Denmark
On the Feasibility of Direct Hydrogen Utilisation in a Fossil-free Europe
Oct 2022
Publication
Hydrogen is often suggested as a universal fuel that can replace fossil fuels. This paper analyses the feasibility of direct hydrogen utilisation in all energy sectors in a 100% renewable energy system for Europe in 2050 using hour-by-hour energy system analysis. Our results show that using hydrogen for heating purposes has high costs and low energy efficiency. Hydrogen for electricity production is beneficial only in limited quantities to restrict biomass consumption but increases the system costs due to losses. The transport sector results show that hydrogen is an expensive alternative to liquid e-fuels and electrified transport due to high infrastructure costs and respectively low energy efficiency. The industry sector may benefit from hydrogen to reduce biomass at a lower cost than in the other energy sectors but electrification and e-methane may be more feasible. Seen from a systems perspective hydrogen will play a key role in future renewable energy systems but primarily as e-fuel feedstock rather than direct end-fuel in the hard-to-abate sectors.
NewGasMet - Flow Metering of Renewable Gases (Biogas, Biomethane, Hydrogen, Syngas and Mixtures with Natural Gas): Criteria and Proposals for EMC Tests on Ultrasonic Meters with Non-conventional Gases
Oct 2022
Publication
The NEWGASMET project has the overall objective to increase knowledge about the accuracy and durability of commercially available gas meters after exposure to renewable gases. This should lead to the improvement of existing meter designs and flow calibration standards. One of the recently released results is a proposal for a set of test gases to represent the range of non-conventional gases in the scope of the revision of the gas meter standards. In details these were proposed to be used in the CEN/TC237 standards and the OIML-R137:2014. During the project meetings concerns have been raised regarding the applicability of such test gases to EMC tests for static meters. Today such tests are performed in air but there is a clear agreement that the behaviour of the meter during EMC tests can be influenced by the renewable gas type. At least this agreement exists for the ultrasonic measurement technology while further discussion might be needed for the mass flow. However it is not simply possible to redesign the current EMC tests by replacing air with the defined gas mixtures as this would be quite impractical especially considering the explosive nature of the test gases.
NewGasMet - Flow Metering of Renewable Gases (Biogas, Biomethane, Hydrogen, Syngas and Mixtures with Natural Gas): Effect of Hydrogen Admixture on the Accuracy of a Rotary Flow Meter
Aug 2021
Publication
With the rise of hydrogen use in the natural gas grid a need exists for reliable measurements of the amount of energy being transported and traded for hydrogen admixtures. Using VSL’s high-pressure Gas Oil Piston Prover (GOPP) primary standard the effect of mixing hydrogen with natural gas on the performance of a high-pressure gas flow meter was investigated. The error of a rotary flow meter was determined using the best possible uncertainty by calibration with the primary standard for high-pressure natural gas flow. The rotary flow meter was calibrated using both natural gas and hydrogen enriched natural gas (nominally 15% hydrogen) at two different pressures: 9 and 16 bar. Results indicate that for the rotary flow meter and hydrogen admixtures used the differences in the meter errors between high-pressure hydrogen-enriched natural gas calibration and high-pressure natural gas calibration are smaller than the corresponding differences between atmospheric pressure air calibration and high-pressure natural gas calibration.
Potential Role of Renewable Gas in the Transition of Electricity and District Heating Systems
Dec 2019
Publication
With the constant increase in variable renewable energy production in electricity and district heating systems integration with the gas system is a way to provide flexibility to the overall energy system. In the sustainable transition towards a zero-emission energy system traditional natural gas can be substituted by renewable gasses derived from anaerobic digestion or thermal gasification and hydrogen. In this paper we present a methodology for modelling renewable gas options and limits on biomass resources across sectors in the energy optimisation model Balmorel. Different scenarios for socio-economic pathways to emission neutral electricity and district heating systems in Denmark Sweden Norway and Germany show that a renewable based energy system benefits from a certain percentage of gas as a supplement to other flexibility options like interconnectors. Especially upgraded biogas from anaerobic digestion serves as a substitute for natural gas in all scenarios. Allocating only 10% of available biomass to the electricity and district heating sector leads to full exploitation of the scarce biomass resource by boosting biogas and syngas with hydrogen. The need for renewable gasses is highest in Germany and least in Norway where hydro-power provides flexibility in terms of storable and dispatchable electricity production. The scenarios show that a required ‘‘late sprint" from fossils to achieve a zero-emission energy system in 2050 causes (1) significant higher accumulated emissions and (2) a system which strongly relies on fuels also in an emission free system instead of stronger integration of the electricity and district heating systems through electrification as well as stronger integration of the power systems across countries through interconnectors.
