Belgium
Levelised Cost of Hydrogen (LCOH) Calculator Manual - Update of the May 2024 Manual
May 2025
Publication
The LCOH calculator manual explains the methodology behind the calculator in detail and demonstrates how the calculator can be used.<br/>In this second version the default prices are updated based on the latest data available in the calculator and a new use case is introduced on changing the economic lifetime and cost of capital of an electrolysis installation.
The European Hydrogen Policy Landscape - Extensive Update of the April 2024 Report
Jan 2025
Publication
This report aims to summarise the status of the European hydrogen policy landscape. It is based on the information available at the European Hydrogen Observatory (EHO) website the leading source of data on hydrogen in Europe. The data presented in this report is based on research conducted by Hydrogen Europe until the end of July 2024 but also goes beyond this timeline for major policies legislations or standards implemented recently. This report builds upon the previous version published in April 2024 which reflected data as of August 2023 providing updated insights on European policies and legislation national strategies national policies and legislation and codes and standards. Interactive data dashboards can be accessed on the website: https://observatory.cleanhydrogen.europa.eu/ The EU policies and legislation section provides insights into the main European policies and legislation relevant to the hydrogen sector which are briefly summarized on content and their potential impact to the sector. The national hydrogen strategies chapter offers a comprehensive examination of the hydrogen strategies adopted in Europe. It summarizes the quantitative indicators that have been published (targets and estimates) and provides brief summaries of the different national strategies that have been adopted. The section referring to national policies and legislation focuses on the policy framework measures incentives and targets in place that have an impact on the development of the respective national hydrogen markets within Europe. The codes and standards section provides information on current European standards and initiatives developed by the standardisation bodies including CEN CENELEC ISO IEC OIML The standards are categorised according to the different stages of the hydrogen value chain: production distribution and storage and end-use applications.
Clean Hydrogen Joint Undertaking: Consolidated Annual Activity Report Year 2024
Aug 2025
Publication
The year 2024 saw a year of important developments for the Clean Hydrogen JU continuing built on the achievements of previous years and intensifying the efforts on hydrogen valleys. With a total operational commitment of EUR 203 million and the launch of 22 new projects the overall portfolio reached a total number of 147 projects under active management towards the end of the year. The budget execution reached the outstanding level of 98% in for commitments and 84% in payments in line with previous year showing the JU’s continued effort to use the available credits. In 2024 the JU launched a call for proposals with a budget of EUR 113.5 million covering R&I activities across the whole hydrogen value chain to which was added an amount of EUR 60 million from the RePowerEU plan focusing on hydrogen valleys. That amount served for valleys-related grants and the “Hydrogen Valleys Facility” tender designed for project development assistance that will support Hydrogen Valleys at different levels of maturity. The Hydrogen Valleys concept has become a key instrument for the European Commission to scale up hydrogen technology deployment and establish interconnections between hydrogen ecosystems. At the end of 2024 the Clean Hydrogen JU has already funded 20 hydrogen valleys. This support was complemented by additional credits from third countries and the optimal use- of leftover credits from previous years allowing the award of 29 new grants from the call for 2024.
The Hydrogen Education and Research Landscape - October 2024
Oct 2025
Publication
This report includes information on European training programmes educational materials and the trends and patterns of research and innovation activity in the hydrogen sector with data of patent registrations and publications. It is based on the information available at the European Hydrogen Observatory (EHO) website (https://observatory.cleanhydrogen.europa.eu/) the leading source of hydrogen data in Europe. The data presented in this report is based on research conducted until the end of August 2024. The training programmes section provides insights into major European training initiatives categorized by location. It allows filtering by type of training focus area and language. It covers a wide range of opportunities such as vocational and professional trainings summer schools and Bachelor's or Master's programmes. The education materials chapter summarizes the publicly accessible educational materials available online. Documents can be searched by educational level by course subject by language or by the year of release. The section referring to research and innovation activity analyses trends and patterns in the hydrogen sector using aggregated datasets of patent registrations and publications by country.
Feasibility of Using Rainwater for Hydrogen Production via Electrolysis: Experimental Evaluation and Ionic Analysis
Oct 2025
Publication
This study evaluates the feasibility of employing rainwater as an alternative feedstock for hydrogen production via electrolysis. While conventional systems typically rely on high-purity water—such as deionized or distilled variants—these can be cost-prohibitive and environmentally intensive. Rainwater being naturally available and minimally treated presents a potential sustainable alternative. In this work a series of comparative experiments was conducted using a proton exchange membrane electrolyzer system operating with both deionized water and rainwater collected from different Austrian locations. The chemical composition of rainwater samples was assessed through inductively coupled plasma ion chromatography and visual rapid tests to identify impurities and ionic profiles. The electrolyzer’s performance was evaluated under equivalent operating conditions. Results indicate that rainwater in some cases yielded comparable or marginally superior efficiency compared to deionized water attributed to its inherent ionic content. The study also examines the operational risks linked to trace contaminants and explores possible strategies for their mitigation.
