Germany
Modeling of Tube Deformation and Failure under Conditions of Hydrogen Detonation
Sep 2023
Publication
In case of accidental conditions involving high-speed hydrogen combustion the considerable pressure and thermal loads could result in substantial deformation and/or destruction of the industrial appliances. Accounting of such effects in the safety analysis with CFD tools can provide critical information on the design and construction of the sensitive appliances’ elements. The current paper presents the development and the implementation of a new 3D-technique which makes possible to perform simulations of the gas-dynamic processes simultaneously with adaptation of the geometry of complex configurations. Using the data obtained in the experiments on the flame acceleration and DDT in the tubes of industrial arrangements performed in MPA and KIT the authors performed a series of the combustion simulations corresponding to the experimental conditions. The combustion gas-dynamics was simulated using COM3D code and the tube wall material behavior was modelled using finite-element code ABAQUS - © Dassault Systèmes with real-time data exchange between the codes. Obtained numerical results demonstrated good agreement with the observed experimental data on both pressure dynamics and tube deformation history.
Unconfined Hydrogen Detonations: Experiments, Modelling, Scaling
Sep 2023
Publication
A series of unconfined hydrogen detonation bench-mark experiments are analyzed with respect to CFD code validation and safety measures development. 1-Dimensional in-house code COM1D was applied for validation against experimental data for unconfined detonation of a hemispherical envelope of about 3- and 5-m radius with hydrogen-air mixtures from 20 to 30% hydrogen in air. The code demonstrates a very good agreement with experimental data and allows an adequate simulation of the unconfined hydrogen detonation. All calculated data were scaled in Sachs coordinates to compare with experimental data and to approximate the data for practical evaluation of safety distances. Numerical experiments with different hydrogen inventories from 50 g to 50 kg and different sizes of the cloud from 1 to 2 m radius of the same amount of hydrogen 50g were carried out to clarify the problem of energy of gaseous explosion responsible for the strength of blast wave. Additionally a comparison of hydrogen-air explosion pressure with blast wave properties from the hypothetical cloud of hot compressed combustion products (P=Picc; T=Ticc) and simply a hot air of the same initial pressure and temperature as combustion products showed very good agreement of shock wave strength at far distances beyond the cloud. This confirms the governing role of energy of combustion on blast wave propagation and its ability to scale the strength of blast waves. The dynamics of the explosion process and combustion product expansion were also analyzed experimentally and numerically to evaluate the dimension of the heat radiation zone and heat flux from combustion products. To demonstrate the capability of tested COM1D code the modeling and analysis of high-pressure hydrogen tanks rupture at 350 and 700 bar were conducted to investigate blast wave strength and evaluate the safety distances.
Grid-supported Electrolytic Hydrogen Production: Cost of Climate Impact Using Dynamic Emission Factors
Aug 2023
Publication
Hydrogen production based on a combination of intermittent renewables and grid electricity is a promising approach for reducing emissions in hard-to-decarbonise sectors at lower costs. However for such a configuration to provide climate benefits it is crucial to ensure that the grid electricity consumed in the process is derived from low-carbon sources. This paper examined the use of hourly grid emission factors (EFs) to more accurately determine the short-term climate impact of dynamically operated electrolysers. A model of the interconnected northern European electricity system was developed and used to calculate average grid-mix and marginal EFs for the four bidding zones in Sweden. Operating a 10 MW electrolyser using a combination of onshore wind and grid electricity was found to decrease the levelised cost of hydrogen (LCOH) to 2.40–3.63 €/kgH2 compared with 4.68 €/kgH2 for wind-only operation. A trade-off between LCOH and short-term climate impact was revealed as specific marginal emissions could exceed 20 kgCO2eq/kgH2 at minimum LCOH. Both an emission-minimising operating strategy and an increased wind-to-electrolyser ratio was found to manage this trade-off by enabling simultaneous cost and emission reductions lowering the marginal carbon abatement cost (CAC) from 276.8 €/tCO2eq for wind-only operation to a minimum of 222.7 and 119.3 €/tCO2eq respectively. Both EF and LCOH variations were also identified between the bidding zones but with no notable impact on the marginal CAC. When using average grid-mix emission factors the climate impact was low and the CAC could be reduced to 71.3–200.0 €/tCO2eq. In relation to proposed EU policy it was demonstrated that abiding by hourly renewable temporal matching principles could ensure low marginal emissions at current levels of fossil fuels in the electricity mix.
