China, People’s Republic
Research on Energy Management Method of Fuel Cell/Supercapacitor Hybrid Trams Based on Optimal Hydrogen Consumption
Jul 2023
Publication
In this paper based on the operating states and characteristics of fuel cell/supercapacitor hybrid trams an optimal hydrogen energy management method is proposed. This method divides the operating states into two parts: traction state and non-traction state. In the traction state the real-time loss function of the hybrid power system which is used to obtain the fuel cell optimal output power under the different demand powers and supercapacitor voltage is established. In the non-traction state the constant-power charging method which is obtained by solving the power-voltage charging model is used to ensure the supercapacitor voltage of the beginning-state and the end-state in an entire operation cycle are the same. The RT-LAB simulation platform is used to verify that the proposed method has the ability to control the hybrid real-time system. Using the comparative experiment between the proposed method and power-follow method the results show that the proposed method offers a significant improvement in both fuel cell output stability and hydrogen consumption in a full operation cycle.
Improvement of MC Method in SAE J2601 Hydrogen Refuelling Protocol Using Dual-zone Dual-Temperature Model
Sep 2023
Publication
The MC method refuelling protocol in SAE J2601 has been published by the Society of Automotive Engineers (SAE) in order to safely and quickly refuel hydrogen vehicles. For the calculation method of the pressure target to control the refuelling stop we introduced a dual-zone dual-temperature model that distinguishes the hydrogen temperature in the tank from the wall temperature to replace the dual-zone single-temperature model of the original MC method. The total amount of heat transferred by convection between hydrogen and the inner tank wall during the filling process was expressed as an equation of final hydrogen temperature final wall temperature final refuelling time tank inner surface area and the correction factor. The correction factor equations were determined by fitting simulation data from the 0D1D model where hydrogen inside the tank is lumped parameter model (0D) and the tank wall is a one-dimensional model (1D). For the correction factor of the linear equation its first-order coefficient and constant term have a linear relationship with the initial pressure of the storage tank and their R2 values obtained from the fitting are greater than 0.99. Finally we derived a new equation to calculate the final hydrogen temperature which can be combined with the 100% SOC inside the vehicle tank to determine the pressure target. The simulation results show that the final SOC obtained are all greater than 96% using the modified pressure target and the correction factor of the linear equation.
Influence of Longitudinal Wind on Hydrogen Leakage and Hydrogen Concentration Sensor Layout of Fuel Cell Vehicles
Jul 2023
Publication
Hydrogen has the physical and chemical characteristics of being flammable explosive and prone to leakage and its safety is the main issue faced by the promotion of hydrogen as an energy source. The most common scene in vehicle application is the longitudinal wind generated by driving and the original position of hydrogen concentration sensors (HCSs) did not consider the influence of longitudinal wind on the hydrogen leakage trajectory. In this paper the computational fluid dynamics (CFD) software STAR CCM 2021.1 is used to simulate the hydrogen leakage and diffusion trajectories of fuel cell vehicles (FCVs) at five different leakage locations the longitudinal wind speeds of 0 km/h 37.18 km/h and 114 km/h and it is concluded that longitudinal wind prolongs the diffusion time of hydrogen to the headspace and reduces the coverage area of hydrogen in the headspace with a decrease of 81.35%. In order to achieve a good detection effect of fuel cell vehicles within the longitudinal wind scene based on the simulated hydrogen concentration–time matrix the scene clustering method based on vector similarity evaluation was used to reduce the leakage scene set by 33%. Then the layout position of HCSs was optimized according to the proposed multi-scene full coverage response time minimization model and the response time was reduced from 5 s to 1 s.
