Austria
Evaluation of Process Simulation and Reactor Technologies of an Integrated Power-to-liquid Plant at a Cement Factory
Mar 2023
Publication
A novel carbon capture and utilization (CCU) process is described in which process-related carbon dioxide is captured from cement plant exhaust gas (10000 tons/year) and converted with green hydrogen in a Fischer Tropsch synthesis to liquid mainly paraffinic hydrocarbons (syncrude approx. 3000 tons/year) which is finally processed to polyolefins. This CCU process chain is simulated with the software package ASPEN Plus V12.1®. In a first step the influence of hydrogen production technology such as PEM and SOEC and reverse water-gas shift reactor (rWGS) technology (electrified and autothermal design) on plant specific efficiencies (Power-to-Liquid PtL carbon conversion) product volumes and investment operating and net production costs (NPC) is investigated. Furthermore process routes reducing the CO2 content in the Fischer Tropsch feed gas are elaborated implementing a CO2 separation unit or recycle streams back to the rWGS reactor. Unexpectedly CO2 capture and recycle streams back to the rWGS show no significant impact on the performance of each process scenario particularly in terms of the product quantity. However lower PtL efficiencies and higher NPC are noticeable for these cases. The techno-economic assessment reveals that the use of a SOEC and an electrified rWGS reactor offers the technologically best and economically most optimized process chain with NPC of 8.40 EUR/kgsyncrude a PtL efficiency of 54% and a carbon conversion of 85%.
Green Hydrogen-Based Direct Reduction for Low-Carbon Steelmaking
May 2020
Publication
The European steel industry aims at a CO2 reduction of 80–95% by 2050 ensuring that Europe will meet the requirements of the Paris Agreement. As the reduction potentials of the current steelmaking routes are low the transfer toward breakthrough-technologies is essential to reach these goals. Hydrogen-based steelmaking is one approach to realize CO2-lean steelmaking. Therefore the natural gas (NG)-based direct reduction (DR) acts as a basis for the first step of this transition. The high flexibility of this route allows the gradual addition of hydrogen and in a long-term view runs the process with pure hydrogen. Model-based calculations are performed to assess the possibilities for injecting hydrogen. Therefore NG- and hydrogen-based DR models are developed to create new process know-how and enable an evaluation of these processes in terms of energy demand CO2-reduction potentials and so on. The examinations show that the hydrogen-based route offers a huge potential for green steelmaking which is strongly depending on the carbon footprint of the electricity used for the production of hydrogen. Only if the carbon intensity is less than about 120 g CO2 kWh1 the hydrogen-based process emits less CO2 than the NG-based DR process.
Just Energy Transition: Learning from the Past for a More Just and Sustainable Hydrogen Transition in West Africa
Dec 2022
Publication
The rising demand for energy and the aim of moving away from fossil fuels and to low-carbon power have led many countries to move to alternative sources including solar energy wind geothermal energy biomass and hydrogen. Hydrogen is often considered a “missing link” in guaranteeing the energy transition providing storage and covering the volatility and intermittency of renewable energy generation. However due to potential injustice with regard to the distribution of risks benefits and costs (i.e. in regard to competing for land use) the large-scale deployment of hydrogen is a contested policy issue. This paper draws from a historical analysis of past energy projects to contribute to a more informed policy-making process toward a more just transition to the hydrogen economy. We perform a systematic literature review to identify relevant conflict factors that can influence the outcome of hydrogen energy transition projects in selected Economic Community of West African States countries namely Nigeria and Mali. To better address potential challenges policymakers must not only facilitate technology development access and market structures for hydrogen energy policies but also focus on energy access to affected communities. Further research should monitor hydrogen implementation with a special focus on societal impacts in producing countries.
A Bird’s-Eye View on Polymer-Based Hydrogen Carriers for Mobile Applications
Oct 2022
Publication
Globally reducing CO2 emissions is an urgent priority. The hydrogen economy is a system that offers long-term solutions for a secure energy future and the CO2 crisis. From hydrogen production to consumption storing systems are the foundation of a viable hydrogen economy. Each step has been the topic of intense research for decades; however the development of a viable safe and efficient strategy for the storage of hydrogen remains the most challenging one. Storing hydrogen in polymer-based carriers can realize a more compact and much safer approach that does not require high pressure and cryogenic temperature with the potential to reach the targets determined by the United States Department of Energy. This review highlights an outline of the major polymeric material groups that are capable of storing and releasing hydrogen reversibly. According to the hydrogen storage results there is no optimal hydrogen storage system for all stationary and automotive applications so far. Additionally a comparison is made between different polymeric carriers and relevant solid-state hydrogen carriers to better understand the amount of hydrogen that can be stored and released realistically.
High-pressure Hydrogen Production with Inherent Sequestration of a Pure Carbon Dioxide Stream Via Fixed Bed Chemical Looping
Feb 2019
Publication
The proof of concept for the production of pure pressurized hydrogen from hydrocarbons in combination with the sequestration of a pure stream of carbon dioxide with the reformer steam iron cycle is presented. The iron oxide based oxygen carrier (95% Fe2O3 5% Al2O3) is reduced with syngas and oxidized with steam at 1023 K. The carbon dioxide separation is achieved via partial reduction of the oxygen carrier from Fe2O3 to Fe3O4 yielding thermodynamically to a product gas only containing CO2 and H2O. By the subsequent condensation of steam pure CO2 is sequestrated. After each steam oxidation phase an air oxidation was applied to restore the oxygen carrier to hematite level. Product gas pressures of up to 30.1 bar and hydrogen purities exceeding 99% were achieved via steam oxidations. The main impurities in the product gas are carbon monoxide and carbon dioxide which originate from solid carbon depositions or from stored carbonaceous molecules inside the pores of the contact mass. The oxygen carrier samples were characterized using elemental analysis BET surface area measurement XRD powder diffraction SEM and light microscopy. The maximum pressure of 95 bar was demonstrated for hydrogen production in the steam oxidation phase after the full oxygen carrier reduction significantly reducing the energy demand for compressors in mobility applications.
Hydrogen-assisted Cracking of GMA Welded 960 & A Grade High-strength Steels
Jan 2020
Publication
High-strength steels with yield strength of 960 MPa are susceptible to hydrogen-assisted cracking (HAC) during welding processing. In the present paper the implant test is used to study HAC in a quenched and tempered steel S960QL and a high-strength steel produced by thermo-mechanical controlled process S960MC. Welding is performed using the gas-metal arc welding process. Furthermore diffusible hydrogen concentration (HD) in arc weld metal is determined. Based on the implant test results lower critical stress (LCS) for complete fracture critical implant stress (σkrit) for crack initiation and embrittlement index (EI) are determined. At HD of 1.66 ml/100 g LCS is 605 MPa and 817 MPa for S960QL and S960MC respectively. EI is 0.30 and 0.46 for S960QL and S960MC respectively. Fracture surfaces of S960QL show higher degradation with reduced deformation. Both higher EI of S960MC and fractography show better resistance to HAC in the HAZ of S960MC compared to S960QL.
Assessment and Recommendations for a Fossil Free Future for Track Work Machinery
Oct 2021
Publication
Current railway track work machinery is mainly operated with diesel fuel. As a result track maintenance of Austrian Federal Railways (OeBB) amounts to nearly 9000 t CO2 equivalent per year according to calculations from Graz University of Technology. OeBB’s total length of railway lines only accounts for 0.56% of the world’s length of lines. This indicates huge potential for mitigating greenhouse gas emissions considering the need for track maintenance worldwide. Environmental concerns have led to the introduction of alternative drives in the transport sector. Until now R&D (Research & Development) of alternative propulsion technologies for track work machinery has been widely neglected. This paper examines the possibility of achieving zero direct emissions during maintenance and construction work in railways by switching to alternative drives. The goal is to analyze alternative propulsion solutions arising from the transport sector and to assess their applicability to track work machinery. Research results together with a calculation tool show that available battery technology is recommendable for energy demands lower than 300 kWh per construction shift. Hydrogen fuel cell technology is an alternative for energy demands higher than 800 kWh. For machinery with energy requirements in between enhancements in battery technology are necessary and desirable for the coming years.