Going Offshore or Not: Where to Generate Hydrogen in Future Integrated Energy Systems?
Jan 2023
Publication
Hydrogen can be key in the energy system transition. We investigate the role of offshore hydrogen generation in a future integrated energy system. By performing energy system optimisation in a model application of the Northern-central European energy system and the North Sea offshore grid towards 2050 we find that offshore hydrogen generation may likely only play a limited role and that offshore wind energy has higher value when sent to shore in the form of electricity. Forcing all hydrogen generation offshore would lead to increased energy system costs. Under the assumed scenario conditions which result in deep decarbonisation of the energy system towards 2050 hydrogen generation – both onshore and offshore – follows solar PV generation patterns. Combined with hydrogen storage this is the most cost-effective solution to satisfy future hydrogen demand. Overall we find that the role of future offshore hydrogen generation should not simply be derived from minimising costs for the offshore sub-system but by also considering the economic value that such generation would create for the whole integrated energy system. We find as a no-regret option to enable and promote the integration of offshore wind in onshore energy markets via electrical connections.
A Multi-objective Optimization Approach in Defining the Decarbonization Strategy of a Refinery
Mar 2022
Publication
Nowadays nearly one quarter of global carbon dioxide emissions are attributable to energy use in industry making this an important target for emission reductions. The scope of this study is hence that to define a cost-optimized decarbonization strategy for an energy and carbon intensive industry using an Italian refinery as a case study. The methodology involves the coupling of EnergyPLAN with a Multi-Objective Evolutionary Algorithm (MOEA) considering the minimization of annual cost and CO2 emissions as two potentially conflicting objectives and the energy technologies’ capacities as decision variables. For the target year 2025 EnergyPLAN+MOEA has allowed to model a range of 0-100 % decarbonization solutions characterized by optimal penetration mix of 22 technologies in the electrical thermal hydrogen feedstock and transport demand. A set of nine scenarios with different land use availabilities and implementable technologies each consisting of 100 optimal systems out of 10000 simulated ones has been evaluated. The results show on the one hand the possibility of achieving medium-high decarbonization solutions at costs close to current ones on the other how the decarbonization pathways strongly depend on the available land for solar thermal photovoltaic and wind as well as the presence of a biomass supply chain in the region.
Feasibility of Hydrogen Storage in Depleted Hydrocarbon Chalk Reservoirs: Assessment of Biochemical and Chemical Effects
Jul 2022
Publication
Hydrogen storage is one of the energy storage methods that can help realization of an emission free future by saving surplus renewable energy for energy deficit periods. Utilization of depleted hydrocarbon reservoirs for large-scale hydrogen storage may be associated with the risk of chemical/biochemical reactions. In the specific case of chalk reservoirs the principal reactions are abiotic calcite dissolution acetogenesis methanogenesis and biological souring. Here we use PHREEQC to evaluate the dynamics and the extent of hydrogen loss by each of these reactions in hydrogen storage scenarios for various Danish North Sea chalk hydrocarbon reservoirs. We find that: (i) Abiotic calcite dissolution does not occur in the temperature range of 40-180◦ C. (ii) If methanogens and acetogens grow as slow as the slowest growing methanogens and acetogens reported in the literature methanogenesis and acetogenesis cannot cause a hydrogen loss more than 0.6% per year. However (iii) if they proceed as fast as the fastest growing methanogens and acetogens reported in the literature a complete loss of all injected hydrogen in less than five years is possible. (iv) Co-injection of CO2 can be employed to inhibit calcite dissolution and keep the produced methane due to methanogenesis carbon neutral. (v) Biological sulfate reduction does not cause significant hydrogen loss during 10 years but it can lead to high hydrogen sulfide concentrations (1015 ppm). Biological sulfate reduction is expected to impact hydrogen storage only in early stages if the only source of sulfur substrates are the dissolved species in the brine and not rock minerals. Considering these findings we suggest that depleted chalk reservoirs may not possess chemical/biochemical risks and be good candidates for large-scale underground hydrogen storage.
