China, People’s Republic
A Study of Hydrogen Embrittlement of SA-372 J Class High Pressure Hydrogen Storage Seamless Cylinder (≥100 MPA)
Nov 2022
Publication
The spinning process will lead to changes in the micro-structure and mechanical properties of the materials in different positions of the high-pressure hydrogen storage cylinder which will show different hydrogen embrittlement resistance in the high-pressure hydrogen environment. In order to fully study the safety of hydrogen storage in large-volume seamless steel cylinders this chapter associates the influence of the forming process with the deterioration of a high-pressure hydrogen cylinder (≥100 MPa). The anti-hydrogen embrittlement of SA-372 grade J steel at different locations of the formed cylinders was studied experimentally in three cylinders. The hydrogen embrittlement experiments were carried out according to method A of ISO 11114-4:2005. The relationship between tensile strength microstructure and hydrogen embrittlement is analyzed which provides comprehensive and reliable data for the safety of hydrogen storage and transmission.
A Prompt Decarbonization Pathway for Shipping: Green Hydrogen, Ammonia, and Methanol Production and Utilization in Marine Engines
Mar 2023
Publication
The shipping industry has reached a higher level of maturity in terms of its knowledge and awareness of decarbonization challenges. Carbon-free or carbon-neutralized green fuel such as green hydrogen green ammonia and green methanol are being widely discussed. However little attention has paid to the green fuel pathway from renewable energy to shipping. This paper therefore provides a review of the production methods for green power (green hydrogen green ammonia and green methanol) and analyzes the potential of green fuel for application to shipping. The review shows that the potential production methods for green hydrogen green ammonia and green methanol for the shipping industry are (1) hydrogen production from seawater electrolysis using green power; (2) ammonia production from green hydrogen + Haber–Bosch process; and (3) methanol production from CO2 using green power. While the future of green fuel is bright in the short term the costs are expected to be higher than conventional fuel. Our recommendations are therefore as follows: improve green power production technology to reduce the production cost; develop electrochemical fuel production technology to increase the efficiency of green fuel production; and explore new technology. Strengthening the research and development of renewable energy and green fuel production technology and expanding fuel production capacity to ensure an adequate supply of low- and zero-emission marine fuel are important factors to achieve carbon reduction in shipping.
The Direct Reduction of Iron Ore with Hydrogen
Aug 2022
Publication
The steel industry represents about 7% of the world’s anthropogenic CO2 emissions due to the high use of fossil fuels. The CO2 -lean direct reduction of iron ore with hydrogen is considered to offer a high potential to reduce CO2 emissions and this direct reduction of Fe2O3 powder is investigated in this research. The H2 reduction reaction kinetics and fluidization characteristics of fine and cohesive Fe2O3 particles were examined in a vibrated fluidized bed reactor. A smooth bubbling fluidization was achieved. An increase in external force due to vibration slightly increased the pressure drop. The minimum fluidization velocity was nearly independent of the operating temperature. The yield of the direct H2 -driven reduction was examined and found to exceed 90% with a maximum of 98% under the vibration of ~47 Hz with an amplitude of 0.6 mm and operating temperatures close to 500 ◦C. Towards the future of direct steel ore reduction cheap and “green” hydrogen sources need to be developed. H2 can be formed through various techniques with the catalytic decomposition of NH3 (and CH4 ) methanol and ethanol offering an important potential towards production cost yield and environmental CO2 emission reductions.
Optimization of High-Temperature Electrolysis System for Hydrogen Production Considering High-Temperature Degradation
Mar 2023
Publication
Solid oxide electrolysis cells (SOECs) have great application prospects because of their excellent performance but the long-term applications of the stacks are restricted by the structural degradation under the high-temperature conditions. Therefore an SOEC degradation model is developed and embedded in a process model of the high-temperature steam electrolysis (HTSE) system to investigate the influence of the stack degradation at the system level. The sensitivity analysis and optimization were carried out to study the influence factors of the stack degradation and system hydrogen production efficiency and search for the optimal operating conditions to improve the hydrogen production efficiency and mitigate the stack degradation. The analysis results show that the high temperature and large current density can accelerate the stack degradation but improve the hydrogen production efficiency while the high temperature gradually becomes unfavorable in the late stage. The low air-to-fuel feed ratio is beneficial to both the degradation rate and hydrogen production efficiency. The results show that the optimization method can improve the hydrogen production efficiency and inhibit the stack degradation effectively. Moreover part of the hydrogen production efficiency has to be sacrificed in order to obtain a lower stack degradation rate.