Research on Power Optimization for Energy System of Hydrogen Fuel Cell Wheel-Driven Electric Tractor
Apr 2024
Publication
Hydrogen fuel cell tractors are emerging as a new power source for tractors. Currently there is no mature energy management control method available. Existing methods mostly rely on engineers’ experience to determine the output power of the fuel cell and the power battery resulting in relatively low energy utilization efficiency of the energy system. To address the aforementioned problems a power optimization method for the energy system of hydrogen fuel cell wheel-driven electric tractor was proposed. A dynamic model of tractor ploughing conditions was established based on the system dynamics theory. From this based on the equivalent hydrogen consumption theory the charging and discharging of the power battery were equivalent to the fuel consumption of the hydrogen fuel cell forming an equivalent hydrogen consumption model for the tractor. Using the state of charge (SOC) of the power battery as a constraint and with the minimum equivalent hydrogen consumption as the objective function an instantaneously optimized power allocation method based on load demand in the energy system is proposed by using a traversal algorithm. The optimization method was simulated and tested based on the MATLAB simulation platform and the results showed under ploughing conditions compared with the rule-based control strategy the proposed energy system power optimization method optimized the power output of hydrogen fuel cells and power batteries allowing the energy system to work in a high-efficiency range reducing the equivalent hydrogen consumption of the tractor by 7.79% and solving the energy system power distribution problem.
Coordinated Planning and Operation of Inter Seasonal Heat Storage and P2G Devices Integrated to Urban Multi-energy System
Mar 2023
Publication
With the urbanization construction and the advancement of the carbon peaking and carbon neutrality goals urban energy systems are characterized by coupling multi-energy networks and a high proportion of renewable energy. Urban energy systems need to improve the quality of energy use as well as to achieve energy conservation and emission reduction. Inter-seasonal heat technology has satisfactory engineering application prospects in promoting renewable energy consumption and the energy supply of urban multi-energy systems. Considering inter-seasonal heat storage and electric hydrogen production a joint optimization method of planning and operation is proposed for the urban multi-energy flow system. First the operation framework of inter-seasonal heat storage and electric hydrogen production system is established which clarifies the energy flow of the urban multi-energy system. Secondly aiming at the goals of minimizing the equipment’s annual investment cost and the multi-energy system annual operation cost combined with the time series period division method a planning operation model has been established considering multi-objectives. Through case study it is shown that the proposed model can promote the renewable energy consumption and reduce the operation cost of the whole system.
A Techno-economic Analysis of Cross-regional Renewable Hydrogen Supply Routes in China
Jun 2023
Publication
The cross-regional renewable hydrogen supply is significant for China to resolve the uneven distribution of renewable energy and decarbonize the transportation sector. Yet the economic comparison of various hydrogen supply routes remains obscure. This paper conducts a techno-economic analysis on six hydrogen supply routes for hydrogen refueling stations including gas-hydrogen tube-trailer gas-hydrogen pipeline liquid-hydrogen truck natural gas pipeline MeOH truck and NH3 truck. Furthermore the impacts of three critical factors are examined including electrolyzer selection transportation distance and electricity price. The results indicate that with a transport distance of 2000 km the natural gas pipeline route offers the lowest cost while the gas-hydrogen tube-trailer route is not economically feasible. The gas-hydrogen pipeline route shows outstanding cost competitiveness between 200 and 2000 km while it is greatly influenced by the utilization rate. The liquid-hydrogen truck route demonstrates great potential with the electricity price decreasing. This study may provide guidance for the development of the cross-regional renewable hydrogen supply for hydrogen refueling stations in China.
Research Progress of Hydrogen Production Technology and Related Catalysts by Electrolysis of Water
Jun 2023
Publication
As a clean and renewable energy source for sustainable development hydrogen energy has gained a lot of attention from the general public and researchers. Hydrogen production by electrolysis of water is the most important approach to producing hydrogen and it is also the main way to realize carbon neutrality. In this paper the main technologies of hydrogen production by electrolysis of water are discussed in detail; their characteristics advantages and disadvantages are analyzed; and the selection criteria and design criteria of catalysts are presented. The catalysts used in various hydrogen production technologies and their characteristics are emphatically expounded aiming at optimizing the existing catalyst system and developing new high-performance high-stability and low-cost catalysts. Finally the problems and solutions in the practical design of catalysts are discussed and explored.
