Canada
Electrifying with High-Temperature Water Electrolysis to Produce Syngas from Wood via Oxy-Gasification, Leading to Superior Carbon Conversion Yield for Methanol Synthesis
Mar 2021
Publication
Due to concerns regarding fossil greenhouse gas emissions biogenic material such as forest residues is viewed nowadays as a valuable source of carbon atoms to produce syngas that can be used to synthesise biofuels such as methanol. A great challenge in using gasified biomass for methanol production is the large excess of carbon in the syngas as compared to the H2 content. The water–gas shift (WGS) reaction is often used to add H2 and balance the syngas. CO2 is also produced by this reaction. Some of the CO2 has to be removed from the gaseous mixture thus decreasing the process carbon yield and maintaining CO2 emissions. The WGS reaction also decreases the overall process heat output. This paper demonstrates the usefulness of using an extra source of renewable H2 from steam electrolysis instead of relying on the WGS reaction for a much higher performance of syngas production from gasification of wood in a simple system with a fixed-bed gasifier. A commercial process simulation software is employed to predict that this approach will be more efficient (overall energy efficiency of about 67%) and productive (carbon conversion yield of about 75%) than relying on the WGS reaction. The outlook for this process that includes the use of the solid oxide electrolyser technology appears to be very promising because the electrolyser has the dual function of providing all of the supplemental H2 required for syngas balancing and all the O2 required for the production of a suitable hot raw syngas. This process is conducive to biomethanol production in dispersed small plants using local biomass for end-users from the same geographical area thus contributing to regional sustainability.
Optimization of Baseload Electricity and Hydrogen Services by Renewables for a Nuclear-sized District in South Italy
Nov 2024
Publication
We present an optimization model of an energy district in South Italy that supplies baseload electricity and hydrogen services. The district is sized such that a nuclear reactor could provide these services. We define scenarios for 2050 to explore the system effects of discount rate sensitivity vetoes on technologies and cost uncertainties. We address the following issues relevant to decarbonization in South Italy: land-based wind and solar vs. exclusive solar rooftop extra cost of a veto on nuclear conservative assumptions on future storage technology and the role of pumped hydro storage lack of low-cost geological storage of hydrogen and the industrial competitiveness of this carrier and the methanation synergy with the agroforestry sector. Our results quantify the high system cost of vetoes on land-based wind and solar. Nuclear may enter the optimal mix only with a veto against onshore wind and a hypothesis of equal project risk hence an equal discount rate with renewables. Scenarios with land-based wind and solar obtain low-cost hydrogen and thus allow industrial uses for this carrier. The methanation synergy with the agroforestry sector does not offer a system cost advantage but improves the district’s configuration. The extra cost of full decarbonization relative to unregulated fossil gas is small with land-based wind and solar and significant with vetoes to these technologies.
An Innovatively Designed Community-based Hybrid Energy System to Generate its Needs of Electricity, Heat, Hot Water and Hydrogen in a Sustainable Manner
Jun 2025
Publication
This study introduces an innovative nuclear-biomass integrated energy and cleaner production multigeneration system incorporating sonohydrogen technology and a desalination unit for the sustainable and efficient production of hydrogen electricity hot water and heat. A small modular nuclear reactor acts as the primary energy source ensuring stable and low-carbon power generation while enhancing hydrogen yield through sonochemical processes. Biomass-derived biogas is strategically utilized for both electricity generation and hydrogen production via steam methane reforming. The heat wasted in the system is efficiently utilized. A high-performance multistage flash desalination unit converts some of the waste heat into desalinated seawater. In addition a portion of the waste heat is utilized for heat production. The results of this study show that the overall energy and exergy efficiencies of the integrated system are 82.7 % and 68.3 % respectively. Through detailed energy and exergy assessments the study demonstrates the feasibility of the proposed system in enhancing energy conversion efficiency improving waste heat utilization and increasing sustainability. In addition the results of the cost assessment show that the integrated energy system is economically viable in the long term with hydrogen production driving substantial annual revenue and profitability projected within the first decade of operation. The findings highlight the system’s potential to contribute to cleaner energy production by reducing greenhouse gas emissions maximizing resource efficiency and advancing hydrogen and freshwater production technologies.
