Egypt
Optimal Multi-layer Economical Schedule for Coordinated Multiple Mode Operation of Wind-solar Microgrids with Hybrid Energy Storage Systems
Nov 2023
Publication
The aim of this paper is the design and implementation of an advanced model predictive control (MPC) strategy for the management of a wind–solar microgrid (MG) both in the islanded and grid-connected modes. The MG includes energy storage systems (ESSs) and interacts with external hydrogen and electricity consumers as an extra feature. The system participates in two different electricity markets i.e. the daily and real-time markets characterized by different time-scales. Thus a high-layer control (HLC) and a low-layer control (LLC) are developed for the daily market and the real-time market respectively. The sporadic characteristics of renewable energy sources and the variations in load demand are also briefly discussed by proposing a controller based on the stochastic MPC approach. Numerical simulations with real wind and solar generation profiles and spot prices show that the proposed controller optimally manages the ESSs even when there is a deviation between the predicted scenario determined at the HLC and the real-time one managed by the LLC. Finally the strategy is tested on a lab-scale MG set up at Khalifa University Abu Dhabi UAE.
Hierarchical Model Predictive Control for Islanded and Grid-connected Microgrids with Wind Generation and Hydrogen Energy Storage Systems
Aug 2023
Publication
This paper presents a novel energy management strategy (EMS) to control a wind-hydrogen microgrid which includes a wind turbine paired with a hydrogen-based energy storage system (HESS) i.e. hydrogen production storage and re-electrification facilities and a local load. This complies with the mini-grid use case as per the IEA-HIA Task 24 Final Report where three different use cases and configurations of wind farms paired with HESS are proposed in order to promote the integration of wind energy into the grid. Hydrogen production surpluses by wind generation are stored and used to provide a demand-side management solution for energy supply to the local and contractual loads both in the grid-islanded and connected modes with corresponding different control objectives. The EMS is based on a hierarchical model predictive control (MPC) in which long-term and short-term operations are addressed. The long-term operations are managed by a high-level MPC in which power production by wind generation and load demand forecasts are considered in combination with day-ahead market participation. Accordingly the hydrogen production and re-electrification are scheduled so as to jointly track the load demand maximize the revenue through electricity market participation and minimize the HESS operating costs. Instead the management of the short-term operations is entrusted to a low-level MPC which compensates for any deviations of the actual conditions from the forecasts and refines the power production so as to address the real-time market participation and the short time-scale equipment dynamics and constraints. Both levels also take into account operation requirements and devices’ operating ranges through appropriate constraints. The mathematical modeling relies on the mixed-logic dynamic (MLD) framework so that the various logic states and corresponding continuous dynamics of the HESS are considered. This results in a mixed-integer linear program which is solved numerically. The effectiveness of the controller is analyzed by simulations which are carried out using wind forecasts and spot prices of a wind farm in center-south of Italy.
Feasibility Assessment of Alternative Clean Power Systems onboard Passenger Short-Distance Ferry
Sep 2023
Publication
In order to promote low-carbon fuels such as hydrogen to decarbonize the maritime sector it is crucial to promote clean fuels and zero-emission propulsion systems in demonstrative projects and to showcase innovative technologies such as fuel cells in vessels operating in local public transport that could increase general audience acceptability thanks to their showcase potential. In this study a short sea journey ferry used in the port of Genova as a public transport vehicle is analyzed to evaluate a ”zero emission propulsion” retrofitting process. In the paper different types of solutions (batteries proton exchange membrane fuel cell (PEMFC) solid oxide fuel cell (SOFC)) and fuels (hydrogen ammonia natural gas and methanol) are investigated to identify the most feasible technology to be implemented onboard according to different aspects: ferry daily journey and scheduling available volumes and spaces propulsion power needs energy storage/fuel tank capacity needed economics etc. The paper presents a multi-aspect analysis that resulted in the identification of the hydrogen-powered PEMFC as the best clean power system to guarantee for this specific case study a suitable retrofitting of the vessel that could guarantee a zero-emission journey
The Potential Role of Africa in Green Hydrogen Production: A Short-Term Roadmap to Protect the World’s Future from Climate Crisis
Feb 2025
Publication
The global need for energy has risen sharply recently. A global shift to clean energy is urgently needed to avoid catastrophic climate impacts. Hydrogen (H2) has emerged as a potential alternative energy source with near-net-zero emissions. In the African continent for sustainable access to clean energy and the transition away from fossil fuels this paper presents a new approach through which waste energy can produce green hydrogen from biomass. Bio-based hydrogen employing organic waste and biomass is recommended using biological (anaerobic digestion and fermentation) processes for scalable cheaper and low-carbon hydrogen. By reviewing all methods for producing green hydrogen dark fermentation can be applied in developed and developing countries without putting pressure on natural resources such as freshwater and rare metals the primary feedstocks used in producing green hydrogen by electrolysis. It can be expanded to produce medium- and long-term green hydrogen without relying heavily on energy sources or building expensive infrastructure. Implementing the dark fermentation process can support poor communities in producing green hydrogen as an energy source regardless of political and tribal conflicts unlike other methods that require political stability. In addition this approach does not require the approval of new legislation. Such processes can ensure the minimization of waste and greenhouse gases. To achieve cost reduction in hydrogen production by 2030 governments should develop a strategy to expand the use of dark fermentation reactors and utilize hot water from various industrial processes (waste energy recovery from hot wastewater).
