Germany
Anion-exchange Membrane Water Electrolyzers
Apr 2022
Publication
This Review provides an overview of the emerging concepts of catalystsmembranes and membrane electrode assemblies (MEAs) for water electrolyzers with anion-exchange membranes (AEMs) also known as zero-gap alkaline water electrolyzers. Much ofthe recent progress is due to improvements in materials chemistry MEA designs andoptimized operation conditions. Research on anion-exchange polymers (AEPs) has focusedon the cationic head/backbone/side-chain structures and key properties such as ionicconductivity and alkaline stability. Several approaches such as cross-linking microphase andorganic/inorganic composites have been proposed to improve the anion-exchangeperformance and the chemical and mechanical stability of AEMs. Numerous AEMs nowexceed values of 0.1 S/cm (at 60−80 °C) although the stability specifically at temperaturesexceeding 60 °C needs further enhancement. The oxygen evolution reaction (OER) is still alimiting factor. An analysis of thin-layer OER data suggests that NiFe-type catalysts have thehighest activity. There is debate on the active-site mechanism of the NiFe catalysts and their long-term stability needs to beunderstood. Addition of Co to NiFe increases the conductivity of these catalysts. The same analysis for the hydrogen evolutionreaction (HER) shows carbon-supported Pt to be dominating although PtNi alloys and clusters of Ni(OH) 2 on Pt show competitiveactivities. Recent advances in forming and embedding well-dispersed Ru nanoparticles on functionalized high-surface-area carbonsupports show promising HER activities. However the stability of these catalysts under actual AEMWE operating conditions needsto be proven. The field is advancing rapidly but could benefit through the adaptation of new in situ techniques standardizedevaluation protocols for AEMWE conditions and innovative catalyst-structure designs. Nevertheless single AEM water electrolyzercells have been operated for several thousand hours at temperatures and current densities as high as 60 °C and 1 A/cm 2 respectively.
Techno-economic Analysis of Green Hydrogen Supply for a Hydrogen Refueling Station in Germany
Feb 2025
Publication
Green hydrogen is a cornerstone in the global quest for a carbon-neutral future offering transformative potential for decarbonizing transportation. This study investigates its role by assessing the feasibility of a large-scale hydrogen refueling station in Germany focusing on integrating renewable energy sources. A hydrogen demand model with a 10-min time resolution to refuel 30 trucks and 20 vans (1019 kg/day) is combined with a techno-economic optimization model to evaluate a hybrid energy system utilizing wind solar and grid electricity. Scenario-based analysis reveals that Levelized Cost of Hydrogen ranges from 13.92 to 18.12 €/kg primarily influenced by electricity costs. Excess electricity sales can reduce this cost to 13.34–16.92 €/kg. On-site wind energy reduces storage and grid reliance achieving the lowest hydrogen cost. Unlike prior studies this work combines temporally resolved hydrogen demand profiles with comprehensive techno-economic modeling offering unprecedented insights into decentralized green hydrogen systems for heavy-duty transport. By bridging critical gaps in the scalability and economic feasibility of Power-to-Hydrogen systems it provides viable strategies for advancing green hydrogen infrastructure.
Evaluating Cost and Emission Reduction Potentials with Stochastic PPA Portfolio Optimization for Green Hydrogen Production in a Decarbonized Glassworks
Sep 2025
Publication
The decarbonization of heavy industries demands large volumes of green hydrogen. To produce green hydrogen via electrolysis the EU’s Renewable Energy Directive II imposes rules to ensure the use of renewable electricity. Hydrogen producers can use portfolios of power purchase agreements (PPAs) to buy renewable electricity. These portfolios must meet hydrogen demand cost-effectively and battery storage can help by shifting excess renewable generation. However high uncertainty around future electricity prices and demand complicates optimal portfolio design. Current literature lacks comprehensive models that evaluate such portfolio optimization under uncertainty for real-world case studies including battery storage. This work addresses the gap by introducing a stochastic mixed-integer linear programming model tailored to industrial applications. We demonstrate the model using a real-world glass manufacturing site in Germany. Our findings show that portfolio optimization alone can reduce the levelized cost of hydrogen (LCOH) by 6.24% under EU rules. Adding a battery further cuts costs achieving an LCOH of 11.8 e2024 kg−1 . Exploring different temporal matching schemes reveals that weekly matching reduces LCOH by 2 e2024kg−1 while maintaining a high share of renewable energy. The model offers a flexible tool for optimizing PPA portfolios in various industrial settings.