Subcooled Liquid Hydrogen Technology for Heavy-Duty Trucks
Jan 2024
Publication
Subcooled liquid hydrogen (sLH2) is an onboard storage as well as a hydrogen refueling technology that is currently being developed by Daimler Truck and Linde to boost the mileage of heavy-duty trucks while also improving performance and reducing the complexity of hydrogen refueling stations. In this article the key technical aspects advantages challenges and future developments of sLH2 at vehicle and infrastructure levels will be explored and highlighted.
Life Cycle Costing Approaches of Fuel Cell and Hydrogen Systems: A Literature Review
Apr 2023
Publication
Hydrogen is a versatile energy carrier which can be produced from variety of feedstocks stored and transported in various forms for multi-functional end-uses in transportation energy and manufacturing sectors. Several regional national and supra-national climate policy frameworks emphasize the need value and importance of Fuel cell and Hydrogen (FCH) technologies for deep and sector-wide decarbonization. Despite these multi-faceted advantages familiar and proven FCH technologies such as alkaline electrolysis and proton-exchange membrane fuel cell (PEMFC) often face economic technical and societal barriers to mass-market adoption. There is no single unified standardized and globally harmonized normative definition of costs. Nevertheless the discussion and debates surrounding plausible candidates and/or constituents integral for assessing the economics and value proposition of status-quo as well as developmental FCH technologies are steadily increasing—Life Cycle Costing (LCC) being one of them if not the most important outcome of such exercises.<br/>To that end this review article seeks to improve our collective understanding of LCC of FCH technologies by scrutinizing close to a few hundred publications drawn from representative databases—SCOPUS and Web of Science encompassing several tens of technologies for production and select transportation storage and end-user utilization cases. This comprehensive review forms part of and serves as the basis for the Clean Hydrogen Partnership funded SH2E project whose ultimate goal is the methodical development a formal set of principles and guardrails for evaluating the economic environmental and social impacts of FCH technologies. Additionally the SH2E projects will also facilitate the proper comparison of different FCH technologies whilst reconciling range of technologies methodologies modelling assumptions and parameterization found in existing literature.
The Industry Transformation from Fossil Fuels to Hydrogen will Reorganize Value Chains: Big Picture and Case Studies for Germany
Jan 2024
Publication
In many industries low-carbon hydrogen will substitute fossil fuels in the course of the transformation to climate neutrality. This paper contributes to understanding this transformation. This paper provides an overview of energy- and emission-intensive industry sectors with great potential to defossilize their production processes with hydrogen. An assessment of future hydrogen demand for various defossilization strategies in Germany that rely on hydrogen as a feedstock or as an energy carrier to a different extent in the sectors steel chemicals cement lime glass as well as pulp and paper is carried out. Results indicate that aggregate industrial hydrogen demand in those industries would range between 197 TWh and 298 TWh if production did not relocate abroad for any industry sector. The range for hydrogen demand is mainly due to differences in the extent of hydrogen utilization as compared to alternative transformation paths for example based on electrification. The attractiveness of production abroad is then assessed based on the prospective comparative cost advantage of relocating parts of the value chain to excellent production sites for low-carbon hydrogen. Case studies are provided for the steel industry as well as the chemical industry with ethylene production through methanol and the production of urea on the basis of ammonia. The energy cost of the respective value chains in Germany is then compared to the case of value chains partly located in regions with excellent conditions for renewable energies and hydrogen production. The results illustrate that at least for some processes – as ammonia production – relocation to those favorable regions may occur due to substantial comparative cost advantages.
