China, People’s Republic
Advancements and Policy Implications of Green Hydrogen Production from Renewable Sources
Jul 2024
Publication
With the increasingly severe climate change situation and the trend of green energy transformation the development and utilization of hydrogen energy has attracted extensive attention from government industry and academia in the past few decades. Renewable energy electrolysis stands out as one of the most promising hydrogen production routes enabling the storage of intermittent renewable energy power generation and supplying green fuel to various sectors. This article reviews the evolution and development of green hydrogen policies in the United States the European Union Japan and China and then summarizes the key technological progress of renewable energy electrolysis while introducing the progress of hydrogen production from wind and photovoltaic power generation. Furthermore the environmental social and economic benefits of different hydrogen production routes are analyzed and compared. Finally it provides a prospective analysis of the potential impact of renewable energy electrolysis on the global energy landscape and outlines key areas for future research and development.
Optimal Operation Strategy of PV-Charging-Hydrogenation Composite Energy Station Considering Demand Response
Apr 2023
Publication
Traditional charging stations have a single function which usually does not consider the construction of energy storage facilities and it is difficult to promote the consumption of new energy. With the gradual increase in the number of new energy vehicles (NEVs) to give full play to the complementary advantages of source-load resources and provide safe efficient and economical energy supply services this paper proposes the optimal operation strategy of a PV-charging-hydrogenation composite energy station (CES) that considers demand response (DR). Firstly the operation mode of the CES is analyzed and the CES model including a photovoltaic power generation system fuel cell hydrogen production hydrogen storage hydrogenation and charging is established. The purpose is to provide energy supply services for electric vehicles (EVs) and hydrogen fuel cell vehicles (HFCVs) at the same time. Secondly according to the travel law of EVs and HFCVs the distribution of charging demand and hydrogenation demand at different periods of the day is simulated by the Monte Carlo method. On this basis the following two demand response models are established: charging load demand response based on the price elasticity matrix and interruptible load demand response based on incentives. Finally a multi-objective optimal operation model considering DR is proposed to minimize the comprehensive operating cost and load fluctuation of CES and the maximum–minimum method and analytic hierarchy process (AHP) are used to transform this into a linearly weighted single-objective function which is solved via an improved moth–flame optimization algorithm (IMFO). Through the simulation examples operation results in four different scenarios are obtained. Compared with a situation not considering DR the operation strategy proposed in this paper can reduce the comprehensive operation cost of CES by CNY 1051.5 and reduce the load fluctuation by 17.8% which verifies the effectiveness of the proposed model. In addition the impact of solar radiation and energy recharge demand changes on operations was also studied and the resulting data show that CES operations were more sensitive to energy recharge demand changes.
Drifting toward Alliance Innovation: Patent Collaboration Relationships and Development in China’s Hydrogen Energy Industry from a Network Perspective
Mar 2024
Publication
The hydrogen energy industry as one of the most important directions for future energy transformation can promote the sustainable development of the global economy and of society. China has raised the development of hydrogen energy to a strategic position. Based on the patent data in the past two decades this study investigates the collaborative innovation relationships in China’s hydrogen energy field using complex network theory. Firstly patent data filed between 2003 and 2023 are analyzed and compared in terms of time geography and institutional and technological dimensions. Subsequently a patent collaborative innovation network is constructed to explore the fundamental characteristics and evolutionary patterns over five stages. Furthermore centrality measures and community detection algorithms are utilized to identify core entities and innovation alliances within the network which reveal that China’s hydrogen energy industry is drifting toward alliance innovation. The study results show the following: (1) the network has grown rapidly in size and scope over the last two decades and evolved from the initial stage to the multi-center stage before forming innovation alliances; (2) core innovative entities are important supports and bridges for China’s hydrogen energy industry and control most resources and maintain the robustness of the whole network; (3) innovation alliances reveal the closeness of the collaborative relationships between innovative entities and the potential landscape of China’s hydrogen energy industry; and (4) most of the innovation alliances cooperate only on a narrow range of technologies which may hinder the overall sustainable growth of the hydrogen energy industry. Thereafter some suggestions are put forward from the perspective of an industrial chain and innovation chain which may provide a theoretical reference for collaborative innovation and the future development and planning in the field of hydrogen energy in China.