Role of Hydrogen-based Energy Carriers as an Alternative Option to Reduce Residual Emissions Associated with Mid-century Decarbonization Goals
Mar 2022
Publication
Hydrogen-based energy carriers including hydrogen ammonia and synthetic hydrocarbons are expected to help reduce residual carbon dioxide emissions in the context of the Paris Agreement goals although their potential has not yet been fully clarified in light of their competitiveness and complementarity with other mitigation options such as electricity biofuels and carbon capture and storage (CCS). This study aimed to explore the role of hydrogen in the global energy system under various mitigation scenarios and technology portfolios using a detailed energy system model that considers various energy technologies including the conversion and use of hydrogen-based energy carriers. The results indicate that the share of hydrogen-based energy carriers generally remains less than 5% of global final energy demand by 2050 in the 2 ◦C scenarios. Nevertheless such carriers contribute to removal of residual emissions from the industry and transport sectors under specific conditions. Their share increases to 10–15% under stringent mitigation scenarios corresponding to 1.5 ◦C warming and scenarios without CCS. The transport sector is the largest consumer accounting for half or more of hydrogen production followed by the industry and power sectors. In addition to direct usage of hydrogen and ammonia synthetic hydrocarbons converted from hydrogen and carbon captured from biomass or direct air capture are attractive transport fuels growing to half of all hydrogen-based energy carriers. Upscaling of electrification and biofuels is another common cost-effective strategy revealing the importance of holistic policy design rather than heavy reliance on hydrogen.
Porosity and Thickness Effect of Pd–Cu–Si Metallic Glasses on Electrocatalytic Hydrogen Production and Storage
Aug 2021
Publication
This contribution places emphasis on tuning pore architecture and film thickness of mesoporous Pd–Cu–Si thin films sputtered on Si/SiO2 substrates for enhanced electrocatalytic and hydrogen sorption/desorption activity and their comparison with the state-of-the-art thin film electrocatalysts. Small Tafel slope of 43 mV dec–1 for 1250 nm thick coatings with 2 µm diameter pores with 4.2 µm interspacing (H2) electrocatalyst with comparable hydrogen overpotentials to the literature suggests its use for standard fuel cells. The largest hydrogen sorption has been attained for the 250 nm thick electrocatalyst on 5 µm pore diameter and 12 µm interspacing (2189 µC cm–2 per CV cycle) making it possible for rapid storage systems. Moreover the charge transfer resistance described by an equivalent circuit model has an excellent correlation with Tafel slopes. Along with its very low Tafel slope of 42 mV dec–1 10 nm thick H2 pore design electrocatalyst has the highest capacitive response of ∼0.001 S sn cm–2 and is promising to be used as a nano-charger and hydrogen sensor.
Repurposing Fischer-Tropsch and Natural Gas as Bridging Technologies for the Energy Revolution
Jun 2022
Publication
Immediate and widespread changes in energy generation and use are critical to safeguard our future on this planet. However while the necessity of renewable electricity generation is clear the aviation transport and mobility chemical and material sectors are challenging to fully electrify. The age-old Fischer-Tropsch process and natural gas industry could be the bridging solution needed to accelerate the energy revolution in these sectors – temporarily powering obsolete vehicles acting as renewable energy’s battery supporting expansion of hydrogen fuel cell technologies and the agricultural and waste sectors as they struggle to keep up with a full switch to biofuels. Natural gas can be converted into hydrogen synthetic natural gas or heat during periods of low electricity demand and converted back to electricity again when needed. Moving methane through existing networks and converting it to hydrogen on-site at tanking stations also overcomes hydrogen distribution storage problems and infrastructure deficiencies. Useful co-products include carbon nanotubes a valuable engineering material that offset emissions in the carbon nanotube and black industries. Finally excess carbon can be converted back into syngas if desired. This flexibility and the compatibility of natural gas with both existing and future technologies provides a unique opportunity to rapidly decarbonise sectors struggling with complex requirements.
Validation of Selected Optical Methods for Assessing Polyethylene (PE) Liners Used in High Pressure Vessels for Hydrogen Storage
Jun 2021
Publication
A polyethylene (PE) liner is the basic element in high-pressure type 4 composite vessels designed for hydrogen or compressed natural gas (CNG) storage systems. Liner defects may result in the elimination of the whole vessel from use which is very expensive both at the manufacturing and exploitation stage. The goal is therefore the development of efficient non-destructive testing (NDT) methods to test a liner immediately after its manufacturing before applying a composite reinforcement. It should be noted that the current regulations codes and standards (RC&S) do not specify liner testing methods after manufacturing. It was considered especially important to find a way of locating and assessing the size of air bubbles and inclusions and the field of deformations in liner walls. It was also expected that these methods would be easily applicable to mass-produced liners. The paper proposes the use of three optical methods namely visual inspection digital image correlation (DIC) and optical fiber sensing based on Bragg gratings (FBG). Deformation measurements are validated with finite element analysis (FEA). The tested object was a prototype of a hydrogen liner for high-pressure storage (700 bar). The mentioned optical methods were used to identify defects and measure deformations.
Energy Management of Heavy-duty Fuel Cell Vehicles in Real-world Driving Scenarios: Robust Design of Strategies to Maximize the Hydrogen Economy and System Lifetime
Feb 2021
Publication
Energy management is a critical issue for the advancement of fuel cell vehicles because it significantly influences their hydrogen economy and lifetime. This paper offers a comprehensive investigation of the energy management of heavy-duty fuel cell vehicles for road freight transportation. An important and unique contribution of this study is the development of an extensive and realistic representation of the vehicle operation which includes 1750 hours of real-world driving data and variable truck loading conditions. This framework is used to analyze the potential benefits and drawbacks of heuristic optimal and predictive energy management strategies to maximize the hydrogen economy and system lifetime of fuel cell vehicles for road freight transportation. In particular the statistical evaluation of the effectiveness and robustness of the simulation results proves that it is necessary to consider numerous and realistic driving scenarios to validate energy management strategies and obtain a robust design. This paper shows that the hydrogen economy can be maximized as an individual target using the available driving information achieving a negligible deviation from the theoretical limit. Furthermore this study establishes that heuristic and optimal strategies can significantly reduce fuel cell transients to improve the system lifetime while retaining high hydrogen economies. Finally this investigation reveals the potential benefits of predictive energy management strategies for the multi-objective optimization of the hydrogen economy and system lifetime.
Hydrogen in Grid Balancing: The European Market Potential for Pressurized Alkaline Electrolyzers
Jan 2022
Publication
To limit the global temperature change to no more than 2 ◦C by reducing global emissions the European Union (EU) set up a goal of a 20% improvement on energy efficiency a 20% cut of greenhouse gas emissions and a 20% share of energy from renewable sources by 2020 (10% share of renewable energy (RE) specifically in the transport sector). By 2030 the goal is a 27% improvement in energy efficiency a 40% cut of greenhouse gas emissions and a 27% share of RE. However the integration of RE in energy system faces multiple challenges. The geographical distribution of energy supply changes significantly the availability of the primary energy source (wind solar water) and is the determining factor rather than where the consumers are. This leads to an increasing demand to match supply and demand for power. Especially intermittent RE like wind and solar power face the issue of energy production unrelated to demand (issue of excess energy production beyond demand and/or grid capacity) and forecast errors leading to an increasing demand for grid services like balancing power. Megawatt electrolyzer units (beyond 3 MW) can provide a technical solution to convert large amounts of excess electricity into hydrogen for industrial applications substitute for natural gas or the decarbonization of the mobility sector. The demonstration of successful MW electrolyzer operation providing grid services under dynamic conditions as request by the grid can broaden the opportunities of new business models that demonstrate the profitability of an electrolyzer in these market conditions. The aim of this work is the demonstration of a technical solution utilizing Pressurized Alkaline Electrolyzer (PAE) technology for providing grid balancing services and harvesting Renewable Energy Sources (RES) under realistic circumstances. In order to identify any differences between local market and grid requirements the work focused on a demonstration site located in Austria deemed as a viable business case for the operation of a largescale electrolyzer. The site is adapted to specific local conditions commonly found throughout Europe. To achieve this this study uses a market-based solution that aims at providing value-adding services and cash inflows stemming from the grid balancing services it provides. Moreover the work assesses the viability of various business cases by analyzing (qualitatively and quantitatively) additional business models (in terms of business opportunities/energy source potential grid service provision and hydrogen demand) and analyzing the value and size of the markets developing recommendations for relevant stakeholder to decrease market barriers.