Examining the Nature of Two-dimensional Transverse Waves in Marginal Hydrogen Detonations using Boundary Layer Loss Modeling with Detailed Chemistry
Sep 2023
Publication
Historically it has been a challenge to simulate the experimentally observed cellular structures and marginal behavior of multidimensional hydrogen-oxygen detonations in the presence of losses even with detailed chemistry models. Very recently a quasi-two-dimensional inviscid approach was pursued where losses due to viscous boundary layers were modeled by the inclusion of an equivalent mass divergence in the lateral direction using Fay’s source term formulation with Mirels’ compressible boundary layer solutions. The same approach was used for this study along with the inclusion of thermally perfect detailed chemistry in order to capture the correct ignition sensitivity of the gas to dynamic changes in the thermodynamic state behind the detonation front. In addition the strength of transverse waves and their impact on the detonation front was investigated. Here the detailed San Diego mechanism was applied and it has been found that the detonation cell sizes can be accurately predicted without the need to prescribe specific parameters for the combustion model. For marginal cases where the detonation waves approach their failure limit quasi-stable mode behavior was observed where the number of transverse waves monotonically decreased to a single strong wave over a long enough distance. The strong transverse waves were also found to be slightly weaker than the detonation front indicating that they are not overdriven in agreement with recent studies.
An Artificial Neural Network-Based Fault Diagnostics Approach for Hydrogen-Fueled Micro Gas Turbines
Feb 2024
Publication
The utilization of hydrogen fuel in gas turbines brings significant changes to the thermophysical properties of flue gas including higher specific heat capacities and an enhanced steam content. Therefore hydrogen-fueled gas turbines are susceptible to health degradation in the form of steam-induced corrosion and erosion in the hot gas path. In this context the fault diagnosis of hydrogen-fueled gas turbines becomes indispensable. To the authors’ knowledge there is a scarcity of fault diagnosis studies for retrofitted gas turbines considering hydrogen as a potential fuel. The present study however develops an artificial neural network (ANN)-based fault diagnosis model using the MATLAB environment. Prior to the fault detection isolation and identification modules physics-based performance data of a 100 kW micro gas turbine (MGT) were synthesized using the GasTurb tool. An ANN-based classification algorithm showed a 96.2% classification accuracy for the fault detection and isolation. Moreover the feedforward neural network-based regression algorithm showed quite good training testing and validation accuracies in terms of the root mean square error (RMSE). The study revealed that the presence of hydrogen-induced corrosion faults (both as a single corrosion fault or as simultaneous fouling and corrosion) led to false alarms thereby prompting other incorrect faults during the fault detection and isolation modules. Additionally the performance of the fault identification module for the hydrogen fuel scenario was found to be marginally lower than that of the natural gas case due to assumption of small magnitudes of faults arising from hydrogen-induced corrosion.
Overview of International Activities in Hydrogen System Safety in IEA Hydrogen TCP Task 43
Sep 2023
Publication
Safety and reliability have long been recognized as key issues for the development commercialization and implementation of new technologies and infrastructure and hydrogen systems are no exception to this rule. Reliability engineering quantitative risk assessment (QRA) and knowledge exchange each play a key role in proactive addressing safety – before problems happen – and help us learn from problems if they happen. Many international research activities are focusing on both reliability and risk assessment for hydrogen systems. However the element of knowledge exchange is sometimes less visible. To support international collaboration and knowledge exchange the International Energy Agency (IEA) convened a new Technology Collaboration Program “Task 43: Safety and Regulatory Aspects of Emerging Large Scale Hydrogen Energy Applications” started in June 2022. Within Task 43 Subtask E focuses on Hydrogen Systems Safety. This paper discusses the structure of the Hydrogen Systems Safety subtask and the aligned activities and introduces opportunities for future work.
An Overview of Application-orientated Multifunctional Large-scale Stationary Battery and Hydrogen Hybrid Energy Storage System
Dec 2023
Publication
The imperative to address traditional energy crises and environmental concerns has accelerated the need for energy structure transformation. However the variable nature of renewable energy poses challenges in meeting complex practical energy requirements. To address this issue the construction of a multifunctional large-scale stationary energy storage system is considered an effective solution. This paper critically examines the battery and hydrogen hybrid energy storage systems. Both technologies face limitations hindering them from fully meeting future energy storage needs such as large storage capacity in limited space frequent storage with rapid response and continuous storage without loss. Batteries with their rapid response (90%) excel in frequent short-duration energy storage. However limitations such as a selfdischarge rate (>1%) and capacity loss (~20%) restrict their use for long-duration energy storage. Hydrogen as a potential energy carrier is suitable for large-scale long-duration energy storage due to its high energy density steady state and low loss. Nevertheless it is less efficient for frequent energy storage due to its low storage efficiency (~50%). Ongoing research suggests that a battery and hydrogen hybrid energy storage system could combine the strengths of both technologies to meet the growing demand for large-scale long-duration energy storage. To assess their applied potentials this paper provides a detailed analysis of the research status of both energy storage technologies using proposed key performance indices. Additionally application-oriented future directions and challenges of the battery and hydrogen hybrid energy storage system are outlined from multiple perspectives offering guidance for the development of advanced energy storage systems.
