Germany
Participatory Mapping of Local Green Hydrogen Cost-potentials in Sub-Saharan Africa
Mar 2025
Publication
C. Winkler,
Heidi Heinrichs,
S. Ishmam,
B. Bayat,
Amin Lahnaoui,
Solomon Nwabueze Agbo,
E.U. Pena Sanchez,
David Franzmann,
N. Oijeabou,
C. Koerner,
Y. Michael,
B. Oloruntoba,
C. Montzka,
H. Vereecken,
H. Hendricks Franssen,
J. Brendt,
S. Brauner,
Wilhelm Kuckshinrichs,
S. Venghaus,
Daouda Kone,
Bruno Korgo,
Kehinde Olufunso Ogunjobi,
Jane Olwoch,
V. Chiteculo,
Z. Getenga,
Jochen Linßen and
Detlef Stolten
Green hydrogen is a promising solution within carbon free energy systems with Sub-Saharan Africa being a possibly well-suited candidate for its production. However green hydrogen production in Sub-Saharan Africa is not yet investigated in detail. This work determines the cost-potential for green hydrogen production within this region. Therefore a potential analysis for PV wind and hydropower groundwater analysis and energy systems optimization are conducted. The results are evaluated under local socio-economic factors. Results show that hydrogen costs start at 1.6 EUR/kg in Mauritania with a total potential of ~259 TWh/a under 2 EUR/kg in 2050. Two third of the region experience groundwater limitations and need desalination at an added costs of ~1% of hydrogen costs. Socio-economic analysis show that green hydrogen deployment can be hindered along the Upper Guinea Coast and the African Great Lakes driven by limited energy access low labor costs in West Africa and high labor potential in other regions.
Planning LH2 Infrastructure for H2-powered Aviation: From the Initial Development to Market Penetration
Aug 2025
Publication
To enable hydrogen-powered aircraft operations liquid hydrogen infrastructure has to be planned well in advance. This study analyses the transition pathway of liquid hydrogen supply infrastructure from the initial development phase to market penetration optimizing the design and dispatch of the system. The findings reveal that the single-year approach used in previous studies significantly underestimates the costs associated with supply infrastructure. During the transition phase substantial investments are required in specific years leading to high supply costs particularly in the early years. Off-take agreements could be used to achieve a more balanced cost distribution. For the considered location of a generic airport on-site liquid hydrogen supply costs range between 3.83 and 5.03 USD/kgH2 assuming a long-term supply agreement. At a less favourable airport supply costs are 29% higher compared to a favourable location. However costs could be reduced by up to 12% if hydrogen is imported via vessels or the European Hydrogen Backbone. The primary factors influencing supply costs are the availability of renewable energy resources and the distances to the nearest port as well as hydrogen production hubs. Therefore the optimal supply chain must be assessed individually for each airport. Overall this study provides insights and a methodology that can support the development of future liquid hydrogen infrastructure roadmaps for hydrogen-powered aviation.
Green Hydrogen Potential Assessment in Ghana: Application of PEM Electrolysis Process and Geospatial-multi-criteria Approach
Sep 2023
Publication
With green hydrogen gaining traction as a viable sustainable energyoption the present study explores the potential of producing greenhydrogen from wind and solar energy in Ghana. The study combinedthe use of geospatial multi-criteria approach and PEM electrolysisprocess to estimate the geographical and technical potential of theselected two renewable resources. The study also included anassessment of potential areas for grid integration. Technologyspecifications of a monocrystalline solar PV module and 1 MW windturbine module were applied. Results of the assessment show thatabout 85% of the total land area in the country is available for greenhydrogen projects. Technically capacities of ∼14196.21 Mt of greenhydrogen using solar and ∼10123.36 Mt/year from wind energy can beproduced annually in the country. It was also observed that someregions especially regions in the northern part of the country eventhough showed the most favourable locations for solar-based greenhydrogen projects with technical potential of over 1500 Mt/year theseregions may not qualify for a grid connected system based on thecurrent electrification policy of the country due to the regions’ lowpopulation density and distance from the power grid network threshold.