Design and Optimization of a Type-C Tank for Liquid Hydrogen Marine Transport
May 2023
Publication
As one of the most promising renewable energy sources hydrogen has the excellent environmental benefit of producing zero emissions. A key technical challenge in using hydrogen across sectors is placed on its storage technology. The storage temperature of liquid hydrogen (20 K or 253 C) is close to absolute zero so the storage materials and the insulation layers are subjected to extremely stringent requirements against the cryogenic behaviour of the medium. In this context this research proposed to design a large liquid hydrogen type-C tank with AISI (American Iron and Steel Institution) type 316 L stainless steel as the metal barrier using Vapor-Cooled Shield (VCS) and Rigid Polyurethane Foams (RPF) as the insulation layer. A parametric study on the design of the insulation layer was carried out by establishing a thermodynamic model. The effects of VCS location on heat ingress to the liquid hydrogen transport tank and insulation temperature distribution were investigated and the optimal location of the VCS in the insulation was identified. Research outcomes finally suggest two optimal design schemes: (1) when the thickness of the insulation layer is determined Self-evaporation Vapor-Cooled Shield (SVCS) and Forcedevaporation Vapor-Cooled Shield (FVCS) can reduce heat transfer by 47.84% and 85.86% respectively; (2) when the liquid hydrogen evaporation capacity is determined SVCS and FVCS can reduce the thickness of the insulation layer by 50% and 67.93% respectively.
Inter-Zone Optimal Scheduling of Rural Wind–Biomass-Hydrogen Integrated Energy System
Aug 2023
Publication
To solve the problems of low utilization of biomass and uncertainty and intermittency of wind power (WP) in rural winter an interval optimization model of a rural integrated energy system with biogas fermentation and electrolytic hydrogen production is constructed in this paper. Firstly a biogas fermentation kinetic model and a biogas hydrogen blending model are developed. Secondly the interval number is used to describe the uncertainty of WP and an interval optimization scheduling model is developed to minimize daily operating cost. Finally a rural integrated energy system in Northeast China is taken as an example and a sensitivity analysis of electricity price gas production and biomass price is conducted. The simulation results show that the proposed strategy can significantly reduce the wind abandonment rate and improve the economy by 3.8–22.3% compared with conventional energy storage under optimal dispatch.
Flame Acceleration in Stoichiometric Methane/Hydrogen/Air Mixtures in an Obstructed Channel: Effect of Hydrogen Blend Ratio
Sep 2023
Publication
Experiments and numerical simulations were conducted to study the flame acceleration (FA) in stoichiometric CH4/H2/air mixtures with various hydrogen blend ratios (i.e. Hbr = 0% 20% 50% 80% and 100%). In the experiments high-speed photography was used to record the FA process. In the calculations the two-dimensional fully-compressible reactive Navier-Stokes equations were solved using a high-order algorithm on a dynamically adapting mesh. The chemical reaction and diffusive transport of the mixtures were described by a calibrated chemical-diffusive model. The numerical predictions are in good agreement with the experimental measurements. The results show that the mechanism of FA is similar in all cases that is the flame is accelerated by the thermal expansion effects various fluid-dynamic instabilities flame-vortex interactions and the interactions of flame with pressure waves. The hydrogen blend ratio has a significant impact on the propagation speed and the morphological evolution of the flame during FA. A larger hydrogen blend ratio leads to a faster FA and the difference in FA mainly depends on the increase of flame surface area and the interactions between flame and pressure waves. In addition as the hydrogen blend ratio increases there are fewer pockets of the unburned funnels in the combustion products when the flame propagates to the end of the channel.
