Spain
Calibration Facilities and Test Results for Gas Network Hydrogen and Hydrogen Enriched Natural Gas Flow Meters
Jul 2025
Publication
The transition to a decarbonized gas network requires the adaptation of existing infrastructure to accommodate hydrogen and hydrogen-enriched natural gas. This study presents the development of calibration facilities at NEL VSL and DNV for evaluating the performance of flow meters under hydrogen conditions. Nine flow meters were tested covering applications from household consumption to distribution networks. Results demonstrated that rotary displacement meters and diaphragm meters are typically suitable for hydrogen and hydrogenenriched natural gas domestic and commercial consumers use. Tests results for an orifice meter confirmed that a discharge coefficient calibrated with nitrogen can be reliably used for hydrogen by matching Reynolds numbers. Thermal mass flow meters when not configured for the specific test gas exhibited significant errors emphasizing the necessity of gas-specific calibration and configuration. Turbine meters showed predictable error trends influenced by Reynolds number and bearing friction with natural gas calibration providing reliable hydrogen and hydrogen-enriched natural gas performance in the Reynolds domain. It was confirmed that ultrasonic meter performance varies by manufacturers with some meter models requiring a correction for gas composition bias when used in hydrogen enriched natural gas applications. These findings provide critical experimental data to guide future hydrogen metering standards and infrastructure adaptations supporting the European Union’s goal of integrating hydrogen into the gas network.
Experimental Activities on a Hydrogen-Fueled Spark-Ignition Engine for Light-Duty Applications
Nov 2023
Publication
The increase in the overall global temperature and its subsequent impact on extreme weather events are the most critical consequences of human activity. In this scenario transportation plays a significant role in greenhouse gas (GHG) emissions which are the main drivers of climate change. The decline of non-renewable energy sources coupled with the aim of reducing GHG emissions from fossil fuels has forced a shift towards a net-zero emissions economy. As an example of this transition the European Union has set 2050 as the target for achieving carbon neutrality. Hydrogen (H2 ) is gaining increasing relevance as one of the most promising carbon-free energy vectors. If produced from renewable sources it facilitates the integration of various alternative energy sources for achieving a carbon-neutral economy. Recently interest in its application to the transportation sector has grown including different power plant concepts such as fuel cells or internal combustion engines. Despite exhibiting significant drawbacks such as low density combustion instabilities and incompatibilities with certain materials hydrogen is destined to become one of the future fuels. In this publication experimental activities are reported that were conducted on a sparkignition engine fueled with hydrogen at different operating points. The primary objective of this research is to gain a better understanding of the thermodynamic processes that control combustion and their effects on engine performance and pollutant emissions. The results show the emission levels performance and combustion characteristics under different conditions of dilution load and injection strategy and timing.
Current State of Technology of Fuel Cell Power Systems for Autonomous Underwater Vehicles
Jul 2014
Publication
Autonomous Underwater Vehicles (AUVs) are vehicles that are primarily used to accomplish oceanographic research data collection and auxiliary offshore tasks. At the present time they are usually powered by lithium-ion secondary batteries which have insufficient specific energies. In order for this technology to achieve a mature state increased endurance is required. Fuel cell power systems have been identified as an effective means to achieve this endurance but no implementation in a commercial device has yet been realized. This paper summarizes the current state of development of the technology in this field of research. First the most adequate type of fuel cell for this application is discussed. The prototypes and design concepts of AUVs powered by fuel cells which have been developed in the last few years are described. Possible commercial and experimental fuel cell stack options are analyzed examining solutions adopted in the analogous aerial vehicle applications as well as the underwater ones to see if integration in an AUV is feasible. Current solutions in oxygen and hydrogen storage systems are overviewed and energy density is objectively compared between battery power systems and fuel cell power systems for AUVs. A couple of system configuration solutions are described including the necessary lithium-ion battery hybrid system. Finally some closing remarks on the future of this technology are given.
Integration Assessment of Turquoise Hydrogen in the European Energy System
Mar 2024
Publication
Turquoise hydrogen from natural gas pyrolysis has recently emerged as a promising alternative for low-carbon hydrogen production with a high-value pure carbon by-product. However the implications of this technology on the broader energy system are not well understood at present. To close this literature gap this study presents an assessment of the integration of natural gas pyrolysis into a simplified European energy system. The energy system model minimizes the cost by optimizing investment and hourly dispatch of a broad range of electricity and fuel production transmission and storage technologies as well as imports/exports on the global market. Norway is included as a major natural gas producer and Germany as a major energy importer. Results reveal that pyrolysis is economically attractive at modest market shares where the carbon by-product can be sold into highvalue markets for 400 €/ton. However pyrolysis-dominated scenarios that employ methane as a hydrogen carrier also hold promise as they facilitate deep decarbonization without the need for vast expansions of international electricity hydrogen and CO2 transmission networks. The simplicity and security benefits of such pyrolysis-led decarbonization pathways justify the modest 11 % cost premium involved for an energy system where natural gas is the only energy trade vector. In conclusion there is a strong case for turquoise hydrogen in future energy systems and further efforts for commercialization of natural gas pyrolysis are recommended.