Functionalization of Nanomaterials for Energy Storage and Hydrogen Production Applications
Feb 2025
Publication
This review article provides a comprehensive overview of the pivotal role that nanomaterials particularly graphene and its derivatives play in advancing hydrogen energy technologies with a focus on storage production and transport. As the quest for sustainable energy solutions intensifies the use of nanoscale materials to store hydrogen in solid form emerges as a promising strategy toward mitigate challenges related to traditional storage methods. We begin by summarizing standard methods for producing modified graphene derivatives at the nanoscale and their impact on structural characteristics and properties. The article highlights recent advancements in hydrogen storage capacities achieved through innovative nanocomposite architectures for example multi-level porous graphene structures containing embedded nickel particles at nanoscale dimensions. The discussion covers the distinctive characteristics of these nanomaterials particularly their expansive surface area and the hydrogen spillover effect which enhance their effectiveness in energy storage applications including supercapacitors and batteries. In addition to storage capabilities this review explores the role of nanomaterials as efficient catalysts in the hydrogen evolution reaction (HER) emphasizing the potential of metal oxides and other composites to boost hydrogen production. The integration of nanomaterials in hydrogen transport systems is also examined showcasing innovations that enhance safety and efficiency. As we move toward a hydrogen economy the review underscores the urgent need for continued research aimed at optimizing existing materials and developing novel nanostructured systems. Addressing the primary challenges and potential future directions this article aims to serve as a roadmap to enable scientists and industry experts to maximize the capabilities of nanomaterials for transforming hydrogen-based energy systems thus contributing significantly to global sustainability efforts.
Review on Ammonia as a Potential Fuel: From Synthesis to Economics
Feb 2021
Publication
Ammonia a molecule that is gaining more interest as a fueling vector has been considered as a candidate to power transport produce energy and support heating applications for decades. However the particular characteristics of the molecule always made it a chemical with low if any benefit once compared to conventional fossil fuels. Still the current need to decarbonize our economy makes the search of new methods crucial to use chemicals such as ammonia that can be produced and employed without incurring in the emission of carbon oxides. Therefore current efforts in this field are leading scientists industries and governments to seriously invest efforts in the development of holistic solutions capable of making ammonia a viable fuel for the transition toward a clean future. On that basis this review has approached the subject gathering inputs from scientists actively working on the topic. The review starts from the importance of ammonia as an energy vector moving through all of the steps in the production distribution utilization safety legal considerations and economic aspects of the use of such a molecule to support the future energy mix. Fundamentals of combustion and practical cases for the recovery of energy of ammonia are also addressed thus providing a complete view of what potentially could become a vector of crucial importance to the mitigation of carbon emissions. Different from other works this review seeks to provide a holistic perspective of ammonia as a chemical that presents benefits and constraints for storing energy from sustainable sources. State-of-the-art knowledge provided by academics actively engaged with the topic at various fronts also enables a clear vision of the progress in each of the branches of ammonia as an energy carrier. Further the fundamental boundaries of the use of the molecule are expanded to real technical issues for all potential technologies capable of using it for energy purposes legal barriers that will be faced to achieve its deployment safety and environmental considerations that impose a critical aspect for acceptance and wellbeing and economic implications for the use of ammonia across all aspects approached for the production and implementation of this chemical as a fueling source. Herein this work sets the principles research practicalities and future views of a transition toward a future where ammonia will be a major energy player.
Techno-Economic Potential of Wind-Based Green Hydrogen Production in Djibouti: Literature Review and Case Studies
Aug 2023
Publication
Disputed supply chains inappropriate weather and low investment followed by the Russian invasion of Ukraine has led to a phenomenal energy crisis especially in the Horn of Africa. Accordingly proposing eco-friendly and sustainable solutions to diversify the access of electricity in the Republic of Djibouti which has no conventional energy resources and is completely energy dependent on its neighboring countries has become a must. Therefore the implementation of sustainable renewable and energy storage systems is nationally prioritized. This paper deals for the first time with the exploitation of such an affordable and carbon-free resource to produce hydrogen from wind energy in the rural areas of Nagad and Bara Wein in Djibouti. The production of hydrogen and the relevant CO2 emission reduction using different De Wind D6 Vestas and Nordex wind turbines are displayed while using Alkaline and Proton Exchange Membrane (PEM) electrolyzers. The Bara Wein and Nagad sites had a monthly wind speed above 7 m/s. From the results the Nordex turbine accompanied with the alkaline electrolyzer provides the most affordable electricity production approximately 0.0032 $/kWh for both sites; this cost is about one per hundred the actual imported hydroelectric energy price. Through the ecological analysis the Nordex turbine is the most suitable wind turbine with a CO2 emission reduction of 363.58 tons for Bara Wein compared to 228.76 tons for Nagad. While integrating the initial cost of wind turbine implementation in the capital investment the mass and the levelized cost of the produced green hydrogen are estimated as (29.68 tons and 11.48 $/kg) for Bara Wein with corresponding values of (18.68 tons and 18.25 $/kg) for Nagad.