Hydrogen Storage by Liquid Hydrogen Carriers: Catalyst, Renewable Carrier, and Technology - A Review
Mar 2023
Publication
Hydrogen has attracted widespread attention as a carbon-neutral energy source but developing efficient and safe hydrogen storage technologies remains a huge challenge. Recently liquid organic hydrogen carriers (LOHCs) technology has shown great potential for efficient and stable hydrogen storage and transport. This technology allows for safe and economical large-scale transoceanic transportation and long-cycle hydrogen storage. In particular traditional organic hydrogen storage liquids are derived from nonrenewable fossil fuels through costly refining procedures resulting in unavoidable environmental contamination. Biomass holds great promise for the preparation of LOHCs due to its unique carbon-balance properties and feasibility to manufacture aromatic and nitrogen-doped compounds. According to recent studies almost 100% conversion and 92% yield of benzene could be obtained through advanced biomass conversion technologies showing great potential in preparing biomass-based LOHCs. Overall the present LOHCs systems and their unique applications are introduced in this review and the technical paths are summarized. Furthermore this paper provides an outlook on the future development of LOHCs technology focusing on biomass-derived aromatic and N-doped compounds and their applications in hydrogen storage.
Simulation and Control Strategy Study of the Hydrogen Supply System of a Fuel Cell Engine
Jun 2023
Publication
The hydrogen supply system is one of the important components of a hydrogen fuel cell engine and its performance has an important impact on the economy and power of the engine system. In this paper a hydrogen supply system based on cyclic mode is designed for a hydrogen fuel cell stack with a full load power of 150 kW and the corresponding hydrogen fuel cell engine simulation model is built and validated. The control strategy of the fuel cell hydrogen supply system is developed and its effect is verified through bench tests. The results show that the developed control strategy can keep the volume fraction of nitrogen below 6% the hydrogen excess ratio does not exceed 1.5 under medium and high operating conditions the anode pressure is relatively stable and the stack can operate efficiently and reliably.
Techno-Economic Assessment of a Full-Chain Hydrogen Production by Offshore Wind Power
May 2024
Publication
Offshore wind power stands out as a promising renewable energy source offering substantial potential for achieving low carbon emissions and enhancing energy security. Despite its potential the expansion of offshore wind power faces considerable constraints in offshore power transmission. Hydrogen production derived from offshore wind power emerges as an efficient solution to overcome these limitations and effectively transport energy. This study systematically devises diverse hydrogen energy supply chains tailored to the demands of the transportation and chemical industries meticulously assessing the levelized cost of hydrogen (LCOH). Our findings reveal that the most cost-efficient means of transporting hydrogen to the mainland is through pipelines particularly when the baseline distance is 50 km and the baseline electricity price is 0.05 USD/kWh. Notably delivering hydrogen directly to the port via pipelines for chemical industries proves considerably more economical than distributing it to hydrogen refueling stations with a minimal cost of 3.6 USD/kg. Additionally we assessed the levelized cost of hydrogen (LCOH) for supply chains that transmit electricity to ports via submarine cables before hydrogen production and subsequent distribution to chemical plants. In comparison to offshore hydrogen production routes these routes exhibit higher costs and reduced competitiveness. Finally a sensitivity analysis was undertaken to scrutinize the impact of delivery distance and electricity prices on LCOH. The outcomes underscore the acute sensitivity of LCOH to power prices highlighting the potential for substantial reductions in hydrogen prices through concerted efforts to lower electricity costs.
A Comprehensive Resilience Assessment Framework for Hydrogen Energy Infrastructure Development
Jun 2023
Publication
In recent years sustainable development has become a challenge for many societies due to natural or other disruptive events which have disrupted economic environmental and energy infrastructure growth. Developing hydrogen energy infrastructure is crucial for sustainable development because of its numerous benefits over conventional energy sources. However the complexity of hydrogen energy infrastructure including production utilization and storage stages requires accounting for potential vulnerabilities. Therefore resilience needs to be considered along with sustainable development. This paper proposes a decision-making framework to evaluate the resilience of hydrogen energy infrastructure by integrating resilience indicators and sustainability contributing factors. A holistic taxonomy of resilience performance is first developed followed by a qualitative resilience assessment framework using a novel Intuitionistic fuzzy Weighted Influence Nonlinear Gauge System (IFWINGS). The results highlighted that Regulation and legislation Government preparation and Crisis response budget are the most critical resilience indicators in the understudy hydrogen energy infrastructure. A comparative case study demonstrates the practicality capability and effectiveness of the proposed approach. The results suggest that the proposed model can be used for resilience assessment in other areas.