Systematic Framework for Deep Learning-based Predictive Injection Control with Bayesian Hyperparameter Optimization for a Hydrogen/Diesel Dual-fuel Engine
Aug 2025
Publication
Climate change and global warming concerns promote interest in alternative fuels especially zero-carbon fuels like hydrogen. Modifying existing combustion engines for dual-fuel operation can decrease emissions of vehicles that are already on the road. The procedure of a deep learning-based model predictive control as a machine learning implementation practical for complex nonlinear systems with input and state constraints has been developed and tested on a hydrogen/diesel dual-fuel (HDDF) engine application. A nonlinear model predictive controller (NMPC) utilizing a deep neural network (DNN) process model is proposed to control the injected hydrogen and diesel. This DNN model has eight inputs and four outputs and has a short computational time compared to the physics-based model. The architecture and hyperparameters of the DNN model of the HDDF process are optimized through a two-stage Bayesian optimization to achieve high accuracy while minimizing the complexity of the model described. The final DNN architecture has two hidden layers with 31 and 23 neurons. A modified engine capable of HDDF operation is compared to standard diesel operation to evaluate the engine performance and emissions. During experimental engine testing the controller required an average computational time of 2 ms per cycle on a low-cost processor satisfying the real-time requirements and was faster than recurrent networks. The control performance of the DNN-NMPC for the HDDF engine showed a mean absolute error of 0.19 bar in load tracking while maximizing average hydrogen energy share (68%) and reducing emissions. Specifically the particulate matter emissions decrease by 87% compared to diesel operation.
Analysis of the Sugarcane Biomass Use to Produce Green Hydrogen: Brazilian Case Study
Feb 2025
Publication
Conventional hydrogen production processes which often involve fossil raw materials emit significant amounts of carbon dioxide into the atmosphere. This study critically evaluates the feasibility of using sugarcane biomass as an energy source to produce green hydrogen. In the 2023/2024 harvest Brazil the world’s largest sugarcane producer processed approximately 713.2 million metric tons of sugarcane. This yielded 45.68 million metric tons of sugar and 29.69 billion liters of first-generation ethanol equivalent to approximately 0.0416 liters of ethanol per kilogram of sugarcane. A systematic literature review was conducted using Scopus and Clarivate Analytics Web of Science resulting in the assessment of 335 articles. The study has identified seven potential biohydrogen production methods including two direct approaches from second-generation ethanol and five from integrated bioenergy systems. Experimental data indicate that second-generation ethanol can yield 594 MJ per metric ton of biomass with additional energy recovery from lignin combustion (1705 MJ per metric ton). Moreover advances in electrocatalytic reforming and plasma-driven hydrogen production have demonstrated high conversion efficiencies addressing key technical barriers. The results highlight Brazil’s strategic potential to integrate biohydrogen production within its existing bioenergy infrastructure. By leveraging sugarcane biomass for green hydrogen the country can contribute significantly to the global transition to sustainable energy while enhancing its energy security.
Development, Application and Optimization of Hydrogen Refueling Processes for Railway Vehicles
Apr 2025
Publication
In recent years numerous hydrogen-powered rail vehicles have been developed and their deployment within public transport is steadily increasing. To avoid disadvantages compared to diesel vehicles refueling times of 15 min are stated in the industry as target independent of climate zones or vehicle configurations. As refueling time varies with these parameters this work presents the corresponding refueling times and defines optimization potentials. A simulation model was set up and parametrized with a reference vehicle and hydrogen refueling station from the FCH2RAIL project. Measurement data from this station and vehicle were analyzed and compared to simulation results for model validation. The results show that at high ambient temperature pre-cooling reduces refueling time by 71 % and type 4 tanks increase refueling time by 20 % compared to type 3. Overall optimized tank design and thermal management reduce the refueling time for rail vehicles from over 2 h to 15 min.
The Impact of Temporal Hydrogen Regulation on Hydrogen Exporters and their Domestic Energy Transition
Aug 2025
Publication
As global demand for green hydrogen rises potential hydrogen exporters move into the spotlight. While exports can bring countries revenue large-scale on-grid hydrogen electrolysis for export can profoundly impact domestic energy prices and energy-related emissions. Our investigation explores the interplay of hydrogen exports domestic energy transition and temporal hydrogen regulation employing a sector-coupled energy model in Morocco. We find substantial co-benefits of domestic carbon dioxide mitigation and hydrogen exports whereby exports can reduce market-based costs for domestic electricity consumers while mitigation reduces costs for hydrogen exporters. However increasing hydrogen exports in a fossil-dominated system can substantially raise market-based costs for domestic electricity consumers but surprisingly temporal matching of hydrogen production can lower these costs by up to 31% with minimal impact on exporters. Here we show that this policy instrument can steer the welfare (re-)distribution between hydrogen exporting firms hydrogen importers and domestic electricity consumers and hereby increases acceptance among actors.