Enhanced Management of Unified Energy Systems Using Hydrogen Fuel Cell Combined Heat and Power with a Carbon Trading Scheme Incentivizing Emissions Reduction
Jun 2024
Publication
In the quest to achieve “double carbon” goals the urgency to develop an efficient Integrated Energy System (IES) is paramount. This study introduces a novel approach to IES by refining the conventional Power-to-Gas (P2G) system. The inability of current P2G systems to operate independently has led to the incorporation of hydrogen fuel cells and the detailed investigation of P2G’s dual-phase operation enhancing the integration of renewable energy sources. Additionally this paper introduces a carbon trading mechanism with a refined penalty–reward scale and a detailed pricing tier for carbon emissions compelling energy suppliers to reduce their carbon footprint thereby accelerating the reduction in system-wide emissions. Furthermore this research proposes a flexible adjustment mechanism for the heat-to-power ratio in cogeneration significantly enhancing energy utilization efficiency and further promoting conservation and emission reductions. The proposed optimization model in this study focuses on minimizing the total costs including those associated with carbon trading and renewable energy integration within the combined P2G-Hydrogen Fuel Cell (HFC) cogeneration system. Employing a bacterial foraging optimization algorithm tailored to this model’s characteristics the study establishes six operational modes for comparative analysis and validation. The results demonstrate a 19.1% reduction in total operating costs and a 22.2% decrease in carbon emissions confirming the system’s efficacy low carbon footprint and economic viability.
Coordinated Operation of Multi-energy Microgrids Considering Green Hydrogen and Congestion Management via a Safe Policy Learning Approach
Aug 2025
Publication
Multi-energy microgrids (MEMGs) with green hydrogen have attracted significant research attention for their benefits such as energy efficiency improvement carbon emission reduction as well as line congestion alleviation. However the complexities of multi-energy networks coupled with diverse uncertainties may threaten MEMG’s operation. In this paper a data-driven methodology is proposed to achieve effective MEMG operation considering the green hydrogen technique and congestion management. First a detailed MEMG modelling approach is developed coupling with electricity green hydrogen natural gas and thermal flows. Different from conventional MEMG models hydrogen-enriched compressed natural gas (HCNG) models and weatherdependent power flow are thoroughly considered in the modelling. Meanwhile the power flow congestion problem is also formulated in the MEMG operation which could be mitigated through HCNG integration. Based on the proposed MEMG model a reinforcement learning-based method is designed to obtain the optimal solution of MEMG operation. To ensure the solution’s safety a soft actor-critic (SAC) algorithm is applied and modified by leveraging the Lagrangian relaxation and safety layer scheme. In the end case studies are conducted and presented to validate the effectiveness of the proposed method.
Design and Evaluation of Operational Scheduling Approaches for HCNG Penetrated Integrated Energy System
Jul 2019
Publication
This paper proposes and assesses three different control approaches for the hydrocarbon natural gas (HCNG) penetrated integrated energy system (IES). The three control approaches adopt mixed integer linear programing conditional value at risk (CVaR) and robust optimization (RO) respectively aiming to mitigate the renewable generation uncertainties. By comparing the performance and efficiency the most appropriate control approach for the HCNG penetrated IES is identified. The numerical analysis is conducted to evaluate the three control approaches in different scenarios where the uncertainty level of renewable energy (within the HCNG penetrated IES) varies. The numerical results show that the CVaR-based approach outperforms the other two approaches when renewable uncertainty is high (approximately 30%). In terms of the cost to satisfy the energy demand the operational cost of the CVaR-based method is 8.29% lower than the RO one while the RO-based approach has a better performance when the renewable uncertainty is medium (approximately 5%) and it is operational is 0.62% lower than that of the CVaR model. In both evaluation cases mixed integer linear programing approach cannot meet the energy demand. This paper also compares the operational performance of the IES with and without HCNG. It is shown that the IES with HCNG can significantly improve the capability to accommodate renewable energy with low upgrading cost.