Hydrogen Energy Systems: Technologies, Trends, and Future Prospects
May 2024
Publication
This review critically examines hydrogen energy systems highlighting their capacity to transform the global energy framework and mitigate climate change. Hydrogen showcases a high energy density of 120 MJ/kg providing a robust alternative to fossil fuels. Adoption at scale could decrease global CO2 emissions by up to 830 million tonnes annually. Despite its potential the expansion of hydrogen technology is curtailed by the inefficiency of current electrolysis methods and high production costs. Presently electrolysis efficiencies range between 60 % and 80 % with hydrogen production costs around $5 per kilogram. Strategic advancements are necessary to reduce these costs below $2 per kilogram and push efficiencies above 80 %. Additionally hydrogen storage poses its own challenges requiring conditions of up to 700 bar or temperatures below −253 °C. These storage conditions necessitate the development of advanced materials and infrastructure improvements. The findings of this study emphasize the need for comprehensive strategic planning and interdisciplinary efforts to maximize hydrogen's role as a sustainable energy source. Enhancing the economic viability and market integration of hydrogen will depend critically on overcoming these technological and infrastructural challenges supported by robust regulatory frameworks. This comprehensive approach will ensure that hydrogen energy can significantly contribute to a sustainable and low-carbon future.
Investigation of a New Holistic Energy System for a Sustainable Airport with Green Hydrogen Fuels
Jun 2024
Publication
The advancement of sustainable solutions through renewable energy sources is crucial to mitigate carbon emissions. This study reports a novel system for an airport utilizing geothermal biomass and PV solar energy sources. The proposed system is capable of producing five useful outputs including electrical power hot water hydrogen kerosene and space heating. In open literature there has been no system reported with these combination of energy sources and outputs. The system is considered for Vancouver Airport using the most recent statistics available. The geothermal sub-system introduced is also unique which utilizes carbon dioxide captured as the heat transfer medium for power generation and heating. The present system is considered using thermodynamic analysis through energetic and exergetic approaches to determine the variation in system performance based on different annual climate conditions. Biomass gasification and kerosene production are evaluated based on the Aspen Plus models. The efficiencies of the geothermal system with the carbon dioxide reservoir are found to have energetic and energetic efficiencies of 78 % and 37 % respectively. The total hydrogen production projection is obtained to be 452 tons on an annual basis. The kerosene production mass flow rate is reported as 0.112 kg/s. The overall energetic and exergetic efficiencies of the system are found to be 41.8 % and 32.9 % respectively. This study offers crucial information for the aviation sector to adopt sustainable solutions more effectively.
Integrated Renewable Energy Systems for Buildings: An Assessment of the Environmental and Socio-Economic Sustainability
Jan 2025
Publication
Developing a green energy strategy for municipalities requires creating a framework to support the local production storage and use of renewable energy and green hydrogen. This framework should cover essential components for small-scale applications including energy sources infrastructure potential uses policy backing and collaborative partnerships. It is deployed as a small-scale renewable and green hydrogen unit in a municipality or building demands meticulous planning and considering multiple elements. Municipality can promote renewable energy and green hydrogen by adopting policies such as providing financial incentives like property tax reductions grants and subsidies for solar wind and hydrogen initiatives. They can also streamline approval processes for renewable energy installations invest in hydrogen refueling stations and community energy projects and collaborate with provinces and neighboring municipalities to develop hydrogen corridors and large-scale renewable projects. Renewable energy and clean hydrogen have significant potential to enhance sustainability in the transportation building and mining sectors by replacing fossil fuels. In Canada where heating accounts for 80% of building energy use blending hydrogen with LPG can reduce emissions. This study proposes a comprehensive approach integrating renewable energy and green hydrogen to support small-scale applications. The study examines many scenarios in a building as a case study focusing on economic and greenhouse gas (GHG) emission impacts. The optimum scenario uses a hybrid renewable energy system to meet two distinct electrical needs with 53% designated for lighting and 10% for equipment with annual saving CAD$ 87026.33. The second scenario explores utilizing a hydrogen-LPG blend as fuel for thermal loads covering 40% and 60% of the total demand respectively. This approach reduces greenhouse gas emissions from 540 to 324 tCO2/year resulting in an annual savings of CAD$ 251406. This innovative approach demonstrates the transformative potential of renewable energy and green hydrogen in enhancing energy efficiency and sustainability across sectors including transportation buildings and mining.