Environmental Economical Dispatching of Electric–Gas Integrated Energy System Considering Hydrogen Compressed-Natural Gas
Dec 2022
Publication
As a high-quality secondary energy hydrogen energy has great potential in energy storage and utilization. The development of power-to-hydrogen (P2H) technology has alleviated the problem of wind curtailment and improved the coupling between the power grid and the natural gas grid. Under the premise of ensuring safety using P2H technology to mix the produced hydrogen into the natural gas network for long-distance transmission and power generation can not only promote the development of hydrogen energy but also reduce carbon emissions. This paper presents a new model for incorporating hydrogen into natural gas pipelines. To minimize the sum of wind curtailment cost operation cost and carbon emission cost an electric–gas integrated energy system (EGIES) model of hydrogen-compressed natural gas (HCNG) containing P2H for power generation is constructed. Aiming at the problem of global warming caused by a lot of abandoned wind and carbon emissions the economy and environmental protection of the system model are analyzed. The results show that the model of EGIES considering HCNG can not only absorb excess wind power but also reduce carbon emission costs and system costs which can reduce the total cost of the environmental economic dispatch of the EGIES by about 34.1%. In the context of the EGIES the proposal of this model is of great significance to the economical and environmentally friendly operation of the system.
Design and Optimization of Coal to Hydrogen System Coupled with Non-Nominal Operation of Thermal Power Unit
Dec 2022
Publication
In an actual thermal power plant deep peak shaving will cause thermal power units to run under non-nominal conditions for an extended period resulting in serious problems such as increased equipment wearing low equipment utilization efficiency and decreased benefits. To this end in this work both the design and optimization method for a coal to hydrogen system which is coupled with the expected non-nominal operation of thermal power units are proposed. Aiming towards maximum profit in the context of thermal power plants a mathematical optimization model for a coal to hydrogen system based on the multi-period operating conditions of thermal power plants is established. The corresponding optimal design scheme of the coal to hydrogen system is determined using variable operating conditions. The superiority of the integrated system compared with an independent system is explored and the feasibility of the proposed method is verified by using the case study of an actual thermal power plant. The results show that compared with the independent system the economic benefits of the integrated system can increase by 13.56% where the sale of hydrogen in the coal to hydrogen system accounts for 60.3% of the total benefit. The main expenditure associated with the system is the purchase cost of feedstock coal accounting for 91.8%. Since the required power and medium-pressure steam in the coal to hydrogen process are provided by thermal power units the minimum operating load of the thermal power plant in the integrated system increases from 40% to 60.1% which significantly improves the utilization efficiency and service life of the generator units. In addition the proposed integration scheme of the system is simple and controllable which can contribute to the maintenance of the safe and stable operation of power generation and hydrogen production processes. These results are expected to provide the necessary methodological guidance for the integration and optimization of coal-fired power plants and coal to hydrogen systems.
Thermodynamic Analysis of Solid Oxide Electrolyzer Integration with Engine Waste Heat Recovery for Hydrogen Production
Jul 2021
Publication
Water electrolysis based on solid oxide electrolysis cell (SOEC) exhibits high conversion efficiency due to part of energy demand can be derived from thermal energy. Therefore it can be integrated with other sources of thermal energy to reduce the consumption of electrical energy. In this paper a diesel engine is integrated with the SOEC stacks for heat recovery steam generator (HRSG). The thermal energy from the engine exhaust gas used to heat the inlet H2O of the SOEC is carried out as the integration case. A SOEC plant using electricity as the thermal heat input is selected as the base case. Thermodynamic analysis of the benchmark and integration scheme reveals that an electrical efficiency of 73.12% and 85.17% can be achieved respectively. The diesel to power efficiency can be increased to 70% when the exhaust gas is completely utilized by the SOEC system. The impacts of some key parameters including current density and operating temperature on system performance have also been conducted and found that the system has optimized parameters of current density and operating temperature to achieve better performance.