A Review of Hydrogen Storage and Transport Technologies
Mar 2023
Publication
An important component of the deep decarbonization of the worldwide energy system is to build up the large-scale utilization of hydrogen to substitute for fossil fuels in all sectors including industry the electricity sector transportation and heating. Hence apart from reducing hydrogen production costs establishing an efficient and suitable infrastructure for the storage transportation and distribution of hydrogen becomes essential. This article provides a technically detailed overview of the state-of-the-art technologies for hydrogen infrastructure including the physical- and material-based hydrogen storage technologies. Physical-based storage means the storage of hydrogen in its compressed gaseous liquid or supercritical state. Hydrogen storage in the form of liquid-organic hydrogen carriers metal hydrides or power fuels is denoted as material-based storage. Furthermore primary ways to transport hydrogen such as land transportation via trailer and pipeline overseas shipping and some related commercial data are reviewed. As the key results of this article hydrogen storage and transportation technologies are compared with each other. This comparison provides recommendations for building appropriate hydrogen infrastructure systems according to different application scenarios.
The German Scramble for Green Hydrogen in Namibia: Colonial Legacies Revisited?
Feb 2025
Publication
Namibia is positioning itself as a green hydrogen superpower to supply the German market with the muchneeded energy carrier. While the hydrogen hype is marketed as a pathway facilitating the German and Euro pean green transition that is mutually beneficial for African interests social movements and affected commu nities have been denouncing green colonialist tendencies of the hydrogen rush. This paper is centring these claims. Applying a heuristic of green colonialism along the lines of externalisation enactment expansion exclusion and empowerment we highlight colonial tendencies of the hydrogen rush in Namibia. While still in a nascent stadium current developments indicate patterns to transform Southern economies according to Euro pean interest which can then uphold their allegedly superior image as renewable energy pioneers. Our study indicates that the green hydrogen rush resembles a longue dur´ee of (neo)colonial violence: while clinging to old colonial patterns it takes advantage of the post-colonial state and at the same time uses narratives of contemporary multiple crises to advance and legitimise a supposedly green but intrinsically violent transition.
A Novel Design Approach: Increase in Storage and Transport Efficiency for Liquid Hydrogen by Using a Dual Concept Involving a Steel-fiber Composite Tank and Thermal Sprayed Insulating Coatings
Nov 2024
Publication
Wind power-to-gas concepts have a high potential to sustainably cover the increasing demand for hydrogen as an energy carrier and raw material as it has been shown in the past that there is an enormous potential in energy overproduction which currently remains unused due to the shutdown of wind turbines. Thus there is barely experience in maritime production offshore storage and transport of large quantities of liquid hydrogen (LH2) due to the developing market. Instead tank designs refer to heavy standard onshore storage and transport applications with vacuum insulated double wall hulls made from austenitic stainless steel and comparatively high thermal diffusivity and conductivity. This reduces cost effectiveness due to inevitable boil-off and disregards some other requirements such as mechanical and cyclic strength and high corrosion resistance. Hence new concepts for LH2 tanks are required for addressing these issues. Two innovative technical concepts from space travel and high-temperature applications were adopted combined and qualified for use in the wind-power-to-gas scenario. The focus was particularly on the high requirements for transport weight insulation and cryogenic durability. The first concept part consisted of the implementation of FRP (fiber-reinforced plastics)–steel hybrid tanks which have a high potential as a hull for LH2 tanks. However these hybrid tanks are currently only used in the space sector. Questions still arise regarding interactions with coatings production material temperature resilience and design for commercial use. Thermally sprayed thermal barrier coatings (TBC) in turn show promising potential for surfaces subject to high thermal and mechanical stress. However the application is currently limited to use at high temperatures and needed to be extended to the cryogenic temperature range. The research on this second part of the concept thus focused on the validation of standard MCrAlY alloys and innovative (partially) amorphous metal coatings with regard to mechanical-technological and insulating properties in the low temperature range. This article gives an overview regarding the achieved results including manufacturing and measurements on a small tank demonstrator.