From Natural Gas to Hydrogen: Climate Impacts of Current and Future Gas Transmission Networks in Germany
May 2025
Publication
Hydrogen emissions arise from leakage during its production transport storage and use leading to an increase in atmospheric hydrogen concentrations. These emissions also cause an indirect climate effect which has been quantified in the literature with a global warming potential over 100 years (GWP100) of about 11.6 placing hydrogen between carbon dioxide (1) and methane (29.8). There is increasing debate about the climate impact of an energy transition based on hydrogen. As a case study we have therefore evaluated the expected climate impact of switching from the long-distance natural gas transmission network to the outlined future “hydrogen core network” in Germany. Our analysis focuses on the relevant sources and network components of emissions. Our results show that the emissions from the network itself represent only about 1.8% of total emissions from the transmission of hydrogen with 98% attributed to energy-related compressor emissions and only 2% to fugitive and operational hydrogen leakage. Compared to the current natural gas transmission network we calculate a 99% reduction in total network emissions and a 97% reduction in specific emissions per transported unit of energy. In the discussion we show that when considering the entire life cycle which also includes emissions from the upstream and end-use phases the switch to hydrogen reduces the overall climate impact by almost 90%. However while our results show a significantly lower climate impact of hydrogen compared to natural gas minimising any remaining emissions remains crucial to achieve carbon neutrality by 2045 as set in Germany’s Federal Climate Action Act. Hence we recommend further reducing the emissions intensity of hydrogen supply and minimising the indirect emissions associated with the energy supply of compressors.
The Role of Power-to-X and Domestic eFuel Production for Energy Transition and Energy Independence in Europe
Jan 2025
Publication
The ongoing global energy transition spurred by ecological concerns and by evolving political dynamics is necessitating a significant expansion of renewable energy sources. This shift towards renewables is introducing the challenge of heightened energy supply volatility and it underscores the imperative for large-scale storage solutions in order to mitigate fluctuations in demand and supply. This study investigates the potential of Power-to-X (P2X) technologies to address this challenge and it evaluates their technical and socioeconomic implications. Using scenario simulations that leverage the maximum estimated potentials of renewable energy sources relative to demand profiles across different countries we explore the role of P2X integration in the enhancement of energy production. Our analysis highlights the pivotal role of hydrogen in the decarbonization of key industrial sectors such as steel production and heavyduty transportation in the near term. For Germany we observe a reduction in CO2 emissions from 306.26 Mt to 232.28 Mt (-24.15%) and an increase in energy independence as measured by the reduction in primary energy imports from 1150.37 TWh to 887.86 TWh (-22.82%) when comparing the baseline scenario to the most socio-economically favorable scenario. France demonstrates even greater reductions with CO2 emissions decreasing by 37.69% and primary energy imports by 40.46%. Portugal achieves similar reductions with CO2 emissions falling by 38.71% and primary energy imports by 41.81%. However none of the three countries investigated in this study (Germany France and Portugal) achieve full decarbonization and energy independence simultaneously since their respective potential for renewable energy is not sufficiently large. Drawing from these insights and accounting for the unique contexts of each of the three countries we offer tailored policy recommendations for optimizing P2X utilization and enhancing energy production efficiency.
O&G, Geothermal Systems, and Natural Hydrogen Well Drilling: Market Analysis and Review
Mar 2025
Publication
Developing clean and renewable energy instead of the ones related to hydrocarbon resources has been known as one of the different ways to guarantee reduced greenhouse gas emissions. Geothermal systems and native hydrogen exploration could represent an opportunity to diversify the global energy matrix and lower carbon-related emissions. All of these natural energy sources require a well to be drilled for its access and/or extractions similar to the petroleum industry. The main focuses of this technical–scientific contribution and research are (i) to evaluate the global energy matrix; (ii) to show the context over the years and future perspectives on geothermal systems and natural hydrogen exploration; and (iii) to present and analyze the importance of developing technologies on drilling process optimization aiming at accessing these natural energy resources. In 2022 the global energy matrix was composed mainly of nonrenewable sources such as oil natural gas and coal where the combustion of fossil fuels produced approximately 37.15 billion tons of CO2 in the same year. In 2023 USD 1740 billion was invested globally in renewable energy to reduce CO2 emissions and combat greenhouse gas emissions. In this context currently about 353 geothermal power units are in operation worldwide with a capacity of 16335 MW. In addition globally there are 35 geothermal power units under pre-construction (project phase) 93 already being constructed and recently 45 announced. Concerning hydrogen the industry announced 680 large-scale project proposals valued at USD 240 billion in direct investment by 2030. In Brazil the energy company Petroleo Brasileiro SA (Petrobras Rio de Janeiro Brazil) will invest in the coming years nearly USD 4 million in research involving natural hydrogen generation and since the exploration and access to natural energy resources (oil and gas natural hydrogen and geothermal systems among others) are achieved through the drilling of wells this document presents a technical–scientific contextualization of social interest.