Hydrogen Propulsion Systems for Aircraft, a Review on Recent Advances and Ongoing Challenges
Oct 2024
Publication
Air transportation contributes significantly to harmful and greenhouse gas emissions. To combat these issues there has been a recent emergence of aircraft electrification as a potential solution to mitigate environmental concerns and address fuel shortages. However current technologies related to batteries electric machinery and power systems are still in the developmental phase to meet the requirements for power and energy density weight safety and reliability. In the interim there is a focus on the more electric and hybrid electric propulsion systems for aircraft. Hydrogen with its high specific energy and carbon-free characteristics stands out as a promising alternative fuel for aviation. This paper is centred on the application of hydrogen in aircraft propulsion mainly fuel cell hybrid electric (FCHE) propulsion systems. Furthermore application of hydrogen as a fuel for the aircraft propulsion systems is considered. A comprehensive overview of the hydrogen propulsion systems in aviation is presented with an emphasis on the technical aspects crucial for creating a more sustainable and efficient air transportation sector. Additionally the paper acknowledges the technical and regulatory challenges that must be addressed to attain these goals.
Fuel Cell Vehicle Hydrogen Emissions Testing
Sep 2023
Publication
The NREL Hydrogen Sensor Laboratory is comprised of researchers dedicated to furthering hydrogen sensor technology and detection methodology. NREL has teamed up with researchers at Environment and Climate Change Canada (ECCC) and Transport Canada (TC) to conduct research to quantify hydrogen emissions from Fuel Cell Electric Vehicles (FCEV). Test protocols will have a large effect on monitoring and regulating the hydrogen emissions from FCEVs. How emissions are tested will play an important role when understanding the safety and environmental implications of using FCEVs. NREL Sensor Laboratory personnel have partnered with other entities to conduct multiple variations of emissions testing for FCEVs. This experimentation includes testing different models of FCEVs under various driving conditions while monitoring the hydrogen concentration of the exhaust using several different test methods and apparatus. Researchers look to support regulatory bodies by providing useful data that can support more consistent and relevant safety and environmental standards. We plan to present on the current test methods and results from recent emissions measurements at ECCC.
Net-zero Energy Management through Multi-criteria Optimizations of a Hybrid Solar-Hydrogen Energy Production System for an Outdoor Laboratory in Toronto
Apr 2024
Publication
Hydrogen production and storage in hybrid systems is a promising solution for sustainable energy transition decoupling the energy generation from its end use and boosting the deployment of renewable energy. Nonetheless the optimal and cost-effective design of hybrid hydrogen-based systems is crucial to tackle existing limitations in diffusion of these systems. The present study explores net-zero energy management via a multi-objective optimization algorithm for an outdoor test facility equipped with a hydrogen-based hybrid energy production system. Aimed at enabling efficient integration of hydrogen fuel cell system the proposed solution attempts to maximize the renewable factor (RF) and carbon mitigation in the hybrid system as well as to minimize the grid dependency and the life cycle cost (LCC) of the system. In this context the techno-enviroeconomic optimization of the hybrid system is conducted by employing a statistical approach to identify optimal design variables and conflictive objective functions. To examine interactions in components of the hybrid system a series of dynamic simulations are carried out by developing a TRNSYS code coupled with the OpenStudio/EnergyPlus plugin. The obtained results indicate a striking disparity in the monthly RF values as well as the hydrogen production rate and therefore in the level of grid dependency. It is shown that the difference in LCC between optimization scenarios suggested by design of experiments could reach $15780 corresponding to 57% of the mean initial cost. The LCOE value yielded for optimum scenarios varies between 0.389 and 0.537 $/kWh. The scenario with net-zero target demonstrates the lowest LCOE value and the highest carbon mitigation i.e. 828 kg CO2/yr with respect to the grid supply case. However the LCC in this scenario exceeds $57370 which is the highest among all optimum scenarios. Furthermore it was revealed that the lowest RF in optimal scenarios is equal to 66.2% and belongs to the most economical solution.