Unlocking Hydrogen's Potential: Prediction of Adsorption in Metal-organic Frameworks for Sustainable Energy Storage
Oct 2025
Publication
Accurately predicting hydrogen adsorption behavior is essential to developing efficient materials with storage capacities approaching those of liquid hydrogen and surpassing the performance of conventional compressed gas storage systems. Grand canonical Monte Carlo (GCMC) simulations accurately predict adsorption isotherms but are computationally expensive limiting large-scale material screening. We employ GPU-accelerated threedimensional classical density functional theory (DFT) based on the SAFT-VRQ Mie equation of state with a first-order Feynman–Hibbs correction to model hydrogen adsorption in [Zn(bdc)(ted)0.5] MOF-5 CuBTC and ZIF-8 at 30 K 50 K 77 K and 298 K. Our approach generates adsorption isotherms in seconds compared to hours for GCMC simulations with quantum corrections proving crucial for accurate low-temperature predictions. The results show good agreement with GCMC simulations and available experiments demonstrating classical DFT as a powerful tool for high-throughput material screening and optimizing hydrogen storage applications.
Large-Scale H2 Storage and Transport with Liquid Organic Hydrogen Carrier Technology: Insights into Current Project Developments and the Future Outlook
Jan 2024
Publication
The green hydrogen economy is evolving rapidly accompanied by the need to establish trading routes on a global scale. Currently several technologies arecompeting for a leadership role in future hydrogen value chains. Within thiscontext liquid organic hydrogen carrier (LOHC) technology represents an excellent solution for large-scale storage and safe transportation of hydrogen.This article presents LOHC technology recent progress as well as further potential of this technology with focus on benzyltoluene as the carrier material.Furthermore this contribution offers an insight into previous and ongoingproject development activities led by Hydrogenious LOHC Technologies togetherwith an evaluation of the economic viability and an overview of the regulatory aspects of LOHC technology.
Unlocking Solar and Hydrogen Potentials: A Comparative Analysis of Solar Tracking Systems for South Africa's Energy Transition
Aug 2025
Publication
This study explores the potential of solar tracking technologies to enhance South Africa’s energy transition focusing on their role in supporting green hydrogen production for domestic use and export. Using the Global Energy System Model (GENeSYS-MOD) it evaluates four solar tracking technologies — horizontal axis tilted horizontal axis vertical axis and dual-axis — across six scenarios: tracking and non-tracking versions of a Business-as-Usual (BAU) scenario a 2 ◦C scenario and a high hydrogen demand and export (HighH2) scenario. The results identify horizontal axis tracking as the most cost-effective option followed by tilted horizontal axis tracking which is particularly prominent in the HighH2 scenario. Tracking systems enhance hydrogen production by extending power output and increasing electrolyzer full-load hours. In the HighH2 scenario they reduce hydrogen production costs in 2050 from 1.47 e/kg to 1.34 e/kg and system cost by 0.66% positioning South Africa competitively in the global hydrogen market. By integrating tracking technologies South Africa can align hydrogen production ambitions with renewable energy growth while mitigating grid and financial challenges. The research underscores the need for targeted energy investments and policies to maximize renewable energy and hydrogen potential ensuring a just energy transition that supports export opportunities domestic energy security and equitable socio-economic growth.
Towards Water-conscious Green Hydrogen and Methanol: A Techno-economic Review
Jan 2025
Publication
To enable a sustainable and socially accepted hydrogen and methanol economy it is crucial to prioritize green and water-conscious production. In this review we reveal that there is a significant research gap regarding comprehensive assessments of such production methods. We present an innovative process chain consisting of adsorption-based direct air capture solid oxide electrolysis and methanol synthesis to address this issue. To allow future comprehensive techno-economic assessments we perform a systematic literature review and harmonization of the techno-economic parameters of the process chain’s technologies. Based on the conducted literature review we find that the long-term median specific energy demand of adsorption-based direct air capture is expected to decrease to 204 kWhel/tCO2 and 1257 kWhth/tCO2 while the capture cost is expected to decrease to 162 €2024/tCO2 with a relative high uncertainty. The evaluated sources expect a future increase in system efficiency of solid oxide electrolysis to 80% while the purchase equipment costs are expected to decrease significantly. Finally we demonstrate the feasibility of the process chain from a technoeconomic perspective and show a potential reduction in external heat demand of the DAC unit of up to 34% when integrated in the process chain.