Life Cycle Greenhouse Gas Emission Assessment for Using Alternative Marine Fuels: A Very Large Crude Carrier (VLCC) Case Study
Dec 2022
Publication
The International Maritime Organization (IMO) has set decarbonisation goals for the shipping industry. As a result shipowners and operators are preparing to use low- or zero-carbon alternative fuels. The greenhouse gas (GHG) emission performances are fundamental for choosing suitable marine fuels. However the current regulations adopt tank-to-wake (TTW) emission assessment methods that could misrepresent the total climate impacts of fuels. To better understand the well-to-wake (WTW) GHG emission performances this work applied the life cycle assessment (LCA) method to a very large crude carrier (VLCC) sailing between the Middle East and China to investigate the emissions. The life cycle GHG emission impacts of using alternative fuels including liquified natural gas (LNG) methanol and ammonia were evaluated and compared with using marine gas oil (MGO). The bunkering site of the VLCC was in Zhoushan port China. The MGO and LNG were imported from overseas while methanol and ammonia were produced in China. Four production pathways for methanol and three production pathways for ammonia were examined. The results showed that compared with MGO using fossil energy-based methanol and ammonia has no positive effect in terms of annual WTW GHG emissions. The emission reduction effects of fuels ranking from highest to lowest were full solar and battery-based methanol full solar and battery-based ammonia and LNG. Because marine ammonia-fuelled engines have not been commercialised laboratory data were used to evaluate the nitrous oxide (N2O) emissions. The GHG emission reduction potential of ammonia can be exploited more effectively if the N2O emitted from engines is captured and disposed of through after-treatment technologies. This paper discussed three scenarios of N2O emission abatement ratios of 30% 50% and 90%. The resulting emission reduction effects showed that using full solar and battery-based ammonia with 90% N2O abatement performs better than using full solar and battery-based methanol. The main innovation of this work is realising the LCA GHG emission assessment for a deep-sea ship.
Performance Evaluation of a Hydrogen-fired Combined Cycle with Water Recovery
Mar 2023
Publication
Hydrogen can alleviate the increasing environmental pollution and has good development prospects in power generation due to its high calorific value and low environmental impact. The previously designed hydrogen-fired combined cycle ignored water recycling which led to an inefficient application of hydrogen and the wastage of water. This paper proposes the concept of a hydrogen-fired combined cycle with water recovery to reuse the condensed water as an industrial heat supply. It was applied to an F-class combined cycle power plant. The results demonstrate that the efficiency of hydrogen-fired combined cycles with and without water recovery increased by 1.92% and 1.35% respectively compared to that of the natural-gas-fired combined cycle under full working conditions. In addition an economic comparison of the three cycles was conducted. The levelized cost of energy of the hydrogen-fired combined cycle with water recovery will be 52.22% lower than that of the natural-gas-fired combined cycle in 2050. This comparative study suggested that water recovery supplementation could improve the gas turbine efficiency. The proposed hydrogen-fired combined cycle with water recovery would provide both environmental and economic benefits.
Multi-Objective Optimization-Based Health-Conscious Predictive Energy Management Strategy for Fuel Cell Hybrid Electric Vehicles
Feb 2022
Publication
The Energy Management Strategy (EMS) in Fuel Cell Hybrid Electric Vehicles (FCHEVs) is the key part to enhance optimal power distribution. Indeed the most recent works are focusing on optimizing hydrogen consumption without taking into consideration the degradation of embedded energy sources. In order to overcome this lack of knowledge this paper describes a new health-conscious EMS algorithm based on Model Predictive Control (MPC) which aims to minimize the battery degradation to extend its lifetime. In this proposed algorithm the health-conscious EMS is normalized in order to address its multi-objective optimization. Then weighting factors are assigned in the objective function to minimize the selected criteria. Compared to most EMSs based on optimization techniques this proposed approach does not require any information about the speed profile which allows it to be used for real-time control of FCHEV. The achieved simulation results show that the proposed approach reduces the economic cost up to 50% for some speed profile keeping the battery pack in a safe range and significantly reducing energy sources degradation. The proposed health-conscious EMS has been validated experimentally and its online operation ability clearly highlighted on a PEMFC delivery postal vehicle.