Data Hub for Life Cycle Assessment of Climate Change Solutions—Hydrogen Case Study
Nov 2024
Publication
Life cycle assessment which evaluates the complete life cycle of a product is considered the standard methodological framework to evaluate the environmental performance of climate change solutions. However significant challenges exist related to datasets used to quantify these environmental indicators. Although extensive research and commercial data on climate change technologies pathways and facilities exist they are not readily available to practitioners of life cycle assessment in the right format and structure using an open platform. In this study we propose a new open data hub platform for life cycle assessment considering a hierarchical data flow starting with raw data collected on climate change technologies at laboratory pilot demonstration or commercial scales to provide the information required for policy and decision-making. This platform makes data accessible at multiple levels for practitioners of life cycle assessment while making data interoperable across platforms. The proposed data hub platform and workflow are explained through the polymer electrolyte membrane electrolysis hydrogen production as a case study. The climate change environment impact of 1.17 ± 0.03 kg CO2 eq./kg H2 was calculated for the case study. The current data hub platform is limited to evaluating environmental impacts; however future additions of economic and social aspects are envisaged.
Hydrogen Impact: A Review on Diffusibility, Embrittlement Mechanisms, and Characterization
Feb 2024
Publication
Hydrogen embrittlement (HE) is a broadly recognized phenomenon in metallic materials. If not well understood and managed HE may lead to catastrophic environmental failures in vessels containing hydrogen such as pipelines and storage tanks. HE can affect the mechanical properties of materials such as ductility toughness and strength mainly through the interaction between metal defects and hydrogen. Various phenomena such as hydrogen adsorption hydrogen diffusion and hydrogen interactions with intrinsic trapping sites like dislocations voids grain boundaries and oxide/matrix interfaces are involved in this process. It is important to understand HE mechanisms to develop effective hydrogen resistant strategies. Tensile double cantilever beam bent beam and fatigue tests are among the most common techniques employed to study HE. This article reviews hydrogen diffusion behavior mechanisms and characterization techniques.
Hydrogen Equipment Enclosure Risk Reduction through Earlier Detection of Component Failures
Sep 2023
Publication
Hydrogen component reliability and the hazard associated with failure rates is a critical area of research for the successful implementation and growth of hydrogen technology across the globe. The research team has partnered to quantify system risk reduction through earlier detection of hydrogen component failures. A model of hydrogen dispersion in a hydrogen equipment enclosure has been developed utilizing experimentally quantified hydrogen component leak rates as inputs. This model provides insight into the impact of hydrogen safety sensors and ventilation on the flammable mass within a hydrogen equipment enclosure. This model also demonstrates the change in safety sensor response time due to detector placement under various leak scenarios. The team looks to improve overall hydrogen system safety through an improved understanding of hydrogen component reliability and risk mitigation methods. This collaboration fits under the work program of IEA Hydrogen Task 43 Subtask E Hydrogen System Safety.
Wind-coupled Hydrogen Integration for Commercial Greenhouse Food and Power Production: A Case Study
Oct 2024
Publication
This study investigates the feasibility of using green hydrogen technology produced via Proton Exchange Membrane (PEM) electrolysis powered by a 200 MW wind farm for a commercial Greenhouse in Ontario Canada. Nine different scenarios are analyzed exploring various approaches to hydrogen (H2) production transportation and utilization for electricity generation. The aim is to transition from using natural gas to using varying combinations of H2 and natural gas that include 10 % 20 % and 100 % of H2 with 90 % 80 % and 0 % of natural gas to generate 13.3 MW from Combined Heat and Power (CHP) engines. The techno-economic parameters considered for the study are the levelized cost of hydrogen (LCOH) payback period (PBT) internal rate of return (IRR) and discounted payback period (DPB). The study found that a 10 % H2-Natural Gas blend using existing wired or transmission line (W-10H2) with 5 days of storage capacity and 2190 h of CHP operation per year had the lowest cost with a LCOH of USD 3.69/kg. However 100 % of H2 using existing wired or transmission line (W-100H2) with the same storage and operation hours revealed better PBT IRR and DPB with values of 6.205 years 15.16 % and 7.993 years respectively. It was found impractical to build a new pipeline or transport H2 via tube trailer from wind farm site to greenhouse. A sensitivity analysis was also conducted to understand what factors affect the LCOH value the most.