Research Sites of the H2STORE Project and the Relevance of Lithological Variations for Hydrogen Storage at Depths
Sep 2013
Publication
The H2STORE collaborative project investigates potential geohydraulic petrophysical mineralogical microbiological and geochemical interactions induced by the injection of hydrogen into depleted gas reservoirs and CO2- and town gas storage sites. In this context the University of Jena performs mineralogical and geochemical investigations on reservoir and cap rocks to evaluate the relevance of preferential sedimentological features which will control fluid (hydrogen) pathways thus provoking fluid-rock interactions and related variations in porosity and permeability. Thereby reservoir sand- and sealing mudstones of different composition sampled from distinct depths (different: pressure/temperature conditions) of five German locations are analysed. In combination with laboratory experiments the results will enable the characterization of specific mineral reactions at different physico-chemical conditions and geological settings.
Evaluation of the Impact of Gaseous Hydrogen on Pipeline Steels Utilizing Hollow Specimen Technique and μCT
Feb 2024
Publication
The high potential of hydrogen as a key factor on the pathway towards a climate neutral economy leads to rising demand in technical applications where gaseous hydrogen is used. For several metals hydrogen-metal interactions could cause a degradation of the material properties. This is especially valid for low carbon and highstrength structural steels as they are commonly used in natural gas pipelines and analyzed in this work. This work provides an insight to the impact of hydrogen on the mechanical properties of an API 5L X65 pipeline steel tested in 60 bar gaseous hydrogen atmosphere. The analyses were performed using the hollow specimen technique with slow strain rate testing (SSRT). The nature of the crack was visualized thereafter utilizing μCT imaging of the sample pressurized with gaseous hydrogen in comparison to one tested in an inert atmosphere. The combination of the results from non-conventional mechanical testing procedures and nondestructive imaging techniques has shown unambiguously how the exposure to hydrogen under realistic service pressure influences the mechanical properties of the material and the appearance of failure.
Hydrogen Sampling Systems Adapted to Heavy-duty Refuelling Stations' Current and Future Specifications - A Review
Sep 2024
Publication
To meet the new regulation for the deployment of alternative fuels infrastructure which sets targets for electric recharging and hydrogen refuelling infrastructure by 2025 or 2030 a large infrastructure comprising trucksuitable hydrogen refuelling stations will soon be required. However further standardisation is required to support the uptake of hydrogen for heavy-duty transport for Europe’s green energy future. Hydrogen-powered vehicles require pure hydrogen as some contaminants can reduce the performance of the fuel cell even at very low levels. Even if previous projects have paved the way for the development of the European quality infrastructure for hydrogen conformity assessment sampling systems and methods have yet to be developed for heavy-duty hydrogen refuelling stations (HD-HRS). This study reviews different aspects of the sampling of hydrogen at heavy-duty hydrogen refuelling stations for purity assessment with a focus on the current and future specifications and operations at HD-HRS. This study describes the state-of-the art of sampling systems currently under development for use at HD-HRS and highlights a number of aspects which must be taken into consideration to ensure safe and accurate sampling: risk assessment for the whole sampling exercise selection of cylinders methods to prepare cylinders before the sampling filling pressure and venting of the sampling systems.
Projecting Technological Advancement of Electrolyzers and the Impact on the Competitiveness of Hydrogen
Dec 2024
Publication
Green hydrogen has the potential to decarbonize hard-to-abate sectors and processes and should therefore play an important role in the energy system in achieving climate goals. However the main hydrogen supply is still based on fossil fuels and only limited amounts of electrolyzers have been installed. Switching from fossil-based fuel sources to green hydrogen is highly dependent on when and at what price green hydrogen will become available which in turn is dependent on the technological development of electrolyzers. In this paper we apply the experience curve methodology to project the capital expenditure and electrical consumption developments of the three main electrolysis technologies: alkaline proton exchange membrane and solid oxide electrolysis. Based on our calculations we expect that both AEL and PEM will reach similar costs by 2030 of around 300 e per kW and SOEC will remain the most expensive technology with a considerable cost reduction down to 828 e per kW. The electrical consumptions will fall to 4.23 kWh per Nm3 for AEL 3.86 kWh per Nm3 for PEM and 3.05 kWh per Nm3 for SOEC. Based on this technological progress we calculate that the levelized cost of hydrogen will be reduced to 2.43–3.07 e per kg. To reach lower levelized cost of hydrogen notable reductions in electricity (purchase) cost are required.