How to Connect Energy Islands: Trade-offs Between Hydrogen and Electricity Infrastructure
Apr 2023
Publication
In light of offshore wind expansions in the North and Baltic Seas in Europe further ideas on using offshore space for renewable-based energy generation have evolved. One of the concepts is that of energy islands which entails the placement of energy conversion and storage equipment near offshore wind farms. Offshore placement of electrolysers will cause interdependence between the availability of electricity for hydrogen production and for power transmission to shore. This paper investigates the trade-offs between integrating energy islands via electricity versus hydrogen infrastructure. We set up a combined capacity expansion and electricity dispatch model to assess the role of electrolysers and electricity cables given the availability of renewable energy from the islands. We find that the electricity system benefits more from connecting close-to-shore wind farms via power cables. In turn electrolysis is more valuable for far-away energy islands as it avoids expensive long-distance cable infrastructure. We also find that capacity investment in electrolysers is sensitive to hydrogen prices but less to carbon prices. The onshore network and congestion caused by increased activity close to shore influence the sizing and siting of electrolysers.
A Novel Scheme to Allocate the Green Energy Transportation Costs—Application to Carbon Captured and Hydrogen
Mar 2023
Publication
Carbon dioxide (CO2 ) and hydrogen (H2 ) are essential energy vectors in the green energy transition. H2 is a fuel produced by electrolysis and is applied in heavy transportation where electrification is not feasible yet. The pollutant substance CO2 is starting to be captured and stored in different European locations. In Denmark the energy vision aims to use this CO2 to be reacted with H2 producing green methanol. Typically the production units are not co-located with consumers and thus the required transportation infrastructure is essential for meeting supply and demand. This work presents a novel scheme to allocate the transportation costs of CO2 and H2 in pipeline networks which can be applied to any network topology and with any allocation method. During the tariff formation process coordinated adjustments are made by the novel scheme on the original tariffs produced by the allocation method employed considering the location of each customer connected to pipeline network. Locational tariffs are provided as result and the total revenue recovery is guaranteed to the network owner. Considering active customers the novel scheme will lead to a decrease of distant pipeline flows thereby contributing to the prevention of bottlenecks in the transportation network. Thus structural reinforcements can be avoided reducing the total transportation cost paid by all customers in the long-term.
Techno-economic Analysis and Predictive Operation of a Power-to-hydrogen for Renewable Microgrids
Oct 2023
Publication
To enhance renewable energy (RE) generation and maintain power balance energy storage systems are of utmost importance. This research introduces a cutting-edge Power-to-Hydrogen (PtH) framework that harnesses hydrogen as a clean and versatile energy storage medium. The primary focus of this study lies in optimizing power flow within a microgrid (G) equipped with RE and energy storage systems considering various factors such as RE generation power demand battery charge cycles and operational costs. To achieve the optimal balance between power generation and consumption a sophisticated mathematical solution is devised. This solution governs the charging and discharging patterns for both battery and electrolyzer ensuring a harmonious power equilibrium. The use of short-term forecasting further refines the optimization process adapting the parameters based on anticipated RE sources and load requirements. To fine-tune the power management solution for day-to-day operations an artificial neural fuzzy inference system (ANFIS)-based shortterm prediction model is employed. The predictive analysis provides confidence intervals for crucial aspects including power generation demand battery charging cycles and hydrogen generation. This facilitates precise cost estimation across various hydrogen and heat price ranges. the proposed PtH optimization framework offers an efficient approach to balance power generation and consumption in Gs driven by RE sources and energy storage. To validate the proposed approach numerical simulations are performed based on data from wind and solar farms load requirements and cost of energy. The results show that the proposed energy management strategy significantly reduces operational costs and optimizes PtH generation while maintaining power balance within the microgrid (G). The predictive approach helps fine-tune the optimization process improving efficiency and cost-effectiveness. The research convincingly demonstrate the economic advantages of adopting hydrogen as an energy storage medium paving the way for a cleaner and more sustainable energy future.