Integrated Renewable Energy Systems for Buildings: An Assessment of the Environmental and Socio-Economic Sustainability
Jan 2025
Publication
Developing a green energy strategy for municipalities requires creating a framework to support the local production storage and use of renewable energy and green hydrogen. This framework should cover essential components for small-scale applications including energy sources infrastructure potential uses policy backing and collaborative partnerships. It is deployed as a small-scale renewable and green hydrogen unit in a municipality or building demands meticulous planning and considering multiple elements. Municipality can promote renewable energy and green hydrogen by adopting policies such as providing financial incentives like property tax reductions grants and subsidies for solar wind and hydrogen initiatives. They can also streamline approval processes for renewable energy installations invest in hydrogen refueling stations and community energy projects and collaborate with provinces and neighboring municipalities to develop hydrogen corridors and large-scale renewable projects. Renewable energy and clean hydrogen have significant potential to enhance sustainability in the transportation building and mining sectors by replacing fossil fuels. In Canada where heating accounts for 80% of building energy use blending hydrogen with LPG can reduce emissions. This study proposes a comprehensive approach integrating renewable energy and green hydrogen to support small-scale applications. The study examines many scenarios in a building as a case study focusing on economic and greenhouse gas (GHG) emission impacts. The optimum scenario uses a hybrid renewable energy system to meet two distinct electrical needs with 53% designated for lighting and 10% for equipment with annual saving CAD$ 87026.33. The second scenario explores utilizing a hydrogen-LPG blend as fuel for thermal loads covering 40% and 60% of the total demand respectively. This approach reduces greenhouse gas emissions from 540 to 324 tCO2/year resulting in an annual savings of CAD$ 251406. This innovative approach demonstrates the transformative potential of renewable energy and green hydrogen in enhancing energy efficiency and sustainability across sectors including transportation buildings and mining.
A Review on Application of Hydrogen in Gas Turbines with Intercooler Adjustments
Mar 2024
Publication
In recent years traditional fossil fuels such as coal oil and natural gas have historically dominated various applications but there has been a growing shift towards cleaner alternatives. Among these alternatives hydrogen (H2) stands out as a highly promising substitute for all other conventional fuels. Today hydrogen (H2) is actively taking on a significant role in displacing traditional fuel sources. The utilization of hydrogen in gas turbine (GT) power generation offers a significant advantage in terms of lower greenhouse gas emissions. The performance of hydrogen-based gas turbines is influenced by a range of variables including ambient conditions (temperature and pressure) component efficiency operational parameters and other factors. Additionally incorporating an intercooler into the gas turbine system yields several advantages such as reducing compression work and maintaining power and efficiency. Many scholars and researchers have conducted comprehensive investigations into the components mentioned above within context of gas turbines (GTs). This study provides an extensive examination of the research conducted on hydrogen-powered gas turbine and intercooler with employed different methods and techniques with a specific emphasis on the different case studies of a hydrogen gas turbine and intercooler. Moreover this study not only examined the current state of research on hydrogen-powered gas turbine and intercooler but also covered its influence by offering the effective recommendations and insightful for guiding for future research in this field.
Innovative Hybrid Energy Storage Systems with Sustainable Integration of Green Hydrogen and Energy Management Solutions for Standalone PV Microgrids Based on Reduced Fractional Gradient Descent Algorithm
Oct 2024
Publication
This paper investigates innovative solutions to enhance the performance and lifespan of standalone photovoltaic (PV)-based microgrids with a particular emphasis on off-grid communities. A major challenge in these systems is the limited lifespan of batteries. To overcome this issue researchers have created hybrid energy storage systems (HESS) along with advanced power management strategies. This study introduces innovative multi-level HESS approaches and a related energy management strategy designed to alleviate the charge/discharge stress on batteries. Comprehensive Matlab Simulink models of various HESS topologies within standalone PV microgrids are utilized to evaluate system performance under diverse weather conditions and load profiles for rural site. The findings reveal that the proposed HESS significantly extends battery life expectancy compared to existing solutions. Furthermore the paper presents a novel energy management strategy based on the Reduced Fractional Gradient Descent (RFGD) algorithm optimization tailored for hybrid systems that include photovoltaic fuel cell battery and supercapacitor components. This strategy aims to minimize hydrogen consumption of Fuel Cells (FCs) thereby supporting the production of green ammonia for local industrial use. The RFGD algorithm is selected for its minimal user-defined parameters and high convergence efficiency. The proposed method is compared with other algorithms such as the Lyrebird Optimization Algorithm (LOA) and Osprey Optimization Algorithm (OOA). The RFGD algorithm exhibits superior accuracy in optimizing energy management achieving a 15% reduction in hydrogen consumption. Its efficiency is evident from the reduced computational time compared to conventional algorithms. Although minor losses in computational resources were observed they were substantially lower than those associated with traditional optimization techniques. Overall the RFGD algorithm offers a robust and efficient solution for enhancing the performance of hybrid energy systems.