Technology Portfolio Assessment for Near-zero Emission Iron and Steel Industry in China
May 2023
Publication
China aims to peak CO2 emissions before 2030 and to achieve carbon neutrality before 2060; hence industrial sectors in China are keen to figure out appropriate pathways to support the national target of carbon neutrality. The objective of this study is to explore near-zero emission pathways for the steel industry of China through a detailed technology assessment. The innovative technology development has been simulated using the AIM-China/steel model developed by including material-based technologies and optimal cost analysis. Six scenarios have been given in terms of different levels of production output emission reduction and carbon tax. Near-zero emission and carbon tax scenarios have shown that China’s steel industry can achieve near-zero emission using electric furnaces and hydrogen-based direct reduction iron technologies with policy support. Based on these technologies minimised production costs have been calculated revealing that the steel produced by these technologies is cost-effective. Moreover the feedstock cost can play a key role in these technology portfolios especially the cost of scrap iron ore and hydrogen. In addition the feedstock supply can have strong regional effects and can subsequently impact the allocation of steelmaking in the future. Therefore China can achieve near-zero emissions in the steel industry and electric furnace and hydrogen-based direct reduction iron technologies are crucial to achieving them.
A Theoretical Study on the Hydrogen Filling Process of the On-board Storage Cylinder in Hydrogen Refueling Station
May 2023
Publication
With the development of the hydrogen fuel automobile industry higher requirements are put forward for the construction of hydrogen energy infrastructure the matching of parameters and the control strategy of hydrogen filling rate in the hydrogen charging process of hydrogen refueling stations. At present the technological difficulty of hydrogen fueling is mainly reflected in the balanced treatment of reducing the temperature rise of hydrogen and shortening the filling time during the fast filling process. Vehicle hydrogen storage cylinder (VHSC) is one of the important components of hydrogen fuel cell vehicles. This study proposed a theoretical model for calculating the temperature rise in the VHSC during the high pressure refueling process and revealed the hydrogen temperature rise during refueling. A hydrogen temperature rise prediction model was constructed to elucidate the relationship between filling parameters and temperature rise. The filling process of VHSC was analyzed from the theoretical method. The theoretical analysis results were consistent with the simulation and experimental analysis results which provided a theoretical basis for the current hydrogen temperature control algorithm of the gas source in the hydrogen refueling station and then reduced the energy consumption required for hydrogen cooling in the hydrogen refueling station.
Investment Timing Analysis of Hydrogen-Refueling Stations and the Case of China: Independent or Co-Operative Investment?
Jun 2023
Publication
The investment in hydrogen-refueling stations (HRS) is key to the development of a hydrogen economy. This paper focuses on the decision-making for potential investors faced with the thought-provoking question of when the optimal timing to invest in HRS is. To fill the gap that exists due to the fact that few studies explain why HRS investment timing is critical we expound that earlier investment in HRS could induce the first mover advantages of the technology diffusion theory. Additionally differently from the previous research that only considered that HRS investment is just made by one individual firm we innovatively examine the HRS co-investment made by two different firms. Accordingly we compare these two optional investment modes and determine which is better considering either independent investment or co-operative investment. We then explore how the optimal HRS investment timing could be figured out under conditions of uncertainty with the real options approach. Given the Chinese HRS case under the condition of demand uncertainty the hydrogen demand required for triggering investment is viewed as the proxy for investment timing. Based on analytical and numerical results we conclude that one-firm independent investment is better than two-firm cooperative investment to develop HRS not only in terms of the earlier investment timing but also in terms of the attribute for dealing with the uncertainty. Finally we offer recommendations including stabilizing the hydrogen demand for decreasing uncertainty and accelerating firms’ innovation from both technological and strategic perspectives in order to ensure firms can make HRS investments on their own.