Model-based Economic Analysis of Off-grid Wind/Hydrogen Systems
Sep 2023
Publication
Hydrogen has emerged in the context of large-scale renewable uptake and deep decarbonization. However the high cost of splitting water into hydrogen using renewable energy hinders the development of green hydrogen. Here we provide a cost analysis of hydrogen from off-grid wind. It is found that the current cost evaluation can be improved by examining the operational details of electrolysis. Instead of using low-resolution wind-speed data and linear electrolysis models we generate 5-min resolution wind data and utilize detailed electrolysis models that can describe the safe working range startup time and efficiency variation. Economic assessments are performed over 112 locations in seven countries to demonstrate the influence of operational models. It is shown that over-simplified models lead to less reliable results and the relative error can be 63.65% at most. Further studies have shown the global picture of producing green hydrogen. Based on the improved model we find that the levelized cost of hydrogen ranges from 1.66$/kg to 13.61$/kg. The wind-based hydrogen is cost-competitive in areas with abundant resources and lower investment cost such as China and Denmark. However it is still costly in most of the studied cases. An optimal sizing strategy or involving a battery as electricity storage can further reduce the hydrogen cost the effectiveness of which is location-specific. The sizing strategies of electrolyzers differ by country and rely on the specific wind resource. In contrast the sizing of batteries presents similar trends. Smaller batteries are preferred in almost all the investigated cases.
Renewable Fuel Production and the Impact of Hydrogen Infrastructure - A Case Study of the Nordics
Apr 2024
Publication
Hard-to-electrify sectors will require renewable fuels to facilitate the green transition in the future. Therefore it is crucial to identify promising production locations while taking into account the local biomass resources variable renewable energy sources and the synergies between sectors. In this study investments and dispatch operations are optimised of a large catalogue of renewable fuel production technologies in the open-source software SpineOpt and this is soft-linked to the comprehensive energy system model Balmorel. We analyse future production pathways by comparing various levels of hydrogen infrastructure including large-scale hydrogen storage and assess system impacts. The results indicate that methanol may provide synergies in its multipurpose use as an early (2030–2040) shipping fuel and later as an aviation fuel through further refining if ammonia becomes more competitive (2050). We furthermore show that a hydrogen infrastructure increases the competitiveness of non-flexible hydrogen-based fuel production technologies. Offshore electrolysis hubs decrease energy system impacts in scenarios with 105 TWh of Nordic hydrogen export. However hydrogen export scenarios are much costlier compared to scenarios with no export unless a high hydrogen price is received. Finally we find that emission taxes in the range of 250–265 e/tCO2 will be necessary for renewable fuels to become competitive.
The Role of Biomass Gasification in Low-carbon Energy and Transport Systems
Mar 2021
Publication
The design of future energy systems requires the efficient use of all available renewable resources. Biomass can complement variable renewable energy sources by ensuring energy system flexibility and providing a reliable feedstock to produce renewable fuels. We identify biomass gasification suitable to utilise the limited biomass resources efficiently. In this study we inquire about its role in a 100% renewable energy system for Denmark and a net-zero energy system for Europe in the year 2050 using hourly energy system analysis. The results indicate bio-electrofuels produced from biomass gasification and electricity to enhance the utilisation of wind and electrolysis and reduce the energy system costs and fuels costs compared to CO2-electrofuels from carbon capture and utilisation. Despite the extensive biomass use overall biomass consumption would be higher without biomass gasification. The production of electromethanol shows low biomass consumption and costs while Fischer-Tropsch electrofuels may be an alternative for aviation. Syngas from biomass gasification can supplement biogas in stationary applications as power plants district heat or industry but future energy systems must meet a balance between producing transport fuels and syngas for stationary units. CO2-electrofuels are found complementary to bio-electrofuels depending on biomass availability and remaining non-fossil CO2 emitters
Unveiling Cutting-edge Innovations Toward Green Vehicle Technology
Mar 2025
Publication
Environmental concerns and the imperative to achieve net-zero carbon emissions have driven the exploration of efficient and sustainable advancements in automobile technologies. The automotive sector is undergoing a significant transformation primarily propelled by the adoption of green fuel technologies. Among the most promising innovations are green vehicle technologies and the integration of non-conventional power sources including advanced batteries (featuring high energy density) fuel cells (capable of long-range energy generation with water as the sole byproduct) and super-capacitors (characterized by rapid charge–discharge capabilities). This article examines the performance efficiency and adaptability of these power sources for electric vehicles (EVs) providing a comprehensive comparison of their functional capabilities. Additionally it analyzes the integration of super-capacitors with batteries and fuel cells emphasizing the potential of hybrid systems to enhance vehicle performance optimize energy management and extend operational range. The role of power converters in such systems is also discussed underscoring their critical importance in ensuring efficient energy transfer and effective energy management.