Innovations in Hydrogen Storage Materials: Synthesis, Applications, and Prospects
Jul 2024
Publication
Hydrogen globally recognized as the most efficient and clean energy carrier holds the potential to transform future energy systems through its use as a fuel and chemical resource. Although progress has been made in reversible hydrogen adsorption and release challenges in storage continue to impede widespread adoption. This review explores recent advancements in hydrogen storage materials and synthesis methods emphasizing the role of nanotechnology and innovative synthesis techniques in enhancing storage performance and addressing these challenges to drive progress in the field. The review provides a comprehensive overview of various material classes including metal hydrides complex hydrides carbon materials metal-organic frameworks (MOFs) and porous materials. Over 60 % of reviewed studies focused on metal hydrides and alloys for hydrogen storage. Additionally the impact of nanotechnology on storage performance and the importance of optimizing synthesis parameters to tailor material properties for specific applications are summarized. Various synthesis methods are evaluated with a special emphasis on the role of nanotechnology in improving storage performance. Mechanical milling emerges as a commonly used and cost-effective method for fabricating intermetallic hydrides capable of adjusting hydrogen storage properties. The review also explores hydrogen storage tank embrittlement mechanisms particularly subcritical crack growth and examines the advantages and limitations of different materials for various applications supported by case studies showcasing real-world implementations. The challenges underscore current limitations in hydrogen storage materials highlighting the need for improved storage capacity and kinetics. The review also explores prospects for developing materials with enhanced performance and safety providing a roadmap for ongoing advancements in the field. Key findings and directions for future research in hydrogen storage materials emphasize their critical role in shaping future energy systems.
Hydrogen Energy Storage: New Techno-economic Emergence Solution Analysis
Aug 2015
Publication
The integration of various renewable energy sources as well as the liberalization of electricity markets are established facts in modern electrical power systems. The increased share of renewable sources within power systems intensifies the supply variability and intermittency. Therefore energy storage is deemed as one of the solutions for stabilizing the supply of electricity to maintain generation-demand balance and to guarantee uninterrupted supply of energy to users. In the context of sustainable development and energy resources depletion the question of the growth of renewable energy electricity production is highly linked to the ability to propose new and adapted energy storage solutions. The purpose of this multidisciplinary paper is to highlight the new hydrogen production and storage technology its efficiency and the impact of the policy context on its development. A comprehensive techno/socio/economic study of long term hydrogen based storage systems in electrical networks is addressed. The European policy concerning the different energy storage systems and hydrogen production is explicitly discussed. The state of the art of the techno-economic features of the hydrogen production and storage is introduced. Using Matlab-Simulink for a power system of rated 70 kW generator the excess produced hydrogen during high generation periods or low demand can be sold either directly to the grid owners or as filled hydrogen bottles. The affordable use of Hydrogen-based technologies for long term electricity storage is verified.
Utilization of Hydrogen and Methane as Energy Carriers with Exhaust Gas Recirculation for Sustainable Diesel Engines
May 2024
Publication
Hydrogen and methane as secondary fuels in diesel engines can be promising solutions to meet energy demand. The current study investigated the effect of the specialty gases of different compositions on diesel engine performance and exhaust gases. Four gases with various compositions of exhaust gas recirculation (Carbon monoxide Carbon dioxide and Nitrogen) and fuels (Hydrogen and Methane) were used at various mass flow rates of 10 20 and 25 LPM (liter per minute) and various engine speeds of 2000 2500 3000 and 3500 rpm (revolutions per minute). The procured results revealed that adding specialty gases improved brake thermal efficiency and power. Similarly the brake-specific fuel consumption was also massively retarded compared to diesel due to the influence of the hydrogen and methane composition. However the fuel with the higher nitrogen reported less BTE (brake thermal efficiency) and comparatively higher exhaust gas temperature owing to the higher presence of nitrogen in their composition. Regarding emissions including exhaust gas recirculation dropped the formation of pollutants efficiently compared to diesel. Among various fuels Case 1 (30 % H2 5 % CH4 5 CO2 and 60 % CO) reported the lowest emission of NOx and Case 2 (25 % H2 5 % CH4 5 CO2 30 % CO and 35 % N2) of CO and CO2 emissions. Generally specialty gases with a variable composition of exhaust gas recirculation gases can be a promising sustainable replacement for existing fossil fuels.