Keep it Local and Safe: Which System of Green Hydrogen in Germany is Accepted by Citizens?
Jan 2025
Publication
Transitioning from fossil fuels to renewable energies is imperative for Germany to reduce CO2 emissions and achieve greenhouse gas neutrality by 2045. Green hydrogen holds great potential to contribute to this energy transition by enabling the storage of surplus renewable energy. However Germany's green hydrogen production industry is still in its infancy with only a few green hydrogen plants existing. Studies examining the public's acceptance of green hydrogen production are scarce in this context. Still high societal acceptance can contribute to the future expansion of green hydrogen production in Germany in terms of speed and volume. Therefore our study aims to identify significant factors influencing the German population's acceptance of green hydrogen production within various acceptance groups with differing preferences for future green hydrogen production systems. We conducted an online survey (n=1203) in Germany in 2022/2023 incorporating a choice experiment. Through subsequent latent class analysis four acceptance groups with distinct preferences regarding local green hydrogen production were identified: Unconvinced citizens Security-conscious citizens Regional electricity consumers and Financial beneficiaries. A discriminant analysis identified 9 out of 11 factors as significant for distinguishing between these acceptance groups regarding their preferences for local green hydrogen production: trust in plant safety trust in project managers risk/benefit perception environmental self-identity negative attitude towards renewable energies positive attitude towards renewable energies emotions age and gender. However no significant effects were observed for experience with green hydrogen and distance to the place of residence. Based on our results it is recommended that required renewable energy for green hydrogen production should be produced as close to the green hydrogen plants as possible. It must be ensured and communicated to the public that the (planned) green hydrogen plants meet high safety standards and pose a very low risk of fire or explosion. The neighbouring population should also benefit through annual heating cost savings and financial participation. Implementing these measures can increase acceptance of local green hydrogen production facilitating the transition towards a more sustainable energy future in Germany and beyond.
The Integration of Hydrogen Energy Storage (HES) in Germany: What Are the Benefits for Power Grids?
Mar 2025
Publication
This article provides an overview of the requirements for a grid-oriented integration of hydrogen energy storage (HES) and components into the power grid. Considering the general definition of HES and the possible components this paper presents future hydrogen demand electrolysis performance and storage capacity. These parameters were determined through various overall system studies aiming for climate neutrality by the year 2045. In Germany the targeted expansion of renewable energy generation capacity necessitates grid expansion to transport electricity from north to south and due to existing grid congestions. Therefore electrolysis systems could be used to improve the integration of renewable energy systems by reducing energy curtailment and providing grid services when needed. Currently however there are hardly any incentives for a grid-friendly allocation and operation of electrolysis or power-to-gas plants. Two possible locations for hydrogen plants from two current research projects HyCavMobil (Hydrogen Cavern for Mobility) and H2-ReNoWe (Hydrogen Region of north-western Lower Saxony) are presented as practical examples. Using power grid models the integration of electrolysis systems at these locations in the current high and extra-high voltage grid is examined. The presented results of load flow calculations assess power line utilization and sensitivity for different case scenarios. Firstly the results show that power lines in these locations will not be overloaded which would mean an uncritical operation of the power grid. While the overall grid stability remains unaffected in this case selecting suitable locations is vital to prevent negative effects on the local grid.