Life Cycle Cost Assessment of PEM Water Electrolysis Systems: A System Dynamics-intuitionistic Fuzzy Bayesian Network Approach
Sep 2025
Publication
Proton exchange membrane water electrolysis is a core technology for green hydrogen production but its widespread adoption is hindered by a prohibitively high and uncertain life cycle cost. To address the dynamic complexity and multi-source uncertainties inherent in cost assessment this paper proposes an integrated modeling framework that combines system dynamics with an intuitionistic fuzzy bayesian network. The system dynamics model captures the macro-level feedback loops driving long-term cost evolution such as technological innovation economy-of-scale effects and other critical factors. To model and infer causal dependencies among uncertain variables that are challenging to specify precisely within the system dynamics model the intuitionistic fuzzy bayesian network is incorporated enabling quantification of relationships under conditions of incomplete data and cognitive fuzziness. Through comprehensive simulations the framework forecasts the cost evolution trajectories. Results indicate a potential 77 % reduction in the unit power cost of a 1 MW system by 2060. Uncertainty analysis revealed that the initial prediction variance for the catalyst layer was approximately 20 % significantly higher than the 6.5 % for the bipolar plate highlighting a key investment risk. A comparative analysis demonstrates that the proposed framework achieves a superior forecast accuracy with a mean absolute percentage error of 4.8 %. The proposed method provides a more accurate and robust decision support tool for long-term investment planning and policy formulation for hydrogen production through proton exchange membrane water electrolysis technology.
Sorption-enhanced Steam Gasification of Biomass for H2-rich Gas Production and In-situ CO2 Capture by CaO-based Sorbents: A Critical Review
Feb 2023
Publication
The sorption-enhanced steam gasification of biomass (SEBSG) is considered a prospective thermo-chemical technology for high-purity H2 production with in-situ CO2 capture. Fundamental concepts and operating conditions of SEBSG technology were summarized in this review. Considerable industrial demonstration units have been conducted on pilot scales for large-scale availability of the SEBSG process. The influence of process parameters such as reaction temperature Steam/Biomass (S/B) ratio feedstock characteristics cyclic CO2 capture capacity of CaO-based sorbents and catalysis were critically reviewed to provide theoretical recommendations for industrial operation. Bifunctional materials that have high catalytic activity and CO2 capture activity are crucial for ensuring high H2 production in the SEBSG. The application of density functional theory (DFT) and reactive force field molecular dynamic (ReaxFF MD) simulations on microcosmic reaction mechanisms in the SEBSG process such as pyrolysis WGS and reforming reactions and CO2 capture of CaO-based materials are comprehensively overviewed. Several research gaps like the exploitation of more efficient and low-cost bifunctional material integrated process economics and revelation of well-rounded mechanisms need to be filled for the following large-scale industrial applications.
Analysis of Safety Technical Standards for Hydrogen Storage in Fuel Cell Vehicles
Jul 2024
Publication
Fuel cell vehicles are considered as the direct alternative to fuel vehicles due to their similar driving range and refueling time. The United Nations World Forum for Harmonization of Vehicle Regulations (UN/WP29) released the Global Technical Regulation on Hydrogen and Fuel Cell Vehicles (GTR13) in July 2013 which was the first international regulation in the field of fuel cell vehicles. There exist some differences between GTR13 and the existing safety technical specifications and standards in China. This paper studied the safety requirements of the GTR13 compressed hydrogen storage system analyzed the current hydrogen storage safety standards for fuel cell vehicles in China and integrated the advantages of GTR13 to propose relevant suggestions for future revision of hydrogen storage standards for fuel cell vehicle in China.
Optimal Scheduling of Electricity-hydrogen-thermal Integrated Energy system with P2G for Source-load Coordination Under Carbon Market Environment
Feb 2025
Publication
In the context of energy interconnection and low-carbon power the power-to-gas (P2G) carbon trading mechanism is integrated into the integrated energy system (IES) model of multi-energy coupling units to achieve lowcarbon economic dispatch considering both the economic and environmental benefits of system operation. First the characteristics of each unit in the system are comprehensively considered and a joint dispatch structure for a regionally integrated energy system is developed including P2G equipment energy source equipment storage equipment and conversion equipment. The working mechanism of P2G is analyzed and its carbon trading model is established. Next a comprehensive energy system optimization model is formulated with the goal of maximizing system operating profit while accounting for carbon transaction costs. Finally Cplex and Yalmip software are used to perform simulation analysis in MATLAB to verify the effectiveness of the proposed model in reducing system carbon emissions through participation in the carbon trading market ensuring system economy and reducing the dependence of the integrated energy system on the external market.