Optimal Configuration of Hydrogen- and Battery-based Electric Bus Transit Systems
Feb 2025
Publication
Electric bus transit is crucial in reducing greenhouse gas (GHG) emissions decreasing fossil fuel reliance and combating climate change. However the transition to electric-powered buses demands a comprehensive plan for optimal resource allocation technology choice infrastructure deployment and component sizing. This study develops system configuration optimization models for battery electric buses (BEBs) and hydrogen fuel cell buses (HFCBs) minimizing all related costs (i.e. capital and operational costs). These models optimize component sizing of the charging/refueling stations fleet configuration and energy/fuel management system in three operational schemes: BEBs opportunity charging BEBs overnight charging and electrolysis-powered HFCBs overnight refueling. The results indicate that the BEB opportunity system is the most economically viable choice. Meanwhile HFCB requires a higher cost (134.5%) and produces more emissions (215.7%) than the BEB overnight charging system. A sensitivity analysis indicates that a significant reduction in the HFCB unit and electricity costs is required to compete economically with BEB systems.
Synergizing Gas and Electric Systems Using Power-to-Hydrogen: Integrated Solutions for Clean and Sustainable Energy Networks
May 2025
Publication
The rapid growth in natural gas consumption by gas-fired generators and the emergence of power-to-hydrogen (P2H) technology have increased the interdependency of natural gas and power systems presenting new challenges to energy system operators due to the heterogeneous uncertainties associated with power loads renewable energy sources (RESs) and gas loads. These uncertainties can easily spread from one infrastructure to another increasing the risk of cascading outages. Given the erratic nature of RESs P2H technology provides a valuable solution for large-scale energy storage systems crucial for the transition to economic clean and secure energy systems. This paper proposes a new approach for the co-optimized operation of gas and electric power systems aiming to reduce combined operating costs by 10–15% without jeopardizing gas and energy supplies to customers. A mixed integer non-linear programming (MINLP) model is developed for the optimal day-ahead operation of these integrated systems with a case study involving the IEEE 24-bus power system and a 20-node natural gas system. Simulation results demonstrate the model’s effectiveness in minimizing total costs by up to 20% and significantly reducing renewable energy curtailment by over 50%. The proposed approach supports UN Sustainable Development Goals by ensuring sustainable energy (SDG 7) fostering innovation and resilient infrastructure (SDG 9) enhancing energy efficiency for resilient cities (SDG 11) promoting responsible consumption (SDG 12) contributing to climate action (SDG 13) and strengthening partnerships (SDG 17). It promotes clean energy technological innovation resilient infrastructure efficient resource use and climate action supporting the transition to sustainable energy systems.
Comparative Designs for Standalone Critical Loads Between PV/Battery and PV/Hydrogen Systems
Jul 2025
Publication
This study presents the design and techno-economic comparison of two standalone photovoltaic (PV) systems each supplying a 1 kW critical load with 100% reliability under Cairo’s climatic conditions. These systems are modeled for both the constant and the night load scenarios accounting for the worst-case weather conditions involving 3.5 consecutive cloudy days. The primary comparison focuses on traditional lead-acid battery storage versus green hydrogen storage via electrolysis compression and fuel cell reconversion. Both the configurations are simulated using a Python-based tool that calculates hourly energy balance component sizing and economic performance over a 21-year project lifetime. The results show that the PV/H2 system significantly outperforms the PV/lead-acid battery system in both the cost and the reliability. For the constant load the Levelized Cost of Electricity (LCOE) drops from 0.52 USD/kWh to 0.23 USD/kWh (a 56% reduction) and the payback period is shortened from 16 to 7 years. For the night load the LCOE improves from 0.67 to 0.36 USD/kWh (a 46% reduction). A supplementary cost analysis using lithium-ion batteries was also conducted. While Li-ion improves the economics compared to lead-acid (LCOE of 0.41 USD/kWh for the constant load and 0.49 USD/kWh for the night load) this represents a 21% and a 27% reduction respectively. However the green hydrogen system remains the most cost-effective and scalable storage solution for achieving 100% reliability in critical off-grid applications. These findings highlight the potential of green hydrogen as a sustainable and economically viable energy storage pathway capable of reducing energy costs while ensuring long-term resilience.
Multi-agent Based Optimal Sizing of Hybrid Renewable Energy Systems and their Significance in Sustainable Energy Development
Nov 2024
Publication
This paper delves into the enhancement and optimization of on-grid renewable energy systems using a variety of renewable energy sources with a particular focus on large-scale applications designed to meet the energy demand of a certain load. As global concerns surrounding climate change continue to mount the urgency of replacing traditional fossil fuel-based power generation with cleaner more cost-effective and dependable alternatives becomes increasingly apparent. In this context a comprehensive investigation is conducted on grid connected hybrid energy system that combines photovoltaic wind and fuel cell technologies. The study employs three state-of-the-art optimization algorithms namely Walrus Optimization Algorithm (WaOA) Coati Optimization Algorithm (COA) and Osprey Optimization Algorithm (OOA) to determine the optimal system size and energy management strategies all aimed at minimizing the cost of energy (COE) for grid-based electricity. The results of the optimization process are compared with the results obtained from the utilization of the Particle swarm optimization (PSO) and Grey Wolf optimizer (GWO). The findings of this study underscore both the practical feasibility and the critical importance of adopting on-grid renewable energy systems to decrease the dependence on traditional energy sources within the grid. The proposed WaOA succeeded to reach the optimal solution of the optimal design process with a COE of 0.51758129611 $//kwh while keeping the loss of power supply probability (LPSP) the reliability index at 7.303681e-19. The practical recommendations and forwardlooking insights provided within this research hold the potential to foster sustainable development and effectively mitigate carbon emissions in the future.