Natural Iron Ores for Large-scale Thermochemical Hydrogen and Energy Storage
Jun 2022
Publication
A stable energy supply will require balancing the fluctuations of renewable energy generation due to the transition to renewable energy sources. Intraday and seasonal storage systems are often limited to local geographical or infrastructural circumstances. This study experimentally verifies the application of inexpensive and abundant natural iron ores for energy storage with combined hydrogen and heat release. The incorporated iron oxides are reduced with hydrogen from electrolysis to store energy in chemically bonded form. The on–demand reoxidation releases either pure hydrogen or high-temperature heat as valuable products. Natural iron ores as storage material are beneficial as the specific costs are lower by an order of magnitude compared to synthetic iron oxide-based materials. Suitable iron ores were tested in TG analysis and in a 1 kW fixed-bed reactor. Siderite a carbonate iron ore was verified as promising candidate as it shows significantly lower reaction temperatures and twice the storage capacity over other commercial iron ores such as ilmenite. The specific storage costs are as low as 80–150 $ per MWh hydrogen stored based on the experimental in-situ tests. The experimentally determined volumetric energy storage capacity for the bulk material was 1.7 and 1.8 MWh m− 3 for hydrogen and heat release respectively. The raw siderite ore was stable for over 50 consecutive cycles at operating temperatures of 500–600 ◦C in in-situ lifetime tests. The combination of high abundance low price and reasonable capacity can thus result in very low specific energy storage costs. The study proofs that suitable natural iron ores are an interesting economic solution for large-scale and seasonal energy storage systems.
Expectations as a Key to Understanding Actor Strategies in the Field of Fuel Cell and Hydrogen Vehicles
Feb 2012
Publication
Due to its environmental impact the mobility system is increasingly under pressure. The challenges to cope with climate change air quality depleting fossil resources imply the need for a transition of the current mobility system towards a more sustainable one. Expectations and visions have been identified as crucial in the guidance of such transitions and more specifically of actor strategies. Still it remained unclear why the actors involved in transition activities appear to change their strategies frequently and suddenly. The empirical analysis of the expectations and strategies of three actors in the field of hydrogen and fuel cell technology indicates that changing actor strategies can be explained by rather volatile expectations related to different levels. Our case studies of the strategies of two large car manufacturers and the German government demonstrate that the car manufacturers refer strongly to expectations about the future regime while expectations related to the socio-technical landscape level appear to be crucial for the strategy of the German government.
Hydrogen Intensified Synthesis Processes to Valorise Process Off-gases in Integrated Steelworks
Jul 2023
Publication
Ismael Matino,
Stefano Dettori,
Amaia Sasiain Conde,
Valentina Colla,
Alice Petrucciani,
Antonella Zaccara,
Vincenzo Iannino,
Claudio Mocci,
Alexander Hauser,
Sebastian Kolb,
Jürgen Karl,
Philipp Wolf-Zoellner,
Stephane Haag,
Michael Bampaou,
Kyriakos Panopoulos,
Eleni Heracleousa,
Nina Kieberger,
Katharina Rechberger,
Leokadia Rog and
Przemyslaw Rompalski
Integrated steelworks off-gases are generally exploited to produce heat and electricity. However further valorization can be achieved by using them as feedstock for the synthesis of valuable products such as methane and methanol with the addition of renewable hydrogen. This was the aim of the recently concluded project entitled “Intelligent and integrated upgrade of carbon sources in steel industries through hydrogen intensified synthesis processes (i3 upgrade)”. Within this project several activities were carried out: from laboratory analyses to simulation investigations from design development and tests of innovative reactor concepts and of advanced process control to detailed economic analyses business models and investigation of implementation cases. The final developed methane production reactors arerespectively an additively manufactured structured fixedbed reactor and a reactor setup using wash-coated honeycomb monoliths as catalyst; both reactors reached almost full COx conversion under slightly over-stoichiometric conditions. A new multi-stage concept of methanol reactor was designed commissioned and extensively tested at pilot-scale; it shows very effective conversion rates near to 100% for CO and slightly lower for CO2 at one-through operation for the methanol synthesis. Online tests proved that developed dispatch controller implements a smooth control strategy in real time with a temporal resolution of 1 min and a forecasting horizon of 2 h. Furthermore both offline simulations and cost analyses highlighted the fundamental role of hydrogen availability and costs for the feasibility of i 3 upgrade solutions and showed that the industrial implementation of the i 3 upgrade solutions can lead to significant environmental and economic benefits for steelworks especially in case green electricity is available at an affordable price.
Methodology for Efficient Parametrisation of Electrochemical PEMFC Model for Virtual Observers: Model Based Optimal Design of Experiments Supported by Parameter Sensitivity Analysis
Nov 2020
Publication
Determination of the optimal design of experiments that enables efficient parametrisation of fuel cell (FC) model with a minimum parametrisation data-set is one of the key prerequisites for minimizing costs and effort of the parametrisation procedure. To efficiently tackle this challenge the paper present an innovative methodology based on the electrochemical FC model parameter sensitivity analysis and application of D-optimal design plan. Relying on this consistent methodological basis the paper answers fundamental questions: a) on a minimum required data-set to optimally parametrise the FC model and b) on the impact of reduced space of operational points on identifiability of individual calibration parameters. Results reveal that application of D-optimal DoE enables enhancement of calibration parameters information resulting in up to order of magnitude lower relative standard errors on smaller data-sets. In addition it was shown that increased information and thus identifiability inherently leads to improved robustness of the FC electrochemical model.
Hydrogen Embrittlement Characteristics in Cold-drawn High-strength Stainless Steel Wires
Mar 2023
Publication
Hydrogen uptake and embrittlement characteristics of a cold-drawn austenitic stainless steel wire were investigated. Slow strain rate testing and fracture surface analysis were applied to determine the hydrogen embrittlement resistance providing an apparent decrease in resistance to hydrogen embrittlement for a 50% degree of cold deformation. The hydrogen content was assessed by thermal desorption and laser-induced breakdown spectroscopy establishing a correlation between the total absorbed hydrogen and the intensity of near-surface hydrogen. The sub-surface hydrogen content of the hot-rolled specimen was determined to be 791 wt.ppm.