Techno-Economic Analysis of Hydrogen Hybrid Vehicles
Jul 2025
Publication
Driven by carbon neutrality and peak carbon policies hydrogen energy due to its zeroemission and renewable properties is increasingly being used in hydrogen fuel cell vehicles (H-FCVs). However the high cost and limited durability of H-FCVs hinder large-scale deployment. Hydrogen internal combustion engine hybrid electric vehicles (H-HEVs) are emerging as a viable alternative. Research on the techno-economics of H-HEVs remains limited particularly in systematic comparisons with H-FCVs. This paper provides a comprehensive comparison of H-FCVs and H-HEVs in terms of total cost of ownership (TCO) and hydrogen consumption while proposing a multi-objective powertrain parameter optimization model. First a quantitative model evaluates TCO from vehicle purchase to disposal. Second a global dynamic programming method optimizes hydrogen consumption by incorporating cumulative energy costs into the TCO model. Finally a genetic algorithm co-optimizes key design parameters to minimize TCO. Results show that with a battery capacity of 20.5 Ah and an H-FC peak power of 55 kW H-FCV can achieve optimal fuel economy and hydrogen consumption. However even with advanced technology their TCO remains higher than that of H-HEVs. H-FCVs can only become cost-competitive if the unit power price of the fuel cell system is less than 4.6 times that of the hydrogen engine system assuming negligible fuel cell degradation. In the short term H-HEVs should be prioritized. Their adoption can also support the long-term development of H-FCVs through a complementary relationship.
Operating Condition Recognition Based Fuzzy Power-Following Control Strategy for Hydrogen Fuel Cell Vehicles (HFCVs)
Feb 2025
Publication
To reduce hydrogen consumption by hydrogen fuel cell vehicles (HFCVs) an adaptive power-following control strategy based on gated recurrent unit (GRU) neural network operating condition recognition was proposed. The future vehicle speed was predicted based on a GRU neural network and a driving cycle condition recognition model was established based on k-means cluster analysis. By predicting the speed over a specific time horizon feature parameters were extracted and compared with those of typical operating conditions to determine the categories of the parameters thus the adjustment of the power-following control strategy was realized. The simulation results indicate that the proposed control strategy reduces hydrogen consumption by hydrogen fuel cell vehicles (HFCVs) by 16.6% with the CLTC-P driving cycle and by 4.7% with the NEDC driving cycle compared to the conventional power-following control strategy. Additionally the proposed strategy effectively stabilizes the battery’s state of charge (SOC).
Hydrogen Doping Control Method for Gasoline Engine Acceleration Transient Air-fuel Ratio
May 2024
Publication
One of the primary contributors to automobile exhaust pollution is the significant deviation be tween the actual and theoretical air-fuel ratios during transient conditions leading to a decrease in the conversion efficiency of three-way catalytic converters. Therefore it becomes imperative to enhance fuel economy reduce pollutant emissions and improve the accuracy of transient control over air-fuel ratio (AFR) in order to mitigate automobile exhaust pollution. In this study we propose a Linear Active Disturbance Rejection Control (LADRC) Hydrogen Doping Compensation Controller (HDC) to achieve precise control over the acceleration transient AFR of gasoline en gines. By analyzing the dynamic effects of oil film and its impact on AFR we establish a dynamic effect model for oil film and utilize hydrogen’s exceptional auxiliary combustion characteristics as compensation for fuel loss. Comparative experimental results demonstrate that our proposed algorithm can rapidly regulate the AFR close to its ideal value under three different transient conditions while exhibiting superior anti-interference capability and effectively enhancing fuel economy.
Ultra-fast Green Hydrogen Production from Municipal Wastewater by an Integrated Forward Osmosis-alkaline Water Electrolysis System
Mar 2024
Publication
Recent advancements in membrane-assisted seawater electrolysis powered by renewable energy offer a sustainable path to green hydrogen production. However its large-scale implementation faces challenges due to slow powerto-hydrogen (P2H) conversion rates. Here we report a modular forward osmosis-water splitting (FOWS) system that integrates a thin-film composite FO membrane for water extraction with alkaline water electrolysis (AWE) denoted as FOWSAWE. This system generates high-purity hydrogen directly from wastewater at a rate of 448 Nm3 day−1 m−2 of membrane area over 14 times faster than the state-of-the-art practice with specific energy consumption as low as 3.96 kWh Nm−3 . The rapid hydrogen production rate results from the utilisation of 1 M potassium hydroxide as a draw solution to extract water from wastewater and as the electrolyte of AWE to split water and produce hydrogen. The current system enables this through the use of a potassium hydroxide-tolerant and hydrophilic FO membrane. The established waterhydrogen balance model can be applied to design modular FO and AWE units to meet demands at various scales from households to cities and from different water sources. The FOWSAWE system is a sustainable and an economical approach for producing hydrogen at a record-high rate directly from wastewater marking a significant leap in P2H practice.