Energy Efficiency of Future Hydrogen-based Fuel Supply Chain Routes for Germany's Maritime Demand
Aug 2025
Publication
The share of renewable electricity generation has been growing steadily over the past few years. However not all sectors can be fully electrified to reach decarbonization goals. The maritime industry which plays a critical role in international trade is such a sector. Therefore there is a need for a global strategic approach towards the production transportation and use of synfuels enabling the maritime energy transition to benefit from economies of scale. There are potential locations around the world for renewable generation such as hydropower in Norway wind turbines in the North Sea and photovoltaics in the Sahara where synfuels can be produced and utilized within the country as well as exported to demand hubs. Given that a country's domestic production may not fully meet its demand a scenario-based analysis is essential to determine the feasibility of supply chains pillaring on the demand and supply for the respective sector of utilization. Our work demonstrates this methodology for the import of hydrogen and derived ammonia and methanol to Germany from Norway Namibia and Algeria in 2030 and 2050 utilizing the pipeline- and ship-based transport scenarios. Thereby the overall supply chain efficiency for maritime applications is analyzed based on the individual supply chain energy consumption from production to bunkering of the fuel to a vessel. The analysis showed that the efficiency of import varies from 44.6% to 53.9% between the analyzed countries. Furthermore a sensitivity analysis for green and blue hydrogen production pathways is presented along with the influence of qualitative factors like port infrastructure geopolitics etc. As an example through these analyses recommendations for supply from Norway Algeria and Namibia at the Port of Wilhelmshaven within a supply chain are examined.
Hydrogen Properties and Their Safety Implications for Experimental Testing of Wing Structure-Integrated Hydrogen Tanks
Apr 2025
Publication
Hydrogen is a promising candidate for addressing environmental challenges in aviation yet its use in structural validation tests for Wing Structure-Integrated highpressure Hydrogen Tanks (SWITHs) remains underexplored. To the best of the authors’ knowledge this study represents the first attempt to assess the feasibility of conducting such tests with hydrogen at aircraft scales. It first introduces hydrogen’s general properties followed by a detailed exploration of the potential hazards associated with its use substantiated by experimental and simulation results. Key factors triggering risks such as ignition and detonation are identified and methods to mitigate these risks are presented. While the findings affirm that hydrogen can be used safely in aviation if responsibly managed they caution against immediate large-scale experimental testing of SWITHs due to current knowledge and technology limitations. To address this a roadmap with two long-term objectives is outlined as follows: first enabling structural validation tests at scales equivalent to large aircraft for certification; second advancing simulation techniques to complement and eventually reduce reliance on costly experiments while ensuring sufficient accuracy for SWITH certification. This roadmap begins with smaller-scale experimental and numerical studies as an initial step.
Techno-Economic Analysis of Geospatial Green Hydrogen Potential Using Solar Photovoltaic in Niger: Application of PEM and Alkaline Water Electrolyzers
Apr 2025
Publication
This study evaluates the techno-economic feasibility of solar-based green hydrogen potential for off-grid and utility-scale systems in Niger. The geospatial approach is first employed to identify the area available for green hydrogen production based on environmental and socio-technical constraints. Second we evaluate the potential of green hydrogen production using a geographic information system (GIS) tool followed by an economic analysis of the levelized cost of hydrogen (LCOH) for alkaline and proton exchange membrane (PEM) water electrolyzers using fresh and desalinated water. The results show that the electricity generation potential is 311617 TWh/year and 353166 TWh/year for off-grid and utility-scale systems. The hydrogen potential using PEM (alkaline) water electrolyzers is calculated to be 5932 Mt/year and 6723 Mt/year (5694 Mt/year and 6454 Mt/year) for off-grid and utility-scale systems respectively. The LCOH production potential decreases for PEM and alkaline water electrolyzers by 2030 ranging between 4.72–5.99 EUR/kgH2 and 5.05–6.37 EUR/kgH2 for off-grid and 4.09–5.21 EUR/kgH2 and 4.22–5.4 EUR/kgH2 for utility-scale systems.
Solar-heat-assisted Hydrogen Production using Solid Oxide Electrolysis Cells in Japan
Aug 2025
Publication
Japan and other industrialized countries rely on the import of green hydrogen (H2 ) as they lack the resources to meet their own demand. In contrast countries such as Australia have the potential to produce hydrogen and its derivatives using wind and solar energy. Solar energy can be harnessed to produce electricity using photovoltaic systems or to generate thermal energy by concentrating solar irradiation. Thus thermal and electrical energy can be used in a solid oxide electrolysis process for low-cost hydrogen production. The operation of a solid oxide electrolysis cell (SOEC) stack integrated with solar energy is experimentally investigated and further analyzed using a validated simulation model. Furthermore a techno-economic assessment is conducted to estimate the hydrogen production costs including the expenses associated with liquefaction and transportation from Australia to Japan. High conversion efficiencies and low-cost SOECs are projected to result in production costs below 4 USD/kg.