Underground Hydrogen Storage: Application of Geochemical Modelling in a Case Study in the Molasse Basin, Upper Austria
Feb 2019
Publication
Hydrogen storage in depleted gas fields is a promising option for the large-scale storage of excess renewable energy. In the framework of the hydrogen storage assessment for the “Underground Sun Storage” project we conduct a multi-step geochemical modelling approach to study fluid–rock interactions by means of equilibrium and kinetic batch simulations. With the equilibrium approach we estimate the long-term consequences of hydrogen storage whereas kinetic models are used to investigate the interactions between hydrogen and the formation on the time scales of typical storage cycles. The kinetic approach suggests that reactions of hydrogen with minerals become only relevant over timescales much longer than the considered storage cycles. The final kinetic model considers both mineral reactions and hydrogen dissolution to be kinetically controlled. Interactions among hydrogen and aqueous-phase components seem to be dominant within the storage-relevant time span. Additionally sensitivity analyses of hydrogen dissolution kinetics which we consider to be the controlling parameter of the overall reaction system were performed. Reliable data on the kinetic rates of mineral dissolution and precipitation reactions specifically in the presence of hydrogen are scarce and often not representative of the studied conditions. These uncertainties in the kinetic rates for minerals such as pyrite and pyrrhotite were investigated and are discussed in the present work. The proposed geochemical workflow provides valuable insight into controlling mechanisms and risk evaluation of hydrogen storage projects and may serve as a guideline for future investigations.
Analysis of Solid Oxide Fuel and Electrolysis Cells Operated in a Real-system Environment: State-of-the-health Diagnostic, Failure Modes, Degradation Mitigation and Performance Regeneration
Aug 2022
Publication
Solid oxide cells (SOC) play a major role in strategic visions to achieve decarbonization and climate-neutrality. With its multifuel capability this technology has received rapidly growing amount of attention from researchers worldwide. Due to the great flexibility of SOCs with respect to the fuels that can be used not only hydrogen but also biogas natural gas diesel reformates and many other conventional and alternative fuels can be used. This makes it possible to couple SOCs with diverse sustainable fuel sources to generate electricity or to generate valuable fuels such as syngas when utilizing renewable electricity. In this paper the reader is provided with a review of the existing knowledge about solid oxide fuel cell (SOFC) and solid oxide electrolysis (SOE) systems and how to safely operate them over the long-term placing a special focus on real-world operating environments. Both the utilization and generation of real commercially available fuels are taken into consideration. Different failure modes can appear during the system operation under real-world conditions and reduce the SOC lifetime an aspect that is extensively discussed in this review. Firstly a detailed discussion of the difference between carbon-free and carbon-containing fuels is presented considering different impurities and their impacts on the SOC performance stability and lifetime. Secondly unfavorable operating conditions are presented and possibilities for the early identification of different failure modes are explored. An overview of available conventional and non-conventional diagnostic tools and their applications is provided here. Overall this review paper presents a guideline for all relevant degradation issues related to SOCs operated in a real-world environment describing (i) how these issues appear and how to understand them (ii) how to predict them (iii) how to identify them and (iv) how to prevent them as well as if required how to reverse them. To achieve this goal individual chapters specifically address failure modes degradation prediction degradation prevention and performance regeneration. The reader is provided with necessary knowledge about the long-term and short-term operating stability and the degradation provoked in a compact summary. The available knowledge about specific process frequencies is summarized in one diagram which is a novel contribution of this review. This enables researchers to rapidly identify all occurring process mechanisms with SOFCs and SOECs. Moreover suggestions for how to accelerate degradation and how to regenerate performance are summarized in several tables.
Sensitivity Analysis of the Methanation Process in Underground Hydrogen Storage: A Case Study in Upper Austria
Jan 2025
Publication
Underground hydrogen storage (UHS) has attracted increasing attention as a promising technology for the largescale storage of renewable energy resources and the decarbonization of energy systems. This study aimed to identify critical parameters influencing UHS performance particularly the role of hydrogen conversion via in situ methanation and hydrogen recovery during production cycles. The main focus is the Lehen field in Upper Austria where a pilot hydrogen storage project was conducted under the leadership of RAG Austria AG. A layered reservoir model was developed on the basis of well-log data to simulate the field trials that occurred in 2016. A sensitivity analysis was performed with the one-parameter-at-a-time (OPAAT) method and the response surface methodology (RSM) to evaluate the impacts of different parameters on hydrogen methanation and hydrogen recovery. The RSM results indicate the activation energy as the most influential factor on methanation that accounts for ~20000 moles variation in generated methane significantly higher than the 6000 moles variance observed in OPAAT. However initial CO2 content contributes up to 15000 moles of methane gener ation as per RSM whereas OPAAT results in a larger impact of up to 32000 moles. These discrepancies demonstrate the limitations of isolated parameter analyses like OPAAT which may not accurately capture the complex interactions between factors influencing the methanation process. This research provides valuable in sights for optimizing UHS performance by emphasizing the influence of reservoir parameters on storage effi ciency. In addition a robust workflow for conducting comprehensive sensitivity analyses of UHS systems is established. By understanding these key factors the potential and predictability of large-scale UHS systems can be significantly improved.
Transitioning to a Renewable Hydrogen System: Optimal Infrastructure for Self-sufficient Hydrogen Supply in Austria by 2030
Aug 2024
Publication
In this study we employ an optimization model to optimally design a self-sufficient independent of any imports and exports hydrogen infrastructure for Austria by 2030. Our approach integrates key hydrogen technologies within a detailed spatial investment and operation model – coupled with a European scale electricity market model. We focus on optimizing diverse infrastructure componentsincluding trailers pipelines electrolyzers and storages to meet Austria's projected hydrogen demand. To accurately estimate this demand in hourly resolution we combine existing hydrogen strategies and projections to account for developments in various industrial sectors consider demand driven by the transport sector and integrate hydrogen demand arising from its use in gas-powered plants. Accounting for the inherent uncertainty linked to such projections we run the analysis for two complementary scenarios. Our approach addresses the challenges of integrating large quantities of renewable hydrogen into a future energy system by recognizing the critical role of domestic production in the early market stages. The main contribution of this work is to address the gap in optimizing hydrogen infrastructure for effective integration of domestic renewable hydrogen production in Austria by 2030 considering sector coupling potentials optimal electrolyzer placement and the design of local hydrogen networks.
Exhaust Gas Aftertreatment to Minimize Nox Emissions from Hydrogen-fueled Internal Combustion Engines
Oct 2023
Publication
Hydrogen-fueled internal combustion engines are a promising CO2-free and zero-impact emission alternative to battery or fuel cell electric powertrains. Advantages include long service life robustness against fuel impurities and a strong infrastructural base with existing production lines and workshop stations. In order to make hydrogen engines harmless in terms of pollutant emissions as well NOX emissions at the tailpipe must be reduced as low as the zero-impact emission level. Here the application of selective catalytic reduction (SCR) catalysts is a promising solution that can be rapidly adopted from conventional diesel engines. This paper therefore investigates the influences of the hydrogen concentration in the raw exhaust gas of the NO2/NOX ratio and of the space velocity on the performance of two different SCR technologies. The results show that both types of SCR copper-zeolite and vanadium-based have their advantages and drawbacks. Copper-based SCR catalysts have an early light-off temperature and reach maximum efficiencies of up to >99%. On the other hand vanadium systems promise almost no secondary N2O emissions. As a result we combined both approaches to create a superior solution with high efficiency and lowest secondary emissions.
Methane Pyrolysis in a Liquid Metal Bubble Column Reactor for CO2-Free Production of Hydrogen
Oct 2023
Publication
In light of the growing interest in hydrogen as an energy carrier and reducing agent various industries including the iron and steel sector are considering the increased adoption of hydrogen. To meet the rising demand in energy-intensive industries the production of hydrogen must be significantly expanded and further developed. However current hydrogen production heavily relies on fossil-fuel-based methods resulting in a considerable environmental burden with approximately 10 tons of CO2 emissions per ton of hydrogen. To address this challenge methane pyrolysis offers a promising approach for producing clean hydrogen with reduced CO2 emissions. This process involves converting methane (CH4 ) into hydrogen and solid carbon significantly lowering the carbon footprint. This work aims to enhance and broaden the understanding of methane pyrolysis in a liquid metal bubble column reactor (LMBCR) by utilizing an expanded and improved experimental setup based on the reactor concept previously proposed by authors from Montanuniversitaet in 2022 and 2023. The focus is on investigating the process parameters’ temperature and methane input rate with regard to their impact on methane conversion. The liquid metal temperature exhibits a strong influence increasing methane conversion from 35% at 1150 ◦C to 74% at 1250 ◦C. In contrast the effect of the methane flow rate remains relatively small in the investigated range. Moreover an investigation is conducted to assess the impact of carbon layers covering the surface of the liquid metal column. Additionally a comparative analysis between the LMBCR and a blank tube reactor (BTR) is presented.