Alternative Power Options for Improvement of the Environmental Friendliness of Fishing Trawlers
Dec 2022
Publication
The fishing sector is faced with emission problems arising from the extensive use of diesel engines as prime movers. Energy efficiency environmental performance and minimization of operative costs through the reduction of fuel consumption are key research topics across the whole maritime sector. Ship emissions can be determined at different levels of complexity and accuracy i.e. by analyzing ship technical data and assuming its operative profile or by direct measurements of key parameters. This paper deals with the analysis of the environmental footprint of a fishing trawler operating in the Adriatic Sea including three phases of the Life-Cycle Assessment (manufacturing Well-to-Pump (WTP) and Pump-to-Wake (PTW)). Based on the data on fuel consumption the viability of replacing the conventional diesel-powered system with alternative options is analyzed. The results showed that fuels such as LNG and B20 represent the easiest solution that would result in a reduction of harmful gases and have a positive impact on overall costs. Although electrification and hydrogen represent one of the cleanest forms of energy due to their high price and complex application in an obsolete fleet they do not present an optimal solution for the time being. The paper showed that the use of alternative fuels would have a positive effect on the reduction of harmful emissions but further work is needed to find an environmentally acceptable and economically profitable pathway for redesigning the ship power system of fishing trawlers.
A Comparison of Well-to-Wheels Energy Use and Emissions of Hydrogen Fuel Cell, Electric, LNG, and Diesel-Powered Logistics Vehicles in China
Jul 2023
Publication
Global energy and environmental issues are becoming increasingly serious and the promotion of clean energy and green transportation has become a common goal for all countries. In the logistics industry traditional fuels such as diesel and natural gas can no longer meet the requirements of energy and climate change. Hydrogen fuel cell logistics vehicles are expected to become the mainstream vehicles for future logistics because of their “zero carbon” advantages. The GREET model is computer simulation software developed by the Argonne National Laboratory in the USA. It is extensively utilized in research pertaining to the energy and environmental impact of vehicles. This research study examines four types of logistics vehicles: hydrogen fuel cell vehicles (FCVs) electric vehicles LNG-fueled vehicles and diesel-fueled vehicles. Diesel-fueled logistics vehicles are currently the most abundant type of vehicle in the logistics sector. LNG-fueled logistics vehicles are considered as a short-term alternative to diesel logistics vehicles while electric logistics vehicles are among the most popular types of new-energy vehicles currently. We analyze and compare their well-to-wheels (WTW) energy consumption and emissions with the help of GREET software and conduct lifecycle assessments (LCAs) of the four types of vehicles to analyze their energy and environmental benefits. When comparing the energy consumption of the four vehicle types electric logistics vehicles (EVs) have the lowest energy consumption with slightly lower energy consumption than FCVs. When comparing the nine airborne pollutant emissions of the four vehicle types the emissions of the FCVs are significantly lower than those of spark-ignition internal combustion engine logistics vehicles (SI ICEVs) compression-ignition direct-injection internal combustion engine logistics vehicles (CIDI ICEVs) and EVs. This study fills a research gap regarding the energy consumption and environmental impact of logistics vehicles in China.
Recent Research in Solar-Driven Hydrogen Production
Mar 2024
Publication
Climate concerns require immediate actions to reduce the global average temperature increase. Renewable electricity and renewable energy-based fuels and chemicals are crucial for progressive de-fossilization. Hydrogen will be part of the solution. The main issues to be considered are the growing market for H2 and the “green” feedstock and energy that should be used to produce H2 . The electrolysis of water using surplus renewable energy is considered an important development. Alternative H2 production routes should be using “green” feedstock to replace fossil fuels. We firstly investigated these alternative routes through using bio-based methanol or ethanol or ammonia from digesting agro-industrial or domestic waste. The catalytic conversion of CH4 to C and H2 was examined as a possible option for decarbonizing the natural gas grid. Secondly water splitting by reversible redox reactions was examined but using a renewable energy supply was deemed necessary. The application of renewable heat or power was therefore investigated with a special focus on using concentrated solar tower (CST) technology. We finally assessed valorization data to provide a tentative view of the scale-up potential and economic aspects of the systems and determine the needs for future research and developments.
Potential of Salt Caverns for Hydrogen Storage in Southern Ontario, Canada
Jul 2023
Publication
Salt caverns produced by solution mining in Southern Ontario provide ideal spaces for gas storage due to their low permeability. Underground hydrogen storage (UHS) is an important part of the future renewable energy market in Ontario in order to achieve global carbon neutrality and to fill the gap left by retiring nuclear power plants. However large-scale hydrogen storage is still restricted by limited storage space on the ground’s surface. In this study hydrogen’s physical and chemical properties are first introduced and characterized by low molecular weight high diffusivity low solubility and low density. Then the geological conditions of the underground reservoirs are analyzed especially salt caverns. Salt caverns with their inert cavity environments and stable physical properties offer the most promising options for future hydrogen storage. The scales heights and thicknesses of the roof and floor salt layers and the internal temperatures and pressures conditions of salt caverns can affect stabilities and storage capacities. Finally several potential problems that may affect the safe storage of hydrogen in salt caverns are discussed. Through the comprehensive analysis of the influencing factors of hydrogen storage in salt caverns this study puts forward the most appropriate development strategy for salt caverns which provides theoretical guidance for UHS in the future and helps to reduce the risk of large-scale storage design.