Market Readiness Analysis: Expected Uptake of Alternative Fuel Heavy-duty Vehicles until 2030 and their Corresponding Infrastructure Needs
Jun 2025
Publication
This report assesses the market readiness of zero-emission heavy-duty vehicles and the required infrastructure to meet the 45% emission reduction targets set by the revised CO2 standards by 2030. Achieving these goals requires the widespread adoption of zero-emission vehicles and a robust recharging and hydrogen refuelling infrastructure Three main aspects are investigated: the market readiness of the vehicles considering both the demand and supply side the corresponding infrastructure requirements and the barriers. Building on the inputs of the stakeholders a ‘study scenario’ is developed. This scenario shows a concrete picture of what the zero-emission heavy-duty vehicle fleet and its infrastructure requirement could look like by 2030. There are however key barriers that need to be overcome such as high total cost of ownership limited electricity grid capacity lengthy permitting processes and uncertainty in hydrogen availability and pricing. Stakeholders also emphasize the importance of policy drivers such as emissions trading systems and tolling and tax reforms to stimulate demand. In conclusion achieving the 2030 targets demands a coordinated approach involving manufacturers operators and policymakers to address infrastructure gaps market barriers and policy incentives ensuring the transition to a zero-emission HDV fleet.
Green Hydrogen Production and Deployment: Opportunities and Challenges
Aug 2025
Publication
Green hydrogen is emerging as a pivotal energy carrier in the global transition toward decarbonization offering a sustainable alternative to fossil fuels in sectors such as heavy industry transportation power generation and long-duration energy storage. Despite its potential large-scale deployment remains hindered by significant economic technological and infrastructure challenges. Current production costs for green hydrogen range from USD 3.8 to 11.9/kg H2 significantly higher than gray hydrogen at USD 1.5–6.4/kg H2 due to high electricity prices and electrolyzer capital costs exceeding USD 2000 per kW. This review critically examines the key bottlenecks in green hydrogen production focusing on water electrolysis technologies electrocatalyst limitations and integration with renewable energy sources. The economic viability of green hydrogen is constrained by high electricity consumption capital-intensive electrolyzer costs and operational inefficiencies making it uncompetitive with fossil fuel-based hydrogen. Infrastructure and supply chain challenges including limited hydrogen storage transport complexities and critical material dependencies further restrict market scalability. Additionally policy and regulatory gaps disparities in financial incentives and the absence of a standardized certification framework hinder international trade and investment in green hydrogen projects. This review also highlights market trends and global initiatives assessing the role of government incentives and cross-border collaborations in accelerating hydrogen adoption. While technological advancements and cost reductions are progressing overcoming these challenges requires sustained innovation stronger policy interventions and coordinated efforts to develop a resilient scalable and cost-competitive green hydrogen sector.
Determining Pilot Ignition Delay in Dual-Fuel Medium-Speed Marine Engines Using Methanol or Hydrogen
Jun 2025
Publication
Dual-fuel engines are a way of transitioning the marine sector to carbon-neutral fuels like hydrogen and methanol. For the development of these engines accurate simulation of the combustion process is needed for which calculating the pilot’s ignition delay is essential. The present work investigates novel methodologies for calculating this. This involves the use of chemical kinetic schemes to compute the ignition delay for various operating conditions. Machine learning techniques are used to train models on these data sets. A neural network model is then implemented in a dual-fuel combustion model to calculate the ignition delay time and is compared using a lookup table or a correlation. The numerical results are compared with experimental data from a dual-fuel medium-speed marine engine operating with hydrogen or methanol from which the method with best accuracy and fastest calculation is selected.
IEA TCP Task 43 - Recommendations for Safety Distances Methodology for Alkaline and PEM Electrolyzers
Sep 2025
Publication
Elena Vyazmina,
Richard Chang,
Benjamin Truchot,
Katrina M. Groth,
Samantha E. Wismer,
Sebastien Quesnel,
David Torrado,
Nicholas Hart,
Thomas Jordan,
Karen Ramsey-Idem,
Deborah Houssin-Agbomson,
Simon Jallais,
Christophe Bernard,
Lucie Bouchet,
Ricardo Ariel Perez,
Lee Phillips,
Marcus Runefors,
Jerome Hocquet and
Andrei V. Tchouvelev
Currently local regulations governing hydrogen installations vary by geographical region and by country leading to discrepancies in safety and separation distance requirements for similar hydrogen systems. This work carried out in the frame of IEA TCP H2 Task 43 (IEA TCP H2 2022) aims to provide an overview of various methodologies and recommendations established for risk management and consequence assessment in the event of accidental scenarios. It focuses on a case study involving industrial electrolyzers utilizing alkaline and PEM technologies. The research incorporates lessons learned from past incidents offers recommendations for mitigation measures reviews existing methodologies and highlights areas of divergence. Additionally it proposes strategies for harmonization. The study also emphasizes the most significant scenarios and the corresponding leakage sizes
No more items...