Deep Learning for Wind and Solar Energy Forecasting in Hydrogen Production
Feb 2024
Publication
This research delineates a pivotal advancement in the domain of sustainable energy systems with a focused emphasis on the integration of renewable energy sources—predominantly wind and solar power—into the hydrogen production paradigm. At the core of this scientific endeavor is the formulation and implementation of a deep-learning-based framework for short-term localized weather forecasting specifically designed to enhance the efficiency of hydrogen production derived from renewable energy sources. The study presents a comprehensive evaluation of the efficacy of fully connected neural networks (FCNs) and convolutional neural networks (CNNs) within the realm of deep learning aimed at refining the accuracy of renewable energy forecasts. These methodologies have demonstrated remarkable proficiency in navigating the inherent complexities and variabilities associated with renewable energy systems thereby significantly improving the reliability and precision of predictions pertaining to energy output. The cornerstone of this investigation is the deployment of an artificial intelligence (AI)-driven weather forecasting system which meticulously analyzes data procured from 25 distinct weather monitoring stations across Latvia. This system is specifically tailored to deliver short-term (1 h ahead) forecasts employing a comprehensive sensor fusion approach to accurately predicting wind and solar power outputs. A major finding of this research is the achievement of a mean squared error (MSE) of 1.36 in the forecasting model underscoring the potential of this approach in optimizing renewable energy utilization for hydrogen production. Furthermore the paper elucidates the construction of the forecasting model revealing that the integration of sensor fusion significantly enhances the model’s predictive capabilities by leveraging data from multiple sources to generate a more accurate and robust forecast. The entire codebase developed during this research endeavor has been made available on an open access GIT server.
Numerical Analysis of the Hydrogen-air Mixture Formation Process in a Direct-injection Engine for Off-road Applications
Jun 2024
Publication
Among the different hydrogen premixed combustion concepts direct injection (DI) is one of the most promising for internal combustion engine (ICE) applications. However to fully exploit the benefits of this solution the optimization of the mixture preparation process is a crucial factor. In the present work a study of the hydrogenair mixture formation process in a DI H2-ICE for off-road applications was performed through 3D-CFD simulations. First a sensitivity analysis on the injection timing was carried out to select the optimal injection operating window capable of maximizing mixture homogeneity without a significant volumetric efficiency reduction. Then different spray injector guiding caps were tested to assess their effect on in-cylinder dynamics and mixture characteristics consequently. Finally the impact of swirl intensity on hydrogen distribution has been assessed. The optimization of the combustion chamber geometry has allowed the achievement of significant improvements in terms of mixture homogeneity.
Techno-economic and Environmental Assessment of Renewable Hydrogen Import Routes from Overseas in 2030
Dec 2024
Publication
Converting renewable electricity via water electrolysis into green hydrogen and hydrogen-based products will shape a global trade in power-to-x (PtX) products. The European Union's renewable hydrogen import target of 10 million tonnes by 2030 reflects the urgent need for PtX imports by sea to early high-demand countries like Germany. This study evaluates the cost efficiency and greenhouse gas (GHG) emissions of four hydrogen carrier ship import options considering a reconversion to H2 at the import terminal for a final delivery to offtakers via a H2 pipeline network in 2030. This includes ammonia a liquid organic hydrogen carrier (LOHC) system based on benzyltoluene (BT) and a novel CO2/e-methane and CO2/e-methanol cycle where CO2 is captured at the reconversion plant and then shipped back to the PtX production site in a nearly closed carbon loop. The GHG emission accounting includes well-to-wake emissions of the marine fuels and direct emissions of the carbon capture plant. Two GW-scale case studies reveal the impact of a short and long-distance route from Tunisia and Australia to Germany whereas the specific PtX carriers are either fuelled by its PtX cargo as a renewable marine fuel or by conventional heavy fuel oil (HFO). Ammonia outperforms the other PtX routes as the total hydrogen supply cost range between 5.07 and 7.69 for Australia (low: NH3 HFO high: LOHC HFO) and 4.78–6.21 € per kg H2 for Tunisia (low: NH3 HFO high: CH4 HFO) respectively. The ammonia routes achieve thereby GHG intensities of 31 % and 86 % below the EU threshold of 3.4 kg CO2(e) per kg H2 for renewable hydrogen. LOHC though unless switching to low-emission fuels and the CO2/e-methanol cycle exceed the GHG threshold at shipping distances of 12300 and 16600 km. The hydrogen supply efficiencies vary between 57.9 and 78.8 %LHV (low: CH4 PtX-fuelled high: NH3 HFO) with a PtX marine fuel consumption of up to 15 % LHV for the Australian methanol route whereas high uncertainties remain for the ammonia and methanol reconversion plant efficiencies. The CO2 cyle enables a cost-efficient CO2 supply easing the near-term shortage of climate-neutral CO2 sources at the cost of high GHG emissions for long-distance routes.
