up and optimise the entire supply chain as fast as possible.
Knowledge, Skills, and Attributes Needed for Developing a Hydrogen Engineering Workforce: A Systematic Review of Literature on Hydrogen Engineering Education
May 2024
Publication
Growth in Australia’s demand for engineers is fast outpacing supply. A significant challenge for Australia to achieve high projected low emissions hydrogen export targets by 2030 will be finding engineers with suitable knowledge skills and attributes to deliver hydrogen engineering projects safely and sustainably. This systematic review investigates educational outcomes needed to develop a hydrogen engineering workforce. Sixteen relevant studies published between 2003 and 2023 were identified to explore “What key knowledge skills and attributes support the development of a hydrogen engineering workforce?”. While these studies advocated the need for training and prescribed areas of required knowledge for the low-emissions hydrogen sector there was limited empirical evidence that informed what knowledge skills and attributes are relevant for entry to practice. This finding represents a significant opportunity for researchers to engage with employers and engineering practitioners within emerging low-emissions hydrogen sector capture empirical evidence and inform the design of educational programs.
Renewable Hydrogen Standards, Certifications, and Labels: A State-of-the-art Review from a Sustainability Systems Governance Perspective
Feb 2024
Publication
A range of existing and newly developed hydrogen standards certification and labelling (SCL) schemes aim to promote the role of ‘renewable’ ‘clean’ or ‘green’ hydrogen in decarbonising energy transitions. This paper analyses a sample of these SCLs to assess their role in the scaling up of renewable hydrogen and its derivatives. To analyse these hydrogen SCLs we embellish a novel conceptual framework that brings together Sustainability Systems Thinking and Governance (SSG) literatures. The results reveal noteworthy scheme differences in motivation approach criteria and governance; highlighting the complex interconnected and dynamic reality within which energy systems are embedded. We consider whether the sustainable utilisation of renewable hydrogen is well-served by the proliferation of SCLs and recommend an SSG-informed approach. An SSG approach will better promote collaboration towards an authoritative global multistakeholder compromise on hydrogen certification that balances economic considerations with social and environmental dimensions.
No more items...