Enabling Large-scale Enhanced Hydrogen Production in Deep Underground Coal Gasification in the Context of a Hydrogen Economy
Dec 2024
Publication
Underground coal gasification (UCG) is an emerging clean energy technology with significant potential for enhanced hydrogen production especially when coupled with water injection. Previous lab-scale studies have explored this potential but the mechanisms driving water-assisted hydrogen enhancement in large-scale deep UCG settings remain unclear. This study addresses this gap using numerical simulations of a large-scale deep coal model designed for hydrogen-oriented UCG. We investigated single-point and multipoint water injection stra tegies to optimize hydrogen production. Additionally we developed a retractable water injection technique to ensure sustained hydrogen output and effective cavity control. Our results indicate that the water–gas shift re action is crucial for increasing hydrogen production. Multipoint injection has been proven to be more effective than single-point injection increasing hydrogen production by 11% with an equal amount of steam. The introduction of retractable injection allows for continuous and efficient hydrogen generation with daily hydrogen production rates of approximately five times that of a conventional injection scheme and an increase in cumulative hydrogen production of approximately 105% over the same time period. Importantly the mul tipoint injection method also helped limit vertical cavity growth mitigating the risk of aquifer contamination. These findings support the potential of UCG as a low-carbon energy source in the transition to a hydrogen economy
Innovations in Hydrogen Storage Materials: Synthesis, Applications, and Prospects
Jul 2024
Publication
Hydrogen globally recognized as the most efficient and clean energy carrier holds the potential to transform future energy systems through its use as a fuel and chemical resource. Although progress has been made in reversible hydrogen adsorption and release challenges in storage continue to impede widespread adoption. This review explores recent advancements in hydrogen storage materials and synthesis methods emphasizing the role of nanotechnology and innovative synthesis techniques in enhancing storage performance and addressing these challenges to drive progress in the field. The review provides a comprehensive overview of various material classes including metal hydrides complex hydrides carbon materials metal-organic frameworks (MOFs) and porous materials. Over 60 % of reviewed studies focused on metal hydrides and alloys for hydrogen storage. Additionally the impact of nanotechnology on storage performance and the importance of optimizing synthesis parameters to tailor material properties for specific applications are summarized. Various synthesis methods are evaluated with a special emphasis on the role of nanotechnology in improving storage performance. Mechanical milling emerges as a commonly used and cost-effective method for fabricating intermetallic hydrides capable of adjusting hydrogen storage properties. The review also explores hydrogen storage tank embrittlement mechanisms particularly subcritical crack growth and examines the advantages and limitations of different materials for various applications supported by case studies showcasing real-world implementations. The challenges underscore current limitations in hydrogen storage materials highlighting the need for improved storage capacity and kinetics. The review also explores prospects for developing materials with enhanced performance and safety providing a roadmap for ongoing advancements in the field. Key findings and directions for future research in hydrogen storage materials emphasize their critical role in shaping future energy systems.
A Multi-stage Framework for Coordinated Scheduling of Networked Microgrids in Active Distribution Systems with Hydrogen Refueling and Charging Stations
May 2024
Publication
Due to the increase in electric energy consumption and the significant growth in the number of electric vehicles (EV) at the level of the distribution network new networks have started using new fuels such as hydrogen to improve environmental indicators and at the same time better efficiency from the excess capacity of renewable resources. In this article the services that can be provided by hydrogen refueling stations and charging electric vehicles in the optimal performance of microgrids have been investigated. The model proposed in this paper includes a two-stage stochastic framework for scheduling resources in microgrids especially hydrogen refueling stations and electric vehicle charging. In this model two main goals of cost minimization and greenhouse gas emissions are considered. In the proposed framework and in the first stage the service range of microgrids is determined precisely according to the electrical limitations of distribution systems in emergency situations. Then in the second stage the problem of energy management in each microgrid will be solved centrally. In this situation various indicators including the output energy of renewable sources smart charging of hydrogen and electric vehicle charging stations (EV/FCV) and flexible loads (FL) are evaluated. The final mathematical model is implemented as a multivariate integer multiple linear problem (MILP) using the GUROBI solver in GAMS software. The simulation results on the modified IEEE 118-Bus network show the positive effect of the presence of flexible loads and smart charging strategies by charging stations. Also the numerical derivation shows that the operating costs of the entire system can be reduced by 4.77% and the use of smart charging strategies can reduce greenhouse gas emissions by 49.13%.
No more items...