Assessing the Implications of Hydrogen Blending on the European Energy System towards 2050
Dec 2023
Publication
With the aim of reducing carbon emissions and seeking independence from Russian gas in the wake of the conflict in Ukraine the use of hydrogen in the European Union is expected to rise in the future. In this regard hydrogen transport via pipeline will become increasingly crucial either through the utilization of existing natural gas infrastructure or the construction of new dedicated hydrogen pipelines. This study investigates the effects of hydrogen blending in existing pipelines on the European energy system by the year 2050 by introducing hydrogen blending sensitivities to the Global Energy System Model (GENeSYS-MOD). Results indicate that hydrogen demand in Europe is inelastic and limited by its high costs and specific use cases with hydrogen production increasing by 0.17% for 100%-blending allowed compared to no blending allowed. The availability of hydrogen blending has been found to impact regional hydrogen production and trade with countries that can utilize existing natural gas pipelines such as Norway experiencing an increase in hydrogen and synthetic gas exports from 44.0 TWh up to 105.9 TWh in 2050 as the proportion of blending increases. Although the influence of blending on the overall production and consumption of hydrogen in Europe is minimal the impacts on the location of production and dependence on imports must be thoroughly evaluated in future planning efforts.
Model-based Analysis and Optimization of Pressurised Alkaline Water Electrolysis Powered by Renewable Energy
Jul 2023
Publication
Alkaline water electrolysis is a key technology for large-scale hydrogen production. In this process safety and efficiency are among the most essential requirements. Hence optimization strategies must consider both aspects. While experimental optimization studies are the most accurate solution model-based approaches are more cost and time-efficient. However validated process models are needed which consider all important influences and effects of complete alkaline water electrolysis systems. This study presents a dynamic process model for a pressurized alkaline water electrolyzer consisting of four submodels to describe the system behavior regarding gas contamination electrolyte concentration cell potential and temperature. Experimental data from a lab-scale alkaline water electrolysis system was used to validate the model which could then be used to analyze and optimize pressurized alkaline water electrolysis. While steady-state and dynamic solutions were analyzed for typical operating conditions to determine the influence of the process variables a dynamic optimization study was carried out to optimize an electrolyte flow mode switching pattern. Moreover the simulation results could help to understand the impact of each process variable and to develop intelligent concepts for process optimization
Experimental Evaluation of Dynamic Operating Concepts for Alkaline Water Electrolyzers Powered by Renewable Energy
Dec 2021
Publication
Synthetic current density profiles with wind and photovoltaic power characteristics were calculated by autoregressive-moving-average (ARMA) models for the experimental evaluation of dynamic operating concepts for alkaline water electrolyzers powered by renewable energy. The selected operating concepts included switching between mixed and split electrolyte cycles and adapting the liquid electrolyte volume flow rate depending on the current density. All experiments were carried out at a pressure of 7 bar a temperature of 60 °C and with an aqueous potassium hydroxide solution with 32 wt.% KOH as the electrolyte. The dynamic operating concepts were compared to stationary experiments with mixed electrolyte cycles and the experimental evaluation showed that the selected operating concepts were able to reduce the gas impurity compared to the reference operating conditions without a noticeable increase of the cell potential. Therefore the overall system efficiency and process safety could be enhanced by this approach.