Modelling Hydrogen Storage and Filling Systems: A Dynamic and Customizable Toolkit
Aug 2023
Publication
Hydrogen plays a vital role in decarbonizing the mobility sector. With the number of hydrogen vehicles expected to drastically increase a network of refuelling stations needs to be built to keep up with the hydrogen demand. However further research and development on hydrogen refuelling infrastructure storage and standardization is required to overcome technical and economic barriers. Simulation tools can reduce time and costs during the design phase but existing models do not fully support calculations of complete and arbitrary system layouts. Therefore a flexible simulation toolbox for rapid investigations of hydrogen refuelling and extraction processes as well as development of refuelling infrastructure vehicle tank systems and refuelling protocols for non-standardized applications was developed. Our model library H2VPATT comprises of typical components found in refuelling infrastructure. The key component is the hydrogen tank model. The simulation model was successfully validated with measurement data from refuelling tests of a 320 l type III tank.
On the Future Relevance of Green Hydrogen in Europe
Jan 2024
Publication
Hydrogen is among the energy carriers which are most often considered for bringing about a sustainable energy system. Yet so far hydrogen has not delivered as an energy carrier. The core objective of this paper is to provide a comprehensive analysis of the state-of-the-art and the future prospects of green hydrogen in the European energy system from economic energetic and CO2 emissions point-of-view. The analysis shows that there are some increasing opportunities for hydrogen use in industry and in the transport sector when electrification is not possible or is too expensive as well as a storage in the European electricity system. However a hydrogen-based energy system will remain a vision at least over the next decades. The major reason for this is the unfavorable economics mostly due to high investment costs in the whole supply chain. In addition the overall efficiencies in the hydrogen chains are moderate in general. The full environmental benignity of hydrogen as an energy carrier is only provided when renewable energy sources are used for hydrogen production. However in Europe the potentials for green hydrogen are very limited due to the insufficient expansion of renewable electricity generation. For this reason many European countries are considering options for green hydrogen import. The future of hydrogen is highly dependent on the supporting policy framework. To reduce the risk in the investment in hydrogen infrastructure as well as to justify the promotion of green hydrogen it is very important that Europe works out a very clear and realistic long-term implementation strategy.
European Hydrogen Train the Trainer Framework for Responders: Outcomes of the Hyresponder Project
Sep 2023
Publication
Síle Brennan,
Didier Bouix,
Christian Brauner,
Dominic Davis,
Natalie DeBacker,
Alexander Dyck,
André Vagner Gaathaug,
César García Hernández,
Laurence Grand-Clement,
Etienne Havret,
Deborah Houssin-Agbomson,
Petr Kupka,
Laurent Lecomte,
Eric Maranne,
Vladimir V. Molkov,
Pippa Steele,
Adolfo Pinilla,
Paola Russo and
Gerhard Schoepf
HyResponder is a European Hydrogen Train the Trainer programme for responders. This paper describes the key outputs of the project and the steps taken to develop and implement a long-term sustainable train the trainer programme in hydrogen safety for responders across Europe and beyond. This FCH2 JU (now Clean Hydrogen Joint Undertaking) funded project has built on the successful outcomes of the previous HyResponse project. HyResponder has developed further and updated educational operational and virtual reality training for trainers of responders to reflect the state-of-the-art in hydrogen safety including liquid hydrogen and expand the programme across Europe and specifically within the 10 countries represented directly within the project consortium: Austria Belgium the Czech Republic France Germany Italy Norway Spain Switzerland and the United Kingdom. For the first time four levels of educational materials from fire fighter through to specialist have been developed. The digital training resources are available on the e-Platform (https://hyresponder.eu/e-platform/). The revised European Emergency Response Guide is now available to all stakeholders. The resources are intended to be used to support national training programs. They are available in 8 languages: Czech Dutch English French German Italian Norwegian and Spanish. Through the HyResponder activities trainers from across Europe have undertaken joint actions which are in turn being used to inform the delivery of regional and national training both within and beyond the project. The established pan-European network of trainers is shaping the future in the important for inherently safer deployment of hydrogen systems and infrastructure across Europe and enhancing the reach and impact of the programme.
Economic and Environmental Assessment of Different Hydrogen Production and Transportation Modes
Apr 2024
Publication
Hydrogen is widely considered as the energy carrier of the future but the rather high energy losses for its production are often neglected. The major current hydrogen production technology is steam methane reforming of fossil gas but there is a growing interest in producing hydrogen sustainably from water using electrolysis. This article examines four main hydrogen production chains and two transportation options (pipeline and ship) from North Africa to Europe analyzing the costs and environmental impacts of each. The core objective is to determine the most promising hydrogen provision method and location from an economic and ecological point of view including the required transport. An important finding of this analysis is that both options importing green hydrogen and producing it in Europe may be relevant for a decarbonized energy system. The emphasis should be on green hydrogen to achieve carbon emission reductions. If blue hydrogen is also considered attention should be paid to the often-neglected methane emissions upstream.
Establishment of Austria’s First Regional Green Hydrogen Economy: WIVA P&G HyWest
Apr 2023
Publication
The regional parliament of Tyrol in Austria adopted the climate energy and resources strategy “Tyrol 2050 energy autonomous” in 2014 with the aim to become climate neutral and energy autonomous. “Use of own resources before others do or have to do” is the main principle within this long-term strategic approach in which the “power on demand” process is a main building block and the “power-to-hydrogen” process covers the intrinsic lack of a long-term large-scale storage of electricity. Within this long-term strategy the national research and development (R&D) flagship project WIVA P&G HyWest (ongoing since 2018) aims at the establishment of the first sustainable business-case-driven regional green hydrogen economy in central Europe. This project is mainly based on the logistic principle and is a result of synergies between three ongoing complementary implementation projects. Among these three projects to date the industrial research within “MPREIS Hydrogen” resulted in the first green hydrogen economy. One hydrogen truck is operational as of January 2023 in the region of Tyrol for food distribution and related monitoring studies have been initiated. To fulfil the logistic principle as the main outcome another two complementary projects are currently being further implemented.
Advanced Testing Methods for Proton Exchange Membrane Electrolysis Stacks
Jun 2024
Publication
Research on proton exchange membrane water electrolysis for renewable hydrogen production is rapidly advancing worldwide driven by the imperative to reduce costs and enhance efficiency through development of novel materials. However to effectively evaluate and validate these advancements standardized testing methods are essential extending beyond single-cell analysis to encompass stack-level characterization. This paper proposes comprehensive characterization methods tailored for analysis of electrolysis stacks and their performance characteristics. Each method is introduced with a focus on its practical applicability accompanied by detailed procedural guidelines for implementation. Furthermore variations within each method are discussed offering possibilities for gathering additional insights. Presenting a portfolio of different methods ranging from standard to advanced techniques applicable at the stack level the paper showcases results obtained through their application. These results normalized to cell area demonstrate the significance of each method in obtaining stack characteristics crucial for informed design de cisions on material selection and subsequent integration into electrolysis systems. By illustrating results derived from various stacks this study contributes valuable insights for evaluating design material suitability and operational performance thereby advancing the development and deployment of proton exchange membrane water electrolysis technology for sustainable hydrogen production.