Optimization of Integrated Energy System Considering Electricity and Hydrogen Coordination in the Context of Carbon Trading
Apr 2024
Publication
In order to improve the consumption of renewable energy and reduce the carbon emissions of integrated energy systems (IESs) this paper proposes an optimal operation strategy for an integrated energy system considering the coordination of electricity and hydrogen in the context of carbon trading. The strategy makes full use of the traditional power-to-gas hydrogen production process and establishes a coupling model comprising cogeneration and carbon capture equipment an electrolytic cell a methane reactor and a hydrogen fuel cell. Taking a minimum daily operating cost and minimal carbon emissions from the system as objective functions a mixed-integer nonlinear optimal scheduling model is established. This paper designs examples based on MATLAB R2021b and uses the GUROBI solver to solve them. The results show that compared with the traditional two-stage operation process the optimization method can reduce the daily operation cost of an IES by 26.01% and its carbon emissions by 90.32%. The results show that the operation mode of electro-hydrogen synergy can significantly reduce the carbon emissions of the system and realize a two-way flow of electro-hydrogen energy. At the same time the addition of carbon capture equipment and the realization of carbon recycling prove the scheduling strategy’s ability to achieve a lowcarbon economy of the scheduling strategy.
A Green Route for Hydrogen Producton from Alkaline Thermal Treatment (ATT) of Biomass with Carbon Storage
Apr 2023
Publication
Hydrogen a green energy carrier is one of the most promising energy sources. However,it is currently mainly produced from depleting fossil fuels with high carbon emissions which has serious negative effects on the economy and environment. To address this issue sustainable hydrogen production from bio-energy with carbon capture and storage (HyBECCS) is an ideal technology to reduce global carbon emissions while meeting energy demand. This review presents an overview of the latest progress in alkaline thermal treatment (ATT) of biomass for hydrogen production with carbon storage especially focusing on the technical characteristics and related challenges from an industrial application perspective. Additionally the roles of alkali and catalyst in the ATT process are critically discussed and several aspects that have great influences on the ATT process such as biomass types reaction parameters and reactors are expounded. Finally the potential solutions to the general challenges and obstacles to the future industrial-scale application of ATT of biomass for hydrogen production are proposed.
Configuration Optimization of Hydrogen-Based Multi-Microgrid Systems under Electricity Market Trading and Different Hydrogen Production Strategies
Apr 2023
Publication
Hydrogen-based multi-microgrid systems (HBMMSs) are beneficial for energy saving and emission reductions. However the optimal sizing of HBMMSs lacks a practical configuration optimization model and a reasonable solution method. To address these problems we designed a novel structure of HBMMSs that combines conventional energy renewable energy and a hydrogen energy subsystem. Then we established a bi-level multi-objective capacity optimization model while considering electricity market trading and different hydrogen production strategies. The objective of the inner model which is the minimum annual operation cost and the three objectives of the outer model which are the minimum total annual cost (TAC); the annual carbon emission (ACE); and the maximum self-sufficiency rate (SSR) are researched simultaneously. To solve the above optimization model a two-stage solution method which considers the conflicts between objectives and the objectivity of objective weights is proposed. Finally a case study is performed. The results show that when green hydrogen production strategies are adopted the three objectives of the best configuration optimization scheme are USD 404.987 million 1.106 million tons and 0.486 respectively.