Quantum-Inspired MoE-Based Optimal Operation of a Wave Hydrogen Microgrid for Integrated Water, Hydrogen, and Electricity Supply and Trade
Feb 2025
Publication
This research explores the optimal operation of an offshore wave-powered hydrogen system specifically designed to supply electricity and water to a bay in Humboldt California USA and also sell it with hydrogen. The system incorporates a desalination unit to provide the island with fresh water and feed the electrolyzer to produce hydrogen. The optimization process utilizes a mixture of experts in conjunction with the Quantitative Structure-Activity Relationship (QSAR) algorithm traditionally used in drug design to achieve two main objectives: minimizing operational costs and maximizing revenue from the sale of water hydrogen and electricity. Many case studies are examined representing typical electricity demand and wave conditions during typical summer winter spring and fall days. The simulation optimization and results are carried out using MATLAB 2018 and SAM 2024 software applications. The findings demonstrate that the combination of the QSAR algorithm and quantum-inspired MoE results in higher revenue and lower costs compared to other current techniques with hydrogen sales being the primary contributor to increased income.
An Improved Artificial Ecosystem Optimization Algorithm for Optimal Configuration of a Hybrid PV/WT/FC Energy System
Oct 2020
Publication
This paper mainly focuses on the optimal design of a grid-dependent and off-grid hybrid renewable energy system (RES). This system consists of Photovoltaic (PV) Wind Turbine (WT) as well as Fuel Cell (FC) with hydrogen gas tank for storing the energy in the chemical form. The optimal components sizes of the proposed hybrid generating system are achieved using a novel metaheuristic optimization technique. This optimization technique called Improved Artificial Ecosystem Optimization (IAEO) is proposed for enhancing the performance of the conventional Artificial Ecosystem Optimization (AEO) algorithm. The IAEO improves the convergence trends of the original AEO gives the best minimum objective function reaches the optimal solution after a few iterations numbers as well as reduces the falling into the local optima. The proposed IAEO algorithm for solving the multiobjective optimization problem of minimizing the Cost of Energy (COE) the reliability index presented by the Loss of Power Supply Probability (LPSP) and excess energy under the constraints are considered. The hybrid system is suggested to be located in Ataka region Suez Gulf (latitude 30.0 longitude 32.5) Egypt and the whole lifetime of the suggested case study is 25 years. To ensure the accurateness stability and robustness of the proposed optimization algorithm it is examined on six different configurations representing on-grid and off-grid hybrid RES. For all the studied cases the proposed IAEO algorithm outperforms the original AEO and generates the minimum value of the fitness function in less execution time. Furthermore comprehensive statistical measurements are demonstrated to prove the effectiveness of the proposed algorithm. Also the results obtained by the conventional AEO and IAEO are compared with those obtained by several well-known optimization algorithms Particle Swarm Optimization (PSO) Salp Swarm Algorithm (SSA) and Grey Wolf Optimizer (GWO). Based on the obtained simulation results the proposed IAEO has the best performance among other algorithms and it has successfully positioned itself as a competitor to novel algorithms for tackling the most complicated engineering problems.
Influence of Catalytic Support on Hydrogen Production from Glycerol Steam Reforming
Oct 2025
Publication
The use of hydrogen as an energy carrier represents a promising alternative for mitigating climate change. However its practical application requires achieving a high degree of purity throughout the production process. In this study the influence of the type of catalytic support on H2 production via steam glycerol reforming was evaluated with the objective of obtaining syngas with the highest possible H2 concentration. Three types of support were analyzed: two natural materials (zeolite and dolomite) and one metal oxide alumina. Alumina and dolomite were coated with Ni at different loadings while zeolite was only evaluated without Ni. Reforming experiments were carried out at a constant temperature of 850 ◦C with continuous monitoring of H2 CO2 CO and CH4 concentrations. The results showed that zeolite yielded the lowest H2 concentration (51%) mainly due to amorphization at high temperatures and the limited effectiveness of physical adsorption processes. In contrast alumina and dolomite achieved H2 purities of around 70% which increased with Ni loading. The improvement was particularly significant in dolomite owing to its higher porosity and the recarbonation processes of CaO enabling H2 purities of up to 90%.