Can Africa Serve Europe with Hydrogen Energy from Its Renewables?—Assessing the Economics of Shipping Hydrogen and Hydrogen Carriers to Europe from Different Parts of the Continent
Apr 2023
Publication
There exists no single optimal way for transporting hydrogen and other hydrogen carriers from one port to the other globally. Its delivery depends on several factors such as the quantity distance economics and the availability of the required infrastructure for its transportation. Europe has a strategy to invest in the production of green hydrogen in Africa to meet its needs. This study assessed the economic viability of shipping liquefied hydrogen (LH2 ) and hydrogen carriers to Germany from six African countries that have been identified as countries with great potential in the production of hydrogen. The results obtained suggest that the shipping of LH2 to Europe (Germany) will cost between 0.47 and 1.55 USD/kg H2 depending on the distance of travel for the ship. Similarly the transportation of hydrogen carriers could range from 0.19 to 0.55 USD/kg H2 for ammonia 0.25 to 0.77 USD/kg H2 for LNG 0.24 to 0.73 USD/kg H2 for methanol and 0.43 to 1.28 USD/kg H2 for liquid organic hydrogen carriers (LOHCs). Ammonia was found to be the ideal hydrogen carrier since it recorded the least transportation cost. A sensitivity analysis conducted indicates that an increase in the economic life by 5 years could averagely decrease the cost of LNG by some 13.9% NH3 by 13.2% methanol by 7.9% LOHC by 8.03% and LH2 by 12.41% under a constant distance of 6470 nautical miles. The study concludes with a suggestion that if both foreign and local participation in the development of the hydrogen market is increased in Africa the continent could supply LH2 and other hydrogen carriers to Europe at a cheaper price using clean fuel.
Willingness of Chinese Households to Pay Extra for Hydrogen-fuelled Buses: A Survey Based on Willingness to Pay
Mar 2023
Publication
Hydrogen-fuelled buses play an important role in the construction of low-carbon cities as a means of green travel. Beijing as a pilot city of hydrogen-fuelled buses in China is very important in the promotion of hydrogen-fuelled buses in China. Unfortunately the public acceptance of hydrogen-fuelledfuelled buses and their environmental positive externality value have not been studied. In this paper we investigated the willingness of Beijing households to pay for the promotion of hydrogen-fuelled buses and its influencing factors by means of a web-based questionnaire. The spike model was also used to estimate the willingness to pay (WTP) for hydrogen buses. The results show that the WTP of Beijing households is CNY 3.19 per trip. The value of a positive environmental externality is approximately CNY 29.15 million per trip. Household income level environmental knowledge individual environmental ethics and perceived behavioural control are the main influencing factors of WTP. Therefore policymakers should strengthen publicity efforts to increase individuals’ environmental awareness and environmental ethics and optimize the layout of hydrogen-fuelled bus schedules and riding experiences to improve individuals’ perceptual and behaviour control. Finally the positive environmental externality value of hydrogen buses should be valued which will help increase investor interest.
Deep Decarbonisation Pathways of the Energy System in Times of Unprecedented Uncertainty in the Energy Sector
May 2023
Publication
Unprecedented investments in clean energy technology are required for a net-zero carbon energy system before temperatures breach the Paris Agreement goals. By performing a Monte-Carlo Analysis with the detailed ETSAPTIAM Integrated Assessment Model and by generating 4000 scenarios of the world’s energy system climate and economy we find that the uncertainty surrounding technology costs resource potentials climate sensitivity and the level of decoupling between energy demands and economic growth influence the efficiency of climate policies and accentuate investment risks in clean energy technologies. Contrary to other studies relying on exploring the uncertainty space via model intercomparison we find that the CO2 emissions and CO2 prices vary convexly and nonlinearly with the discount rate and climate sensitivity over time. Accounting for this uncertainty is important for designing climate policies and carbon prices to accelerate the transition. In 70% of the scenarios a 1.5 ◦C temperature overshoot was within this decade calling for immediate policy action. Delaying this action by ten years may result in 2 ◦C mitigation costs being similar to those required to reach the 1.5 ◦C target if started today with an immediate peak in emissions a larger uncertainty in the medium-term horizon and a higher effort for net-zero emissions.