Study on the Dynamic Optimal Control Strategy of an Electric-Hydrogen Hybrid Energy Storage System for a Direct Drive Wave Power Generation System
Jul 2023
Publication
A direct drive wave power generation system (DDWPGS) has the advantages of a simple structure and easy deployment and is the first choice to provide electricity for islands and operation platforms in the deep sea. However due to the off-grid the source and load cannot be matched so accommodation is an important issue. Hydrogen storage is the optimal choice for offshore wave energy accommodation. Therefore aiming at the source-load mismatch problem of the DDWPGS an electric-hydrogen hybrid energy storage system (HESS) for the DDWPGS is designed in this paper. Based on the characteristics of the devices in the electric-hydrogen HESS a new dynamic power allocation strategy and its control strategy are proposed. Firstly empirical mode decomposition (EMD) is utilized to allocate the power fluctuations that need to be stabilized. Secondly with the state of charge (SOC) of the battery and the operating characteristics of the alkaline electrolyzer being considered the power assignments of the battery and the electrolyzer are determined using the rule-based method. In addition model predictive control (MPC) with good tracking performance is used to adjust the output power of the battery and electrolyzer. Finally the supercapacitor (SC) is controlled to maintain the DC bus voltage while also balancing the system’s power. A simulation was established to verify the feasibility of the designed system. The results show that the electric-hydrogen HESS can stabilize the power fluctuations dynamically when the DDWPGS captures instantaneous power. Moreover its control strategy can not only reduce the start-stop times of the alkaline electrolyzer but also help the energy storage devices to maintain a good state and extend the service life.
An Experimental Study on the Large-Volume Liquid Hydrogen Release in an Open Space
Apr 2024
Publication
Liquid hydrogen is one of the high-quality energy carriers but a large leak of liquid hydrogen can pose significant safety risks. Understanding its diffusion law after accidental leakage is an important issue for the safe utilization of hydrogen energy. In this paper a series of open-space large-volume liquid hydrogen release experiments are performed to observe the evolution of visible clouds during the release and an array of hydrogen concentration sensors is set up to monitor the fluctuation in hydrogen concentration at different locations. Based on the experimental conditions the diffusion of hydrogen clouds in the atmosphere under different release hole diameters and different ground materials is compared. The results show that with the release of liquid hydrogen the white visible cloud formed by air condensation or solidification is generated rapidly and spread widely and the visible cloud is most obvious near the ground. With the termination of liquid hydrogen release solid air is deposited on the ground and the visible clouds gradually shrink from the far field to the release source. Hydrogen concentration fluctuations in the far field in the case of the cobblestone ground are more dependent on spontaneous diffusion by the hydrogen concentration gradient. In addition compared with the concrete ground the cobblestone ground has greater resistance to liquid hydrogen extension; the diffusion of hydrogen clouds to the far field lags. The rapid increase stage of hydrogen concentration at N8 in Test 7 lags about 3 s behind N12 in Test 6 N3 lags about 7.5 s behind N1 and N16 lags about 8.25 s behind N14. The near-source space is prone to high-concentration hydrogen clouds. The duration of the high-concentration hydrogen cloud at N12 is about 15 s which is twice as long as the duration at N8 increasing the safety risk of the near-source space.
Optimal Capacity Planning of Green Electricity-Based Industrial Electricity-Hydrogen Multi-Energy System Considering Variable Unit Cost Sequence
Apr 2024
Publication
Utilizing renewable energy sources (RESs) such as wind and solar to convert electrical energy into hydrogen energy can promote the accommodation of green electricity. This paper proposes an optimal capacity planning approach for an industrial electricity-hydrogen multi-energy system (EHMES) aimed to achieve the local utilization of RES and facilitate the transition to carbon reduction in industrial settings. The proposed approach models the EHMES equipment in detail and divides the system’s investment and operation into producer and consumer sides with energy trading for effective integration. Through this effort the specialized management for different operators and seamless incorporation of RES into industrial users can be achieved. In addition the variations in investment and operating costs of equipment across different installed capacities are considered to ensure a practical alignment with real-world scenarios. By conducting a detailed case study the influence of various factors on the capacity configuration outcomes within an EHMES is analyzed. The results demonstrate that the proposed method can effectively address the capacity configuration of equipment within EHMES based on the local accommodation of RES and variable unit cost sequence. Wind power serves as the primary source of green electricity in the system. Energy storage acts as crucial equipment for enhancing the utilization rate of RES.
No more items...