The Technopolitics of Hydrogen: Arab Gulf States' Pursuit of Significance in a Climate-Constrained World
Nov 2024
Publication
Despite uncertainties surrounding the hydrogen economy’s emergence in terms of technological innovation production storage and transport policy and regulation economic viability and environmental impact coun tries worldwide actively pursue initiatives to engage in this critical energy transition. Politicians analysts and global experts see ‘clean’ hydrogen as the ultimate solution for addressing the climate crisis. This optimism is shared by several major oil and gas-exporting nations which are investing heavily in hydrogen infrastructure to establish themselves as future global hubs. Oman Saudi Arabia and the United Arab Emirates (UAE) are especially well-positioned benefiting from strategic advantages over other hydrogen-producing regions in the Global South. Advocates in these countries view hydrogen as a potential ‘silver bullet’ for sustaining political and economic influence in a world increasingly shaped by climate constraints. Western technology and expertise play a significant role in supporting these efforts. By using various qualitative methods this paper employs and expand the concept of technopolitics to evaluate the role of industrialized nations in endorsing the Gulf states’ authoritarian top-down techno-optimistic approach to their sustainability agenda.
The Integration of Thermal Energy Storage Within Metal Hydride Systems: A Comprehensive Review
Dec 2024
Publication
Hydrogen storage technologies are key enablers for the development of low-emission sustainable energy supply chains primarily due to the versatility of hydrogen as a clean energy carrier. Hydrogen can be utilized in both stationary and mobile power applications and as a lowenvironmental-impact energy source for various industrial sectors provided it is produced from renewable resources. However efficient hydrogen storage remains a significant technical challenge. Conventional storage methods such as compressed and liquefied hydrogen suffer from energy losses and limited gravimetric and volumetric energy densities highlighting the need for innovative storage solutions. One promising approach is hydrogen storage in metal hydrides which offers advantages such as high storage capacities and flexibility in the temperature and pressure conditions required for hydrogen uptake and release depending on the chosen material. However these systems necessitate the careful management of the heat generated and absorbed during hydrogen absorption and desorption processes. Thermal energy storage (TES) systems provide a means to enhance the energy efficiency and cost-effectiveness of metal hydride-based storage by effectively coupling thermal management with hydrogen storage processes. This review introduces metal hydride materials for hydrogen storage focusing on their thermophysical thermodynamic and kinetic properties. Additionally it explores TES materials including sensible latent and thermochemical energy storage options with emphasis on those that operate at temperatures compatible with widely studied hydride systems. A detailed analysis of notable metal hydride–TES coupled systems from the literature is provided. Finally the review assesses potential future developments in the field offering guidance for researchers and engineers in advancing innovative and efficient hydrogen energy systems.
Hydrogen Production from Wastewater: A Comprehensive Review of Conventional and Solar Powered Technologies
Mar 2024
Publication
The need to reduce the carbon footprint of conventional energy sources has made green hydrogen a promising solution for the energy transition. The most environmentally friendly way to produce hydrogen is through water-based production using renewable energy. However the availability of fresh water is limited so switching to wastewater instead of fresh water is the key solution to this problem. In response to this issue the present review reports the main findings of the research studies dealing with the feasibility of hydrogen production from wastewater using various technologies including biological electrochemical and advanced oxidation routes. These methods have been studied in a large number of experiments with the aim of investigating and improving the potential of each method. On the other hand the maturity of solar energy technologies has led researchers to focus on the possibility of harnessing this source and combining it with wastewater treatment techniques for the production of green hydrogen. Therefore the present review pays special attention to solar driven hydrogen production from wastewater by highlighting the potential of several technologies for simultaneous water treatment and green hydrogen production from wastewater. Recent results limitations challenges possible improvements and techno-economic assessments reported by several authors as well as future directions of research and industrial implementation in this field are reported.