Optimal Scheduling of Integrated Energy System Considering Hydrogen Blending Gas and Demand Response
Apr 2024
Publication
In the context of carbon neutrality and carbon peaking in order to achieve low carbon emissions and promote the efficient utilization of wind energy hydrogen energy as an important energy carrier is proposed to mix hydrogen and natural gas to form hydrogen-enriched compressed natural gas (HCNG). It is also injected into the natural gas pipeline network to achieve the transmission and utilization of hydrogen energy. At the same time the participation of demand response is considered the load’s peak and trough periods are adjusted and the large-scale consumption of renewable energy and the reduction in carbon emissions are achieved. First of all a fine model of hydrogen production and hydrogen use equipment is established to analyze the impact of adding hydrogen mixing on the economy and the low-carbon property of the system. With green certificates and demand response the utilization rate of hydrogen energy is improved to further explore the energy utilization rate and emission reduction capacity of the system. Secondly on the basis of modeling the optimal scheduling strategy is proposed with the sum of energy purchase cost equipment operation cost carbon emission cost wind curtailment cost and green certificate income as the lowest objective function. Considering the constraints such as hydrogen blending ratio and flexible load ratio of the pipeline network a low-carbon economic scheduling model of hydrogen mixed natural gas was established. The model was linearized and solved by using MATLAB 2021a and CPLEX solver. By comparing different scenarios the superiority of the model and the effectiveness of the strategy are verified.
Genesis and Energy Significance of Natural Hydrogen
Jan 2023
Publication
H2 is clean energy and an important component of natural gas. Moreover it plays an irreplaceable role in improving the hydrocarbon generation rate of organic matter and activating ancient source rocks to generate hydrocarbon in Fischer-Tropsch (FT) synthesis and catalytic hydrogenation. Compared with hydrocarbon reservoir system a complete hydrogen (H2) accumulation system consists of H2 source,reservoirs and seal. In nature the four main sources of H2 are hydrolysis organic matter degradation the decomposition of substances such as methane and ammonia and deep mantle degassing. Because the complex tectonic activities the H2 produced in a geological environment is generally a mixture of various sources. Compared with the genetic mechanisms of H2 the migration and preservation of H2 especially the H2 trapping are rarely studied. A necessary condition for large-scale H2 accumulation is that the speed of H2 charge is much faster than diffusion loss. Dense cap rock and continuous H2 supply are favorable for H2 accumulation. Moreover H2O in the cap rock pores may provide favorable conditions for short-term H2 accumulation.
A Bibliometric and Visualized Overview of Hydrogen Embrittlement from 1997 to 2022
Dec 2022
Publication
The mechanical properties of materials deteriorate when hydrogen embrittlement (HE) occurs seriously threatening the reliability and durability of the hydrogen system. Therefore it is important to summarize the status and development trends of research on HE. This study reviewed 6676 publications concerned with HE from 1997 to 2022 based on the Web of Science Core Collection. VOSviewer was used to conduct the bibliometric analysis and produce visualizations of the publications. The results showed that the number of publications on HE increased after 2007 especially between 2017 and 2019. Japan was the country with the highest numbers of productive authors and citations of publications and the total number of citations of Japanese publications was 24589. Kyushu University was the most influential university and the total number of citations of Kyushu University publications was 7999. Akiyama was the most prolific and influential author publishing 88 publications with a total of 2565 citations. The USA South Korea and some European countries are also leading in HE research; these countries have published more than 200 publications. It was also found that the HE publications generally covered five topics: “Hydrogen embrittlement in different materials” “Effect of hydrogen on mechanical properties of materials” “Effect of alloying elements or microstructure on hydrogen embrittlement” “Hydrogen transport” and “Characteristics and mechanisms of hydrogen related failures”. Research hotspots included “Fracture failure behavior and analysis” “Microstructure” “Hydrogen diffusion and transport” “Mechanical properties” “Hydrogen resistance” and so on. These covered the basic methods and purposes of HE research. Finally the distribution of the main subject categories of the publications was determined and these categories covered various topics and disciplines. This study establishes valuable reference information for the application and development of HE research and provides a convenient resource to help researchers and scholars understand the development trends and research directions in this field.
No more items...