Decarbonization Pathways, Strategies, and Use Cases to Achieve Net-Zero CO2 Emissions in the Steelmaking Industry
Oct 2023
Publication
The steelmaking industry is responsible for 7% of global CO2 emissions making decarbonization a significant challenge. This review provides a comprehensive analysis of current steel-production processes assessing their environmental impact in terms of CO2 emissions at a global level. Limitations of the current pathways are outlined by using objective criteria and a detailed review of the relevant literature. Decarbonization strategies are rigorously evaluated across various scenarios emphasizing technology feasibility. Focusing on three pivotal areas—scrap utilization hydrogen integration and electricity consumption—in-depth assessments are provided backed by notable contributions from both industrial and scientific fields. The intricate interplay of technical economic and regulatory considerations substantially affects CO2 emissions particularly considering the EU Emissions Trading System. Leading steel producers have established challenging targets for achieving carbon neutrality requiring a thorough evaluation of industry practices. This paper emphasizes tactics to be employed within short- medium- and long-term periods. This article explores two distinct case studies: One involves a hot rolling mill that utilizes advanced energy techniques and uses H2 for the reheating furnace resulting in a reduction of 229 kt CO2 -eq per year. The second case examines DRI production incorporating H2 and achieves over 90% CO2 reduction per ton of DRI.
Rule-Based Operation Mode Control Strategy for the Energy Management of a Fuel Cell Electric Vehicle
Jun 2024
Publication
Hydrogen due to its high energy density stands out as an energy storage method for the car industry in order to reduce the impact of the automotive sector on air pollution and global warming. The fuel cell electric vehicle (FCEV) emerges as a modification of the electric car by adding a proton exchange membrane fuel cell (PEMFC) to the battery pack and electric motor that is capable of converting hydrogen into electric energy. In order to control the energy flow of so many elements an optimal energy management system (EMS) is needed where rule-based strategies represent the smallest computational burden and are the most widely used in the industry. In this work a rulebased operation mode control strategy for the EMS of an FCEV validated by different driving cycles and several tests at the strategic points of the battery state of charge (SOC) is proposed. The results obtained in the new European driving cycle (NEDC) show the 12 kW battery variation of 2% and a hydrogen consumption of 1.2 kg/100 km compared to the variation of 1.42% and a consumption of 1.08 kg/100 km obtained in the worldwide harmonized light-duty test cycle (WLTC). Moreover battery tests have demonstrated the optimal performance of the proposed EMS strategy
Green Fleet: A Prototype Biogas and Hydrogen Refueling Management System for Private Fleet Stations
Aug 2023
Publication
Biogas and hydrogen (H2 ) are breaking through as alternative energy sources in road transport specifically for heavy-duty vehicles. Until a public network of service stations is deployed for such vehicles the owners of large fleets will need to build and manage their own refueling facilities. Fleet refueling management and remote monitoring at these sites will become key business needs. This article describes the construction of a prototype system capable of solving those needs. During the design and development process of the prototype the standard industry protocols involved in these installations have been considered and the latest expertise in information technology systems has been applied. This prototype has been essential to determine the Strengths Challenges Opportunities and Risks (SCOR) of such a system which is the first step of a more ambitious project. A second stage will involve setting up a pilot study and developing a commercial system that can be widely installed to provide a real solution for the industry.
Battery and Hydrogen Energy Storage Control in a Smart Energy Network with Flexible Energy Demand Using Deep Reinforcement Learning
Sep 2023
Publication
Smart energy networks provide an effective means to accommodate high penetrations of variable renewable energy sources like solar and wind which are key for the deep decarbonisation of energy production. However given the variability of the renewables as well as the energy demand it is imperative to develop effective control and energy storage schemes to manage the variable energy generation and achieve desired system economics and environmental goals. In this paper we introduce a hybrid energy storage system composed of battery and hydrogen energy storage to handle the uncertainties related to electricity prices renewable energy production and consumption. We aim to improve renewable energy utilisation and minimise energy costs and carbon emissions while ensuring energy reliability and stability within the network. To achieve this we propose a multi-agent deep deterministic policy gradient approach which is a deep reinforcement learning-based control strategy to optimise the scheduling of the hybrid energy storage system and energy demand in real time. The proposed approach is model-free and does not require explicit knowledge and rigorous mathematical models of the smart energy network environment. Simulation results based on real-world data show that (i) integration and optimised operation of the hybrid energy storage system and energy demand reduce carbon emissions by 78.69% improve cost savings by 23.5% and improve renewable energy utilisation by over 13.2% compared to other baseline models; and (ii) the proposed algorithm outperforms the state-of-the-art self-learning algorithms like the deep-Q network.
Analysis of the European Strategy for Hydrogen: A Comprehensive Review
May 2023
Publication
This review focuses on analysing the strategy and aspirations of the European Union within the hydrogen sector. This aim is achieved through the examination of the European Parliament’s hydrogen strategy allowing for a study of actions and projects in hydrogen technologies. The Parliament’s hydrogen strategy is the document that provides the guideline of how the EU intends to function in the hydrogen sector and manages to cover a wide range of topics all of them significant to represent the entirety of the hydrogen sector. It touches on subjects such as hydrogen demand infrastructure research and standards among others. The review discusses also the aspect that the EU intends to be a leader in the hydrogen sector including the large-scale industrialization of key elements such as electrolysers and this purpose is corroborated by the large number of associations strategies plans and projects that are being established and developed by the European Union. The most important conclusions to learn from this analysis are that hydrogen has many of the right characteristics to make it the key to decarbonisation especially in hard-to-abate sectors and that it is bound to be one of the main actors in the imminent green transition. Moreover hydrogen seems to be having its breakthrough and this field’s development can have benefits