Refuelling Tests of a Hydrogen Tank for Heavy-duty Applications
Sep 2023
Publication
A transition towards zero-emission fuels is required in the mobility sector in order to reach the climate goals. Here (green) renewable hydrogen for use in fuel cells will play an important role especially for heavy duty applications such as trucks. However there are still challenges to overcome regarding efficient storage infrastructure integration and optimization of the refuelling process. A key aspect is to reduce the refuelling duration as much as possible while staying below the maximum allowed temperature of 85 C. Experimental tests for the refuelling of a 320 l type III tank were conducted at different operating conditions and the tank gas temperature measured at the front and back ends. The results indicate a strongly inhomogeneous temperature field where measuring and verifying the actual maximum temperatures proves difficult. Furthermore a simulation approach is provided to calculate the average tank gas temperature at the end of the refuelling process.
Prospects and Impediments for Hydrogen Fuel Cell Buses
Jun 2021
Publication
The number of demonstration projects with fuel cell buses has been increasing worldwide. The goal of this paper is to analyse prospects and barriers for fuel cell buses focusing on their economic- technical- and environmental performance. Our results show that the prices of fuel cell buses although decreasing over time are still about 40% higher than those of diesel buses. With the looming ban of diesel vehicles and current limitations of battery electric vehicles fuel cell buses could become a viable alternative in the mid-to long-term. With the requirements for a better integration of renewable energy sources in the transport system interest in hydrogen is rising. Hydrogen produced from renewables used in fuel cell buses has the potential to save about 93% of CO2 emissions in comparison to diesel buses. Yet from environmental point-of-view it has to be ensured that hydrogen is produced from renewables. Currently the major barrier for a faster penetration of fuel cell buses are their high purchase prices which could be significantly reduced with the increasing number of buses through technological learning. The final conclusion is that a tougher transport policy framework is needed which fully reflects the environmental impact of different buses used.
Decarbonization of the Steel Industry: A Techno-economic Analysis
Jan 2022
Publication
A substantial CO2-emmissions abatement from the steel sector seems to be a challenging task without support of so-called “breakthrough technologies” such as the hydrogen-based direct reduction process. The scope of this work is to evaluate both the potential for the implementation of green hydrogen generated via electrolysis in the direct reduction process as well as the constraints. The results for this process route are compared with both the well-established blast furnace route as well as the natural gas-based direct reduction which is considered as a bridge technology towards decarbonization as it already operates with H2 and CO as main reducing agents. The outcomes obtained from the operation of a 6-MW PEM electrolysis system installed as part of the H2FUTURE project provide a basis for this analysis. The CO2 reduction potential for the various routes together with an economic study are the main results of this analysis. Additionally the corresponding hydrogen- and electricity demands for large-scale adoption across Europe are presented in order to rate possible scenarios for the future of steelmaking towards a carbon-lean industry.
Hydrogen Role in the Valorization of Integrated Steelworks Process Off-gases through Methane and Methanol Syntheses
Jun 2021
Publication
The valorization of integrated steelworks process off-gases as feedstock for synthesizing methane and methanol is in line with European Green Deal challenges. However this target can be generally achieved only through process off-gases enrichment with hydrogen and use of cutting-edge syntheses reactors coupled to advanced control systems. These aspects are addressed in the RFCS project i3 upgrade and the central role of hydrogen was evident from the first stages of the project. First stationary scenario analyses showed that the required hydrogen amount is significant and existing renewable hydrogen production technologies are not ready to satisfy the demand in an economic perspective. The poor availability of low-cost green hydrogen as one of the main barriers for producing methane and methanol from process off-gases is further highlighted in the application of an ad-hoc developed dispatch controller for managing hydrogen intensified syntheses in integrated steelworks. The dispatch controller considers both economic and environmental impacts in the cost function and although significant environmental benefits are obtainable by exploiting process off-gases in the syntheses the current hydrogen costs highly affect the dispatch controller decisions. This underlines the need for big scale green hydrogen production processes and dedicated green markets for hydrogen-intensive industries which would ensure easy access to this fundamental gas paving the way for a C-lean and more sustainable steel production.
Recent Advances in Sustainable Hydrogen Production from Microalgae: Mechanisms, Challenges, and Future Perspectives
Jan 2024
Publication
The depletion of fossil fuel reserves has resulted from their application in the industrial and energy sectors. As a result substantial efforts have been dedicated to fostering the shift from fossil fuels to renewable energy sources via technological advancements in industrial processes. Microalgae can be used to produce biofuels such as biodiesel hydrogen and bioethanol. Microalgae are particularly suitable for hydrogen production due to their rapid growth rate ability to thrive in diverse habitats ability to resolve conflicts between fuel and food pro duction and capacity to capture and utilize atmospheric carbon dioxide. Therefore microalgae-based bio hydrogen production has attracted significant attention as a clean and sustainable fuel to achieve carbon neutrality and sustainability in nature. To this end the review paper emphasizes recent information related to microalgae-based biohydrogen production mechanisms of sustainable hydrogen production factors affecting biohydrogen production by microalgae bioreactor design and hydrogen production advanced strategies to improve efficiency of biohydrogen production by microalgae along with bottlenecks and perspectives to over come the challenges. This review aims to collate advances and new knowledge emerged in recent years for microalgae-based biohydrogen production and promote the adoption of biohydrogen as an alternative to con ventional hydrocarbon biofuels thereby expediting the carbon neutrality target that is most advantageous to the environment.
Solid Air Hydrogen Liquefaction, the Missing Link of the Hydrogen Economy
Mar 2023
Publication
The most challenging aspect of developing a green hydrogen economy is long-distance oceanic transportation. Hydrogen liquefaction is a transportation alternative. However the cost and energy consumption for liquefaction is currently prohibitively high creating a major barrier to hydrogen supply chains. This paper proposes using solid nitrogen or oxygen as a medium for recycling cold energy across the hydrogen liquefaction supply chain. When a liquid hydrogen (LH2) carrier reaches its destination the regasification process of the hydrogen produces solid nitrogen or oxygen. The solid nitrogen or oxygen is then transported in the LH2 carrier back to the hydrogen liquefaction facility and used to reduce the energy consumption cooling gaseous hydrogen. As a result the energy required to liquefy hydrogen can be reduced by 25.4% using N2 and 27.3% using O2. Solid air hydrogen liquefaction (SAHL) can be the missing link for implementing a global hydrogen economy.
Urban Hydrogen Adoption in Linz, Austria: Simulation and Statistical Detection of Anomalies in Sustainable Mobility
Aug 2025
Publication
The transition to Hydrogen Fuel Cell Vehicles (HFCVs) is recognized for its potential to eliminate tailpipe emissions and promote cleaner urban mobility. This study examines the impact of varying HFCV adoption rates as well as the number and location of hydrogen refueling stations on emissions driving behavior and traffic dynamics in urban environments. A hybrid methodology combining statistical analyses and machine learning techniques was used to simulate all scenarios in the city of Linz Austria. The simulation results indicate that the configuration of hydrogen refueling infrastructure along with smoother driving patterns can contribute to reduced congestion and significantly lower CO2 emissions in high-traffic urban areas. Increasing the proportion of HFCVs was also found to be beneficial due to their use of electric motors powered by hydrogen fuel cells which offer features such as instant torque regenerative braking and responsive acceleration. Although these features are not unique to HFCVs they contributed to a slight shift in driving behavior toward smoother and more energy-efficient patterns. This change occurred due to improved acceleration and deceleration capabilities which reduced the need for harsh maneuvers and supported steadier driving. However the overall effect is highly dependent on traffic conditions and real-world driving behavior. Furthermore marginal and contextdependent improvements in traffic flow were observed in certain areas. These were attributed to HFCVs’ responsive acceleration which might assist in smoother merging and reduce stop-and-go conditions. These findings provide valuable insights for transportation planners and policymakers aiming to promote sustainable urban development.