Heat and Mass Transfer Modeling of Vacuum Insulated Vessel Storing Cryogenic Liquid in Loss of Vacuum Accident
Sep 2023
Publication
Cryogenic liquid is often stored in a vacuum insulated Dewar vessel for a high efficiency of thermal insulation. Multi-layer insulation (MLI) can be further applied in the double-walled vacuum space to reduce the heat transfer from the environment to the stored cryogenic fluid. However in loss-of-vacuum accident (LOVA) scenarios heat flux across the MLI will raise to orders of magnitudes larger than with an intact vacuum shield. The cryogenic liquid will boil intensively and pressurize the vessel due to the heat ingress. The pressurization endangers the integrity of the vessel and poses an extra catastrophic risk if the vapor is flammable e.g. hydrogen. Therefore safety valves have to be designed and installed appropriately to make sure the pressure is limited to acceptable levels. In this work the dynamic process of the heat and mass transfers in the LOVA scenarios is studied theoretically. The mass deposition - desublimation of gaseous nitrogen on cryogenic surfaces is modeled as it provides the dominant contribution of the thermal load to the cryogenic fluid. The conventional heat convection and radiation are modeled too although they play only secondary roles as realized in the course of the study. The temperature dependent thermal properties of e.g. gaseous and solid nitrogen and stainless steel are used to improve the accuracy of calculation in the cryogenic temperature range. Presented methodology enabling the computation of thermodynamic parameters in the cryogenic storage system during LOVA scenarios provides further support for the future risk assessment and safety system design.
European Hydrogen Train the Trainer Programme for Responders: The Impact of HyResponder on Training Across Europe
Jan 2025
Publication
Síle Brennan,
Christian Brauner,
Dennis Davis,
Natalie DeBacker,
Alexander Dyck,
César García Hernández,
André Vagner Gaathaug,
Petr Kupka,
Laurence Grand-Clement,
Etienne Havret,
Deborah Houssin-Agbomson,
Laurent Lecomte,
Eric Maranne,
Pippa Steele,
Paola Russo,
Adolfo Pinilla,
Gerhard Schoepf,
Tom Van Esbroeck and
Vladimir V. Molkov
The impact of the HyResponder project on the training of responders in 10 European countries is described. An overview is presented of training activities undertaken within the project in Austria Belgium Czech Republic France Germany Italy Norway Spain Switzerland and the United Kingdom. National leads with training expertise are given and the longer-term plans in each region are mentioned. Responders from each region took part in a specially tailored “train the trainer” programme and then delivered training within their regions. A flexible approach to training within the HyResponder network has enabled fit for purpose region appropriate activities to be delivered impacting over 1250 individuals during the project and many more beyond. Teaching and learning materials in hydrogen safety for responders have been made available in 8 languages: English Czech Dutch French German Italian Norwegian Spanish. They are being used to inform training within each of the partner countries. Dedicated national working groups focused on hydrogen safety training for responders have been established in Belgium the Czech Republic Italy and Switzerland.
PyPSA-Earth Sector-coupled: A Global Open-source Multi-energy System Model Showcased for Hydrogen Applications in Countries of the Global South
Jan 2025
Publication
This study presents sector-coupled PyPSA-Earth: a novel global open-source energy system optimization model that incorporates major demand sectors and energy carriers in high spatial and temporal resolution to enable energy transition studies worldwide. The model includes a workflow that automatically downloads and processes the necessary demand supply and transmission data to co-optimize investment and operation of energy systems of countries or regions of Earth. The workflow provides the user with tools to forecast future demand scenarios and allows for custom user-defined data in several aspects. Sector-coupled PyPSA-Earth introduces novelty by offering users a comprehensive methodology to generate readily available sector-coupled data and model of any region worldwide starting from raw and open data sources. The model provides flexibility in terms of spatial and temporal detail allowing the user to tailor it to their specific needs. The capabilities of the model are demonstrated through two showcases for Egypt and Brazil. The Egypt case quantifies the relevant role of PV exceeding 35 GW and electrolysis in Suez and Damietta regions for meeting 16% of the EU hydrogen demand. Complementarily the Brazil case confirms the model’s ability in handling hydrogen planning infrastructure including repurposing of existing gas networks which results in 146 M€ lower costs than building new pipelines. The results prove the suitability of sector-coupled PyPSA-Earth to meet the needs of policymakers developers and scholars in advancing the energy transition. The authors invite the interested individuals and institutions to collaborate in the future developments of the model within PyPSA meets Earth initiative.
No more items...