Sustainable Refining: Integrating Renewable Energy and Advanced Technologies
Aug 2025
Publication
Crude oil distillation is one of the most energy-intensive processes in petroleum refining consuming up to 20% of total refinery energy. Improving the energy efficiency of crude distillation units (CDUs) is essential for reducing costs lowering emissions and achieving sustainable refining. Current studies often examine energy savings operational flexibility or renewable energy integration separately. This review brings these aspects together focusing on heat integration advanced control systems and renewable energy options such as solar-assisted preheating and green hydrogen. Advanced column designs including dividing-wall and hybrid systems can cut energy use by 15–30% while AI-based optimization improves process stability and flexibility. Solar-assisted preheating can reduce fossil fuel demand by up to 20% and green hydrogen offers strong potential for decarbonization. Our findings highlight that integrated strategies including advanced simulation tools and machine learning significantly improve CDU performance. We recommend exploring hybrid algorithms renewable energy integration and sustainable technologies to address these challenges and achieve long-term environmental and economic benefits.
Maximization and Efficient Production Rates of Different Zero Carbon Electrofuels using Dry Alkaline Electroyzers
Aug 2025
Publication
The present work focused on the comparison between HHO and hydrogen electrolyzers in design gas production and various parameters which affect the performance and efficiency of alkaline electrolyzers. The primary goal is to generate the highest possible hydrogen and HHO gas flow rates. Hydrogen and HHO were produced using 3 mm electrode of stainless steel 316L with 224 cm2 surface area. Hydroxy and hydrogen rates were affected by electrolyte content cell connection electric current operating time electrolyte temperature and voltage. Maximum HHO generation values were 1020 1076 1125 and 1175 mL min−1 n at 5 10 15 and 20 g L−1 of sodium hydroxide (NaOH) with supply currents of 15 15.3 15.6 and 16 A respectively. Once it stabilized after 30 min the temperature increased to 26 30 35 and 38 °C respectively and remained there. With currents of 18 18.45 18.7 19.2 19.5 and 19.8 A hydrogen output peak values after 60 min. stayed constant at 680 734 785 846 897 and 945 mL min-1. at 5 10 15 and 20 g L−1 NaOH catalyst concentrations. At 5 10 15 and 20 g L−1 catalyst ratios the temperatures were elevated to constant values of 28.5 32 37.9 40.5 41.4 and 43 °C respectively. With cell design [4C3A19N] electrolyte concentration of 5 g L−1 NaOH and current of 14 A maximum HHO productivity was 866 mL min−1. and 74.23% efficiency. In a cell design of [4C5A17N] with catalyst content of 10 g L−1 maximum productivity was 680 mL min−1 for hydrogen and highest production efficiency of 72.85% was attained at 18 A.
Hydrogen-based Technologies towards Energy-resilient Low-carbon Buildings: Opportunities and Challenges Review
Oct 2025
Publication
Towards low-carbon buildings with resilient energy performance renewable energy resources and flexible energy assets play key roles in managing the electrical and heat demands. Hydrogen-based systems represent a promising solution through renewable hydrogen production and long-term storage. This paper systematically reviews 35 peer-reviewed studies (1990–2024) on hydrogen integration in buildings focusing on demand-side management (DSM) optimization methods and system performance. The review covers the environmental impacts feasibility and economic viability of integrating different hydrogen systems for supplying energy. Across critical reviews case studies hydrogen supplementary systems achieved CO2 reductions between 12 % and 87 % operational cost decreases of up to 40 % and efficiency gains exceeding 80 %. Payback periods varied widely between 9 and 20 years demonstrating high investment costs. Key gaps include limited field validation economic feasibility and public acceptance of hydrogen homes. One key area for future investigation is optimizing energy flows across production storage and demand particularly in Vehicle-to-Building (V2B) applications. This review paper highlights opportunities especially the potential of hydrogen system in decarbonization of buildings by long-term energy storage barriers and policy needs for implementing hydrogen technologies in grid-connected and remote areas to enhance sustainable and resilient buildings.
Hydrogen Energy Systems for Decarbonizing Smart Cities and Industrial Applications: A Review
Oct 2025
Publication
Hydrogen is increasingly recognized as a key energy vector for achieving deep decarbonization across urban and industrial sectors. Supporting global efforts to reduce greenhouse gas (GHG) emissions and achieve the Sustainable Development Goals (SDGs) it is essential to understand the multi-sectoral role of the hydrogen value chain spanning production storage and end-use applications with particular emphasis on smart city systems and industrial processes. Green hydrogen production technologies including alkaline water electrolysis (AWE) proton exchange membrane (PEM) electrolysis anion exchange membrane (AEM) electrolysis and solid oxide electrolysis cells (SOECs) are evaluated in terms of efficiency scalability and integration potential. Storage pathways are examined across physical storage (compressed gas cryo-compressed and liquid hydrogen) material-based storage (solid-state absorption in metal hydrides and chemical carriers such as LOHCs and ammonia) and geological storage (salt caverns depleted gas reservoirs and deep saline aquifers) highlighting their suitability for urban and industrial contexts. In the smart city domain hydrogen is analyzed as an enabler of zero-emission transportation low-carbon residential and commercial heating and renewable-integrated smart grids with long-duration storage capabilities. System-level studies demonstrate that coordinated integration of these applications can deliver higher overall energy efficiency deeper reductions in life-cycle GHG emissions and improved resilience of urban energy systems compared with sector-specific approaches. Policy frameworks safety standards and digitalization strategies are reviewed to illustrate how hydrogen infrastructure can be embedded into interconnected urban energy systems. Furthermore industrial applications focus on hydrogen’s potential to decarbonize energy-intensive processes and enable sector coupling between electricity heat and manufacturing. The environmental implications of hydrogen deployment are also considered including resource efficiency life-cycle emissions and ecosystem impacts. In contrast to reviews addressing isolated aspects of hydrogen technologies this study synthesizes technological infrastructural and policy dimensions integrating insights from over 400 studies to highlight the multifaceted role of hydrogen in sustainable urban development and industrial decarbonization and the added benefits achievable through coordinated cross-sector deployment strategies.