Development of a PEM Fuel Cell City Bus with a Hierarchical Control System
May 2016
Publication
The polymer electrolyte membrane (PEM) fuel cell system is considered to be an ideal alternative for the internal combustion engine especially when used on a city bus. Hybrid buses with fuel cell systems and energy storage systems are now undergoing transit service demonstrations worldwide. A hybrid PEM fuel cell city bus with a hierarchical control system is studied in this paper. Firstly the powertrain and hierarchical control structure is introduced. Secondly the vehicle control strategy including start-stop strategy energy management strategy and fuel cell control strategy including the hydrogen system and air system control strategies are described in detail. Finally the performance of the fuel cell was analyzed based on road test data. Results showed that the different subsystems were well-coordinated. Each component functioned in concert in order to ensure that both safety and speed requirements were satisfied. The output current of the fuel cell system changed slowly and the output voltage was limited to a certain range thereby enhancing durability of the fuel cell. Furthermore the economic performance was optimized by avoiding low load conditions.
Energy Scheduling of Hydrogen Hybrid UAV Based on Model Predictive Control and Deep Deterministic Policy Gradient Algorithm
Feb 2025
Publication
Energy scheduling for hybrid unmanned aerial vehicles (UAVs) is of critical importance to their safe and stable operation. However traditional approaches predominantly rule-based often lack the dynamic adaptability and stability necessary to address the complexities of changing operational environments. To overcome these limitations this paper proposes a novel energy scheduling framework that integrates the Model Predictive Control (MPC) with a Deep Reinforcement Learning algorithm specifically the Deep Deterministic Policy Gradient (DDPG). The proposed method is designed to optimize energy management in hydrogen-powered UAVs across diverse flight missions. The energy system comprises a proton exchange membrane fuel cell (PEMFC) a lithium-ion battery and a hydrogen storage tank enabling robust optimization through the synergistic application of MPC and DDPG. The simulation results demonstrate that the MPC effectively minimizes electric power consumption under various flight conditions while the DDPG achieves convergence and facilitates efficient scheduling. By leveraging advanced mechanisms including continuous action space representation efficient policy learning experience replay and target networks the proposed approach significantly enhances optimization performance and system stability in complex continuous decision-making scenarios.
Robust Operation of Electric–Heat–Gas Integrated Energy Systems Considering Multiple Uncertainties and Hydrogen Energy System Heat Recovery
Aug 2025
Publication
Due to the high cost of hydrogen utilization and the uncertainties in renewable energy generation and load demand significant challenges are posed for the operation optimization of hydrogen-containing integrated energy systems (IESs). In this study a robust operational model for an electric–heat–gas IES (EHG-IES) is proposed considering the hydrogen energy system heat recovery (HESHR) and multiple uncertainties. Firstly a heat recovery model for the hydrogen system is established based on thermodynamic equations and reaction principles; secondly through the constructed adjustable robust optimization (ARO) model the optimal solution of the system under the worst-case scenario is obtained; lastly the original problem is decomposed based on the column and constraint generation method and strong duality theory resulting in the formulation of a master problem and subproblem with mixed-integer linear characteristics. These problems are solved through alternating iterations ultimately obtaining the corresponding optimal scheduling scheme. The simulation results demonstrate that our model and method can effectively reduce the operation and maintenance costs of HESHR-EHG-IES while being resilient to uncertainties on both the supply and demand sides. In summary this study provides a novel approach for the diversified utilization and flexible operation of energy in HESHR-EHG-IES contributing to the safe controllable and economically efficient development of the energy market. It holds significant value for engineering practice.
No more items...