Dual Pathways for Refinery Off-gas Processing: Comparative Analysis of Steam Reforming and Co-electrolysis
Aug 2025
Publication
In an effort to bridge the gap between academic research and industrial application this study investigates the integration potential of steam methane reforming and Co-electrolysis for the efficient conversion of refinery offgases into high-purity syngas. Experimental work was conducted under conditions representative of industrial environments using platinum- and nickel-based catalysts in steam reforming to assess methane conversion and H2 /CO ratio at varying temperatures and gas hourly space velocities (GHSV). Co-electrolysis was evaluated in solid oxide electrolysis cells (SOECs) across a range of gas compositions (H2O/CO2 /H2 /CO) including pure CO2 electrolysis as a strategy for pre-electrolysis hydrogen removal. Electrochemical performance was analyzed using impedance spectroscopy distribution of relaxation times (DRT) and current–voltage characterization. Results confirm the superior stability and performance of the Pt catalyst under high-throughput conditions while Ni-based systems were more sensitive to operational fluctuations. In the SOEC increased H2O content accelerated reaction kinetics whereas CO2 concentration governed polarization resistance. To enable optimal SOEC operation the addition of steam downstream of the reformer is proposed as a means of adjusting the reformate composition. The findings demonstrate that tuning reforming and electrolysis conditions in tandem offers a promising route for sustainable syngas production using renewable electricity. This work establishes a foundation for further development of integrated thermo-electrochemical systems tailored to industrial gas streams.
Assessing the Competitiveness and Trade-offs of National Hydrogen Strategies in the Maghreb: TIMES Scenario-based Analysis
Jun 2025
Publication
North Africa’s Maghreb countries Morocco Tunisia and Algeria aim to become key players in the global green hydrogen market. However rising hydrogen demand challenges their ability to balance domestic decarbonization efforts with export ambitions. This study assesses the techno-economic trade-offs between national hydrogen targets and export goals evaluating their alignment with climate commitments using the TIMES-MAGe model. Five scenarios explore variations in electrolysis energy sourcing (renewables vs. grid) and water supply (surface vs. desalinated) under both local-only and export-oriented strategies. Results show that while exportdriven hydrogen production is feasible it imposes significant economic and resource burdens. By 2050 exports sharply increase hydrogen production costs electricity prices investment needs and water use. The competitiveness of renewable electricity is weakened as most renewable electricity is allocated to hydrogen exports constraining domestic decarbonization. Intra-regional hydrogen trade is less cost-effective than domestic supply with pipeline repurposing offering the most viable trade option. The findings inform future policy for cost-effective hydrogen development.
Fundamentals of Innovative Aircraft Heat Exchanger Integration for Hydrogen–Electric Propulsion
Apr 2025
Publication
The potential of utilizing the rejected heat of a fuel cell system to improve the aircraft propulsive efficiency is discussed for various flight conditions. The thermodynamic background of the process and the connection of power consumption in the fan of the ducted propulsor and fuel cell heat are given and a link between these two components is presented. A concept that goes beyond the known ram heat exchanger is discussed which outlines the potential benefits of integrating a fan upstream of the heat exchanger. The influence of the fan pressure ratio flight speed and altitude as well as the temperature level of the available fuel cell heat on the propulsive efficiency is presented. A correlation between the fan pressure ratio flight speed and exchangeable fuel cell heat is established providing a simplified computational approach for evaluating feasible operating conditions within this process. This paper identifies the challenges of heat exchanger integration at International Standard Atmosphere sea level conditions and its benefits for cruise flight conditions. The results show that for a flight Mach number of 0.8 and a fan pressure ratio of 1.5 at a cruising altitude of 11000 m the propulsion efficiency increases by approximately 8 percentage points compared to a ducted propulsor without heat utilization. Under sealevel conditions the concept does not offer any performance advantages over a ducted propulsor. Instead it exhibits either comparable or reduced propulsive efficiency.
New Insights into the Improvement of Hydrogen Embrittlement Resistance of Heat-treated Carbon Steels by Shot Peening
Oct 2025
Publication
The effectiveness of shot peening in suppressing hydrogen embrittlement (HE) of the heat-treated steels with different strength levels 790 MPa (115 ksi) and 930 MPa (135 ksi) was comprehensively investigated. A plastically deformed layer on the surface facilitated an increased number of dislocations and refined grain morphology. This hindered hydrogen transportation as confirmed by the results of electrochemical permeation exhibiting a decrease in the effective diffusion coefficient up to 47 %. The trapping behaviour of the steels scrutinized through Thermal Desorption Spectroscopy (TDS) proposed that dislocations are primary traps. Along with this residual compressive stresses (RCS) were introduced into the materials reaching a maximum of − 650 MPa and a depth of 250 μm. This prevented fracture of the steels under constant load in a plastic regime (1.05xYS) and 120 bar H2 environment. Slow Strain Rate Tensile (SSRT) tests indicated superior mechanical properties of the shot-peened steels under electrochemical charging reducing HE susceptibility by 15 %. Fracture morphology confirmed the protective nature of the plastically deformed layer highlighting a higher ductility of the fracture. RCS has been indicated as a determining factor in suppressing HE by shot peening regardless of the strength level of the steel.
Towards a Multi-color Hydrogen Production Network? Competing Imaginaries of Development in Northern Patagonia, Argentina
Feb 2024
Publication
Green hydrogen has recently gained importance as a key element in the transition to a low-carbon energy future sparking a boom in possible production regions. This article aims at situating incipient hydrogen production in the Argentine province of Río Negro within a global production network (GPN). The early configuration of the hydrogen-GPN includes several stakeholders and is contested in many ways. To explore the possible materialization of the hydrogen economy in Argentina this article links GPN literature to the concept of sociotechnical imaginaries. In so doing this study finds three energy imaginaries linked to hydrogen development: First advocates of green hydrogen (GH2) project a sociotechnical imaginary in which GH2 is expected to promote scientific and technological progress. Second proponents of blue hydrogen point to Vaca Muerta and the role of natural gas for energy autonomy. Third opponents of the GH2 project question the underlying growth and export model emphasizing conservation and domestic energy sovereignty. The competition between different capital fractions i.e. green and fossil currently poses the risk of pro-fossil path decisions and lock-in effects. Current power constellations have led to the replacement of green with low-emission resulting in the promotion of multi-colored hydrogen. This is particularly evident in the draft for the new national hydrogen law and the actors involved in defining the national hydrogen strategy. The conceptual combination of actors and their interests their current power relations and the sociotechnical imaginaries they deploy illustrates how Argentina's energy future is already being shaped today.
Hydrogen-induced Calcite Dissolution in Amaltheenton Formation Claystones: Implications for Underground Hydrogen Storage Caprock Integrity
Aug 2022
Publication
With the rising potential of underground hydrogen storage (UHS) in depleted oil and gas reservoirs or deep saline aquifers questions remain regarding changes to geological units due to interaction with injected hydrogen. Of particular importance is the integrity of potential caprocks/seals with respect to UHS. The results of this study show significant dissolution of calcite fossil fragments in claystone caprock proxies that were treated with a combination of hydrogen and 10 wt% NaCl brine. This is the first time it has been experimentally observed in claystones. The purpose of this short communication is to document the initial results that indicate the potential alteration of caprocks with injected hydrogen and to further highlight the need for hydrogen-specific studies of caprocks in areas proposed for UHS.
Hydrogen Balloon Transportation: A Cheap and Efficiency Mode to Transport Hydrogen
Nov 2023
Publication
The chances of a global hydrogen economy becoming a reality have increased significantly since the COVID pandemic and the war in Ukraine and for net zero carbon emissions. However intercontinental hydrogen transport is still a major issue. This study suggests transporting hydrogen as a gas at atmospheric pressure in balloons using the natural flow of wind to carry the balloon to its destination. We investigate the average wind speeds atmospheric pressure and temperature at different altitudes for this purpose. The ideal altitudes to transport hydrogen with balloons are 10 km or lower and hydrogen pressures in the balloon vary from 0.25 to 1 bar. Transporting hydrogen from North America to Europe at a maximum 4 km altitude would take around 4.8 days on average. Hydrogen balloon transportation cost is estimated at 0.08 USD/kg of hydrogen which is around 12 times smaller than the cost of transporting liquified hydrogen from the USA to Europe. Due to its reduced energy consumption and capital cost in some locations hydrogen balloon transportation might be a viable option for shipping hydrogen compared to liquefied hydrogen and other transport technologies.