Comparative Techno-economic Optimization of Microgrid Configurations Using Hybrid Battery-hydrogen Storage: NEOM Case Study, Saudi Arabia
Sep 2025
Publication
Renewable energy systems are at the core of global efforts to reduce greenhouse gas (GHG) emissions and to combat climate change. Focusing on the role of energy storage in enhancing dependability and efficiency this paper investigates the design and optimization of a completely sustainable hybrid energy system. Furthermore hybrid storage systems have been used to evaluate their viability and cost-benefits. Examined under a 100% renewable energy microgrid framework three setup configurations are as follows: (1) photovoltaic (PV) and Battery Storage System (BSS) (2) Hybrid PV/Wind Turbine (WT)/BSS and (3) Integrated PV/WT/BSS/Electrolyzer/ Hydrogen Tank/Fuel Cell (FC). Using its geographical solar irradiance and wind speed data this paper inspires on an industrial community in Neom Saudi Arabia. HOMER software evaluates technical and economic aspects net present cost (NPC) levelized cost of energy (COE) and operating costs. The results indicate that the PV/ BSS configuration offers the most sustainable solution with a net present cost (NPC) of $2.42M and a levelized cost of electricity (LCOE) of $0.112/kWh achieving zero emissions. However it has lower reliability as validated by the provided LPSP. In contrast the PV/WT/BSS/Elec/FC system with a higher NPC of $2.30M and LCOE of $0.106/kWh provides improved energy dependability. The PV/WT/BSS system with an NPC of $2.11M and LCOE of $0.0968/kWh offers a slightly lower cost but does not provide the same level of reliability. The surplus energy has been implemented for hydrogen production. A sensitivity analysis was performed to evaluate the impact of uncertainties in renewable resource availability and economic parameters. The results demonstrate significant variability in system performance across different scenarios
Integrated Optimization of Energy Storage and Green Hydrogen Systems for Resilient and Sustainable Future Power Grids
Jul 2025
Publication
This study presents a novel multi-objective optimization framework supporting nations sustainability 2030–2040 visions by enhancing renewable energy integration green hydrogen production and emission reduction. The framework evaluates a range of energy storage technologies including battery pumped hydro compressed air energy storage and hybrid configurations under realistic system constraints using the IEEE 9-bus test system. Results show that without storage renewable penetration is limited to 28.65% with 1538 tCO2/day emissions whereas integrating pumped hydro with battery (PHB) enables 40% penetration cuts emissions by 40.5% and reduces total system cost to 570 k$/day (84% of the baseline cost). The framework’s scalability is confirmed via simulations on IEEE 30- 39- 57- and 118-bus systems with execution times ranging from 118.8 to 561.5 s using the HiGHS solver on a constrained Google Colab environment. These findings highlight PHB as the most cost-effective and sustainable storage solution for large-scale renewable integration.
Green Hydrogen Production Study in Existing Oil Refinery with Evaluating Technical, Economic, and Environmental Outcomes
Oct 2025
Publication
Green hydrogen offers a sustainable alternative source of fossil fuels to compensate for the increasing energy demand. This study addresses the increasing energy demand and the need for sustainable alternatives to fossil fuels by examining the production of green hydrogen in an existing Egyptian oil refinery. The primary objective is to evaluate the technical economic and environmental outcomes of integrating green hydrogen to increase the refinery’s hydro processing capacity. The methodology involves the use of water electrolysis powered exclusively by renewable electricity from a 60 MW solar installation with a panel surface area of 660000 m². A simulation model of alkaline electrolyzer skids was developed to assess the production of an additional 1260 kg/h of hydrogen representing a 15% increase over the existing Steam Methane Reforming (SMR) capacity. The environmental impact was quantified by calculating the reduction in CO₂ and equivalent emissions while an economic forecasting analysis was conducted to project the production costs of green versus grey hydrogen. The main results indicate that the integration is technically feasible and environmentally beneficial with a significant reduction in the refinery’s carbon footprint. Economically the study projects that by 2028 the production cost of green hydrogen will fall to 1.56 USD/kg H₂ becoming more cost-effective than grey hydrogen at 1.65 USD/kg H₂ largely due to the influence of carbon taxes and credits. This study underscores the transformative potential of green hydrogen in decarbonizing industrial processes offering a viable pathway for refineries to contribute to global climate change mitigation efforts.
No more items...