The Role of Integrated Multi-Energy Systems Toward Carbon-Neutral Ports: A Data-Driven Approach Using Empirical Data
Feb 2025
Publication
Ports are critical hubs in the global supply chain yet they face mounting challenges in achieving carbon neutrality. Port Integrated Multi-Energy Systems (PIMESs) offer a comprehensive solution by integrating renewable energy sources such as wind photovoltaic (PV) hydrogen and energy storage with traditional energy systems. This study examines the implementation of a real-word PIMES showcasing its effectiveness in reducing energy consumption and emissions. The findings indicate that in 2024 the PIMES enabled a reduction of 1885 tons of CO2 emissions with wind energy contributing 84% and PV 16% to the total decreases. The energy storage system achieved a charge–discharge efficiency of 99.15% while the hydrogen production system demonstrated an efficiency of 63.34% producing 503.87 Nm3/h of hydrogen. Despite these successes challenges remain in optimizing renewable energy integration expanding storage capacity and advancing hydrogen technologies. This paper highlights practical strategies to enhance PIMESs’ performances offering valuable insights for policymakers and port authorities aiming to balance energy efficiency and sustainability and providing a blueprint for carbon-neutral port development worldwide.
Facilitating India’s Deep Decarbonisation Through Sector Coupling of Electricity with Green Hydrogen and Ammonia
Mar 2025
Publication
Green hydrogen and ammonia are forecast to play key roles in the deep decarbonization of the global economy. Here we explore the potential of using green hydrogen and ammonia to couple the energy agriculture and industrial sectors with India’s nationalscale electricity grid. India is an ideal test case as it currently has one of the most ambitious hydrogen programs in the world with projected electricity demands for hydrogen and ammonia production accounting for over 1500 TWh/yr or nearly 25% of India’s total electricity demand by 2050. We model the ambitious deep decarbonization of India’s electricity grid and half of its steel and fertilizer industries by 2050. We uncover modest risks for India from such a strategy with many benefits and opportunities. Our analysis suggests that a renewables-based energy system coupled with ammonia off-take sectors has the potential to dramatically reduce India’s greenhouse emissions reduce requirements for expensive long-duration energy storage or firm generating capacity reduce the curtailment of renewable energy provide valuable short-duration and long-duration load-shifting and system resilience to inter-annual weather variations and replace tens of billions of USD in ammonia and fuel imports each year. All this while potentially powering new multi-billion USD green steel and maritime fuel export industries. The key risk for India in relation to such a strategy lies in the potential for higher costs and reduced benefits if the rest of the world does not match their ambitious investment in renewables electrolyzers and clean storage technologies. We show that such a pessimistic outcome could result in the costs of green hydrogen and ammonia staying high for India through 2050 although still within the range of their gray counterparts. If on the other hand renewable and storage costs continue to decline further with continued global deployment all the above benefits could be achieved with a reduced levelized cost of hydrogen and ammonia (10–25%) potentially with a modest reduction in total energy system costs (5%). Such an outcome would have profound global implications given India’s central role in the future global energy economy establishing India’s global leadership in green shipping fuel agriculture and steel while creating an affordable sustainable and secure domestic energy supply.