The Future European Hydrogen Market: Market Design and Policy Recommendations to Support Market Development and Commodity Trading
May 2024
Publication
A key building block of the European Green Deal is the development of a hydrogen commodity market which requires a suitable hydrogen market design and the timely introduction of related policy measures. Using exploratory interviews with five expert groups we contribute to this novel research field by outlining the core market design criteria and proposing suitable regulations for the future European hydrogen market. We identify detailed recommendations along three core market design focus areas: Market development policy measures infrastructure regulations as well as hydrogen and certificate trading. Our findings provide an across-industry view of current policy-related key challenges in the hydrogen commodity market development and mitigation approaches. We therefore support policymakers within the EU in the ongoing detailing of their regulatory hydrogen and green energy packages. Further we promote hydrogen market development by assisting current and future industry players in finding a common understanding of the future hydrogen market design.
Refuelling Tests of a Hydrogen Tank for Heavy-duty Applications
Sep 2023
Publication
A transition towards zero-emission fuels is required in the mobility sector in order to reach the climate goals. Here (green) renewable hydrogen for use in fuel cells will play an important role especially for heavy duty applications such as trucks. However there are still challenges to overcome regarding efficient storage infrastructure integration and optimization of the refuelling process. A key aspect is to reduce the refuelling duration as much as possible while staying below the maximum allowed temperature of 85 C. Experimental tests for the refuelling of a 320 l type III tank were conducted at different operating conditions and the tank gas temperature measured at the front and back ends. The results indicate a strongly inhomogeneous temperature field where measuring and verifying the actual maximum temperatures proves difficult. Furthermore a simulation approach is provided to calculate the average tank gas temperature at the end of the refuelling process.
3D Modeling of the Different Boiling Regimes During Spill and Spreading of Liquid Hydrogen
Nov 2012
Publication
In a future energy generation market the storage of energy is going to become increasingly important. Besides classic ways of storage like pumped storage hydro power stations etc the production of hydrogen will play an important role as an energy storage system. Hydrogen may be stored as a liquefied gas (LH2) on a long term base as well as for short term supply of fuel stations to ensure a so called “green” mobility. The handling with LH2 has been subject to several recent safety studies. In this context reliable simulation tools are necessary to predict the spill and spreading of LH2 during an accidental release. This paper deals with the different boiling regimes: film boiling transition boiling and nucleation boiling after a release and their modeling by means of an inhouse-code for wall evaporation which is implemented in the commercial CFD code ANSYS CFX. The paper will describe the model its implementation and validation against experimental data such as the HSL LH2 spill experiments.
Carbon-negative Hydrogen Production (HyBECCS): An Exemplary Techno-economic and Environmental Assessment
Sep 2023
Publication
An exemplary techno-economic and environmental assessment of carbon-negative hydrogen (H2) production is carried out in this work. It is based on the so-called “dark photosynthesis” with carbon dioxide (CO2) capture and geological storage. As a special feature of the assessment the economic consequences due to the impact on the global climate are taken into account. The results indicate that the example project would be capable of generating negative GHG emissions under the assumptions made. The amount is estimated to be 17.72 kgCO2 to be removed from the atmosphere per kilogram of H2 produced. The levelized costs of carbon-negative hydrogen are obtained considering the economic impact of greenhouse gas emissions and removals. They are estimated to be 0.013 EUR/kWhH2. Compared to grey hydrogen from natural gas (0.12 EUR/kWhH2) and green hydrogen from electrolysis using renewable electricity (0.18 EUR/kWhH2) this shows a potential environmental-economic advantage of the considered example. Even without internalization of GHG impacts an economic advantage of the project (0.12 EUR/kWhH2) over green hydrogen (0.17 EUR/kWhH2) is indicated. Compared to other NETs the GHG removal efficiency is at the lower end of both BECCS and DACCS approaches.