Modelling Green Hydrogen Storage in Salt Caverns: Implications of Future Storage Demands on Cavern Operation
Mar 2025
Publication
The transition to a renewable energy system based mainly on an electricity and hydrogen infrastructure places new requirements and constraints on the infrastructure systems involved. This study investigates the impact of future hydrogen storage demands on a representative salt cavern considering two cases: a regional focus on Lower Saxony with high wind energy penetration and a national perspective on Germany with a PV-dominated mix of installed capacities. A numerical model is developed for in-depth assessment of the thermodynamics inside the cavern. Hydrogen storage profiles generated from 2045 renewable electricity projections for Germany reveal substantial storage demands. Key parameters such as hydrogen production and storage share turnover rate and storage interval length vary significantly between the two cases. In the Lower Saxony case high wind shares lead to increased turnover rates and reduced required working gas volumes but also result in steeper pressure and temperature gradients inside the cavern and necessitate larger compressor systems. In contrast the PV-dominated Germany case experiences lower internal cavern stresses but requires more flexible surface components to manage frequent fluctuations in hydrogen flow. These findings underscore the complex interplay between regional power mixes storage facility design and operational requirements.
Methane Pyrolysis for Zero-Emission Hydrogen Production: A Potential Bridge Technology from Fossil Fuels to a Renewable and Sustainable Hydrogen Economy
Aug 2021
Publication
Hydrogen plays a key role in many industrial applications and is currently seen as one of the most promising energy vectors. Many efforts are being made to produce hydrogen with zero CO 2 footprint via water electrolysis powered by renewable energies. Nevertheless the use of fossil fuels is essentialin the short term. The conventional coal gasification and steam methane reforming processes for hydrogen production are undesirable due to the huge CO2 emissions. A cleaner technologybased on natural gas that has received special attention in recent years is methane pyrolysis. The thermal decomposition of methane gives rise to hydrogen and solid carbon and thus the release of greenhouse gases is prevented. Therefore methane pyrolysis is a CO2-free technology that can serve as a bridge from fossil fuels torenewable energies.
The Green Hydrogen Ambition and Implementation Gap
Jan 2025
Publication
Green hydrogen is critical for decarbonizing hard-to-electrify sectors but it faces high costs and investment risks. Here we defne and quantify the green hydrogen ambition and implementation gap showing that meeting hydrogen expectations will remain challenging despite surging announcements of projects and subsidies. Tracking 190 projects over 3 years we identify a wide 2023 implementation gap with only 7% of global capacity announcements fnished on schedule. In contrast the 2030 ambition gap towards 1.5 °C scenarios has been gradually closing as the announced project pipeline has nearly tripled to 422 GW within 3 years. However we estimate that without carbon pricing realizing all these projects would require global subsidies of US$1.3 trillion (US$0.8–2.6 trillion range) far exceeding announced subsidies. Given past and future implementation gaps policymakers must prepare for prolonged green hydrogen scarcity. Policy support needs to secure hydrogen investments but should focus on applications where hydrogen is indispensable.
Cost-optimized Replacement Strategies for Water Electrolysis Systems Affected by Degradation
Sep 2025
Publication
A key factor in reducing the cost of green hydrogen production projects using water electrolysis systems is to minimize the degradation of the electrolyzer stacks as this impacts the lifetime of the stacks and therefore the frequency of their replacement. To create a better understanding of the economics of stack degradation we present a linear optimization approach minimizing the costs of a green hydrogen supply chain including an electrolyzer with degradation modeling. By calculating the levelized cost of hydrogen depending on a variable degradation threshold the cost optimal time for stack replacement can be identified. We further study how this optimal time of replacement is affected by sensitivities such as the degradation scale the load-dependency of both degradation and energy demand and the costs of the electrolyzer. The variation of the identified major sensitivity degradation scale results in a difference of up to 9 years regarding the cost optimal time for stack replacement respectively lifetime of the stacks. Therefore a better understanding of the degradation impact is imperative for project cost reductions which in turn would support a proceeding hydrogen market ramp-up.
No more items...