From Policy to Practice: Upper Bound Cost Estimates of Europe's Green Hydrogen Ambitions
Jul 2025
Publication
As the European countries strive to meet their ambitious climate goals renewable hydrogen has emerged to aid in decarbonizing energy-intensive sectors and support the overall energy transition. To ensure that hydrogen production aligns with these goals the European Commission has introduced criteria for additionality temporal correlation and geographical correlation. These criteria are designed to ensure that hydrogen production from renewable sources supports the growth of renewable energy. This study assesses the impact of these criteria on green hydrogen production focusing on production costs and technology impacts. The European energy market is simulated up to 2048 using stochastic programming applying these requirements exclusively to green hydrogen production without the phased-in compliance period outlined in the EU regulations. The findings show that meeting the criteria will increase expected system costs by €82 billion from 2024 to 2048 largely due to the rapid shift from fossil fuels to renewable energy. The additionality requirement which mandates the use of new renewable energy installations for electrolysis proves to be the most expensive but also the most effective in accelerating renewable energy adoption.
Betting vs. Trading: Learning a Linear Decision Policy for Selling Wind Power and Hydrogen
Jul 2025
Publication
We develop a bidding strategy for a hybrid power plant combining co-located wind turbines and an electrolyzer constructing a price-quantity bidding curve for the day-ahead electricity market while optimally scheduling hydrogen production. Without risk management single imbalance pricing leads to an all-or-nothing trading strategy which we term “betting”. To address this we propose a data-driven pragmatic approach that leverages contextual information to train linear decision policies for both power bidding and hydrogen scheduling. By introducing explicit risk constraints to limit imbalances we move from the all-or-nothing approach to a “trading” strategy where the plant diversifies its power trading decisions. We evaluate the model under three scenarios: when the plant is either conditionally allowed always allowed or not allowed to buy power from the grid which impacts the green certification of the hydrogen produced. Comparing our data-driven strategy with an oracle model that has perfect foresight we show that the risk-constrained data-driven approach delivers satisfactory performance.
Coordinated Operation of Alternative Fuel Vehicle-integrated Microgrid in a Coupled Power-transportation Network: A Stackelberg-Nash Game Framework
Sep 2025
Publication
With the rapid development of alternative fuel vehicles (AFVs) and renewable energy sources the increasing coordination between electric vehicles (EVs) and hydrogen vehicles (HVs) in urban coupled powertransportation networks (CPTNs) fosters optimized energy scheduling and enhanced system performance. This study proposes a two-level Stackelberg-Nash game framework for AFV-integrated microgrids in a CPTN to enhance the economic efficiency of microgrid. This framework employs a Stackelberg game model to define the leader-follower relationship between the microgrid operator and the vehicle-to-grid (V2G) aggregator. Nash equilibrium games are established to capture competitive interactions among charging stations (CSs) and among hydrogen refueling stations (HRSs). Furthermore an optimal scheduling model is proposed to minimize microgrid operation costs considering the spatiotemporal dynamics and user preferences of EVs and HVs supported by the proposed dynamic choice model. A game-theoretic pricing and incentive mechanism promotes AFV participation in V2G services enhancing the profitability of CSs and HRSs. Afterward a momentum-enhanced Stackelberg-Nash equilibrium algorithm is developed to address the bi-level optimization problem. Finally numerical simulations validate the effectiveness of the proposed method in improving economic efficiency and reducing operation costs. The proposed approach offers an effective solution for integrating large-scale AFV fleets into sustainable urban energy and transportation systems.
Alkaline Electrolysis for Green Hydrogen Production: A Novel, Simple Model for Thermo-electrochemical Coupled System Analysis
Dec 2024
Publication
Alkaline water electrolysis (AWE) is the most mature electrochemical technology for hydrogen production from renewable electricity. Thus its mathematical modeling is an important tool to provide new perspectives for the design and optimization of energy storage and decarbonization systems. However current models rely on numerous empirical parameters and neglect variations of temperature and concentration alongside the electrolysis cell which can impact the application and reliability of the simulation results. Thus this study proposes a simple four-parameter semi-empirical model for AWE system analysis which relies on minimal fitting data while providing reliable extrapolation results. In addition the effect of model dimensionality (i.e. 0D 1/2D and 1D) are carefully assessed in the optimization of an AWE system. The results indicate that the proposed model can accurately reproduce literature data from four previous works (R 2 ≥ 0.98) as well as new experimental data. In the system optimization the trade-offs existing in the lye cooling sizing highlight that maintaining a low temperature difference in AWE stacks (76-80°C) leads to higher efficiencies and lower hydrogen costs.
No more items...