The Role of Hydrogen for a Greenhouse Gas-neutral Germany by 2045
May 2023
Publication
This paper aims to provide a holistic analysis of the role of hydrogen for achieving greenhouse gas neutrality in Germany. For that purpose we apply an integrated energy system model which includes all demand sectors of the German energy system and optimizes the transformation pathway from today's energy system to a future cost-optimal energy system. We show that 412 TWh of hydrogen are needed in the year 2045 mostly in the industry and transport sector. Particularly the use of about 267 TWh of hydrogen in industry is essential as there are no cost-effective alternatives for the required emission reduction in the chemical industry or in steel production. Furthermore we illustrate that the German hydrogen supply in the year 2045 requires both an expansion of domestic electrolyzer capacity to 71 GWH2 and hydrogen imports from other European countries and Northern Africa of about 196 TWh. Moreover flexible operation of electrolyzers is cost-optimal and crucial for balancing the intermittent nature of volatile renewable energy sources. Additionally a conducted sensitivity analysis shows that full domestic hydrogen supply in Germany is possible but requires an electrolyzer capacity of 111 GWH2.
Natural Hydrogen in the Energy Transition: Fundamentals, Promise, and Enigmas
Oct 2023
Publication
Beyond its role as an energy vector a growing number of natural hydrogen sources and reservoirs are being discovered all over the globe which could represent a clean energy source. Although the hydrogen amounts in reservoirs are uncertain they could be vast and they could help decarbonize energy-intensive economic sectors and facilitate the energy transition. Natural hydrogen is mainly produced through a geochemical process known as serpentinization which involves the reaction of water with low-silica ferrous minerals. In favorable locations the hydrogen produced can become trapped by impermeable rocks on its way to the atmosphere forming a reservoir. The safe exploitation of numerous natural hydrogen reservoirs seems feasible with current technology and several demonstration plants are being commissioned. Natural hydrogen may show variable composition and require custom separation purification storage and distribution facilities depending on the location and intended use. By investing in research in the mid-term more hydrogen sources could become exploitable and geochemical processes could be artificially stimulated in new locations. In the long term it may be possible to leverage or engineer the interplay between microorganisms and geological substrates to obtain hydrogen and other chemicals in a sustainable manner.
Full Load Optimization of a Hydrogen Fuelled Industrial Engine
Jun 2024
Publication
There are a large number of applications in which hydrogen internal combustion engines represent a sensible alternative to battery electric propulsion systems and to fuel cell electric propulsion systems. The main advantages of combustion engines are their high degree of robustness and low manufacturing costs. No critical raw materials are required for production and there are highly developed production plants worldwide. A CO2-free operation is possible when using hydrogen as a fuel. The formation of nitrogen oxides during hydrogen combustion in the engine can be effectively mitigated by a lean-burn combustion process. However achieving low NOx raw emissions conflicts with achieving high power yields. In this work a series industrial diesel engine was converted for hydrogen operation and comprehensive engine tests were carried out. Various measures to improve the trade-off between NOx emissions and performance were investigated and evaluated. The rated power output and the maximum torque of the series diesel engine could be exceeded while maintaining an indicated specific NOx emission of 1 g/kWh along the entire full load curve. In the low-end-torque range however the gap to the full load curve of the series diesel engine could not be fully closed with the hardware used.
Heat Pumps for Germany—Additional Pressure on the Supply–Demand Equilibrium and How to Cope with Hydrogen
Jun 2024
Publication
In the context of the German Energiewende the current government intends to install six million heat pumps by 2030. Replacing gas heating by power has significant implications on the infrastructure. One of the biggest advantages of using gas is the existing storage portfolio. It has not been clarified yet how power demand should be structured on an annual level—especially since power storage is already a problem and solar power is widely promoted to fuel heat pumps despite having an inverse profile. In this article three different solutions namely hydrogen batteries and carbon capture and storage are discussed with respect to resources energy and financial demand. It shows that relying solely on batteries or hydrogen is not solving the structuring problem. A combination of all existing technologies (including fossil fuels) is required to structure the newly generated electricity demand
No more items...