European Hydrogen Train the Trainer Programme for Responders: The Impact of HyResponder on Training Across Europe
Jan 2025
Publication
Síle Brennan,
Christian Brauner,
Dennis Davis,
Natalie DeBacker,
Alexander Dyck,
César García Hernández,
André Vagner Gaathaug,
Petr Kupka,
Laurence Grand-Clement,
Etienne Havret,
Deborah Houssin-Agbomson,
Laurent Lecomte,
Eric Maranne,
Pippa Steele,
Paola Russo,
Adolfo Pinilla,
Gerhard Schoepf,
Tom Van Esbroeck and
Vladimir V. Molkov
The impact of the HyResponder project on the training of responders in 10 European countries is described. An overview is presented of training activities undertaken within the project in Austria Belgium Czech Republic France Germany Italy Norway Spain Switzerland and the United Kingdom. National leads with training expertise are given and the longer-term plans in each region are mentioned. Responders from each region took part in a specially tailored “train the trainer” programme and then delivered training within their regions. A flexible approach to training within the HyResponder network has enabled fit for purpose region appropriate activities to be delivered impacting over 1250 individuals during the project and many more beyond. Teaching and learning materials in hydrogen safety for responders have been made available in 8 languages: English Czech Dutch French German Italian Norwegian Spanish. They are being used to inform training within each of the partner countries. Dedicated national working groups focused on hydrogen safety training for responders have been established in Belgium the Czech Republic Italy and Switzerland.
Experimental Investigation of Hydrogen Enriched Natural Gas Combustion with a Focus on Nitrogen Oxide Formation on a Semi-industrial Scale
Mar 2024
Publication
Combustion of hydrogen-enriched natural gas is a valuable short-term strategy for reducing CO2 emissions from high temperature industrial heating. This paper presents several experiments on combustion characteristics and the formation of nitrogen oxides. The experiments included hydrogen contents up to 100% and fuel heat inputs up to 75 kW. Water-cooled lances were used to influence the furnace temperature. The analysis includes the distribution of furnace temperatures the composition of flue gas the cooling capacity of the lances under steady-state operating conditions and OH*-chemiluminescence imaging of the near burner region. The presented results demonstrate the dependence of furnace conditions and NOX formation on various factors such as different air inlet fluxes furnace temperature and fuel composition for constant heat inputs. Efficiency increased by up to 5.5% and significant changes in flame shaped along with a maximum increase in NOX emissions when comparing natural gas to hydrogen was measured at 167%.
Hydrogen Production by Methane Pyrolysis in Molten Binary Copper Alloys
Sep 2023
Publication
The utilization of hydrogen as an energy carrier and reduction agent in important industrial sectors is considered a key parameter on the way to a sustainable future. Steam reforming of methane is currently the most industrially used process to produce hydrogen. One major drawback of this method is the simultaneous generation of carbon dioxide. Methane pyrolysis represents a viable alternative as the basic reaction produces no CO2 but solid carbon besides hydrogen. The aim of this study is the investigation of different molten copper alloys regarding their efficiency as catalytic media for the pyrolysis of methane in an inductively heated bubble column reactor. The conducted experiments demonstrate a strong influence of the catalyst in use on the one hand on the conversion rate of methane and on the other hand on the properties of the produced carbon. Optimization of these parameters is of crucial importance to achieve the economic competitiveness of the process.
Hydrogen Quality in Used Natual Gas Pipelines: An Experimental Investigation of Contaminants According to ISO 14687:2019 Standard
Sep 2023
Publication
The transport of hydrogen in used natural gas pipelines is a strategic key element of a pan-European hydrogen infrastructure. At the same time accurate knowledge of the hydrogen quality is essential in order to be able to address a wide application range. Therefore an experimental investigation was carried out to find out which contaminants enter into the hydrogen from the used natural gas pipelines. Pipeline elements from the high pressure gas grid of Austria were exposed to hydrogen. Steel pipelines built between 1960 and 2018 which were operated with odorised and pure natural gas were examined. The hydrogen was analysed according to requirements of ISO14687: 2019 Grade D measurement standard. The results show that based on age odorization and sediments different contimenants are introduced. Odorants hydrocarbons but also sulphur compounds ammonia and halogenated hydrogen compounds were identified. Sediments are identified as the main source of impurities. However the concentrations of the introduced contaminants were low (6 nmol/mol to 10 μmol/mol). Quality monitoring with a wide range of detection options for different components (sulphur halogenated compounds hydrocarbons ammonia and atmospheric components) is crucial for real operation. The authors deduce that a Grade A hydrogen quality can be safely achieved in real operation.
The Race Between Hydrogen and Heat Pumps for Space and Water Heating: A Model-based Scenario Analysis
Nov 2023
Publication
This paper analyses different levels and means of the electrification of space and hot water heating using an explorative modelling approach. The analysis provides guidance to the ongoing discussion on favourable pathways for heating buildings and the role of secondary energy carriers such as hydrogen or synthetic fuels. In total 12 different scenarios were modelled with decarbonisation pathways until 2050 which cover all 27 member states of the European Union. Two highly detailed optimisation models were combined to cover the building stock and the upstream energy supply sector. The analysis shows that decarbonisation pathways for space and water heating based on large shares of heat pumps have at least 11% lower system costs in 2050 than pathways with large shares of hydrogen or synthetic fuels. This translates into system cost savings of around €70 bn. Heat pumps are cost-efficient in decentralised systems and in centralised district heating systems. Hence heat pumps should be the favoured option to achieve a cost-optimal solution for heating buildings. Accordingly the paper makes a novel and significant contribution to understanding suitable and cost-efficient decarbonisation pathways for space and hot water heating via electrification. The results of the paper can provide robust guidance for policymakers.
Greenhouse Gas Emissions Performance of Electric, Hydrogen and Fossil-Fuelled Freight Trucks with Uncertainty Estimates Using a Probabilistic Life-Cycle Assessment (pLCA)
Jan 2024
Publication
This research conducted a probabilistic life-cycle assessment (pLCA) into the greenhouse gas (GHG) emissions performance of nine combinations of truck size and powertrain technology for a recent past and a future (largely decarbonised) situation in Australia. This study finds that the relative and absolute life-cycle GHG emissions performance strongly depends on the vehicle class powertrain and year of assessment. Life-cycle emission factor distributions vary substantially in their magnitude range and shape. Diesel trucks had lower life-cycle GHG emissions in 2019 than electric trucks (battery hydrogen fuel cell) mainly due to the high carbon-emission intensity of the Australian electricity grid (mainly coal) and hydrogen production (mainly through steam–methane reforming). The picture is however very different for a more decarbonised situation where battery electric trucks in particular provide deep reductions (about 75–85%) in life-cycle GHG emissions. Fuel-cell electric (hydrogen) trucks also provide substantial reductions (about 50–70%) but not as deep as those for battery electric trucks. Moreover hydrogen trucks exhibit the largest uncertainty in emissions performance which reflects the uncertainty and general lack of information for this technology. They therefore carry an elevated risk of not achieving the expected emission reductions. Battery electric trucks show the smallest (absolute) uncertainty which suggests that these trucks are expected to deliver the deepest and most robust emission reductions. Operational emissions (on-road driving and vehicle maintenance combined) dominate life-cycle emissions for all vehicle classes. Vehicle manufacturing and upstream emissions make a relatively small contribution to life-cycle emissions from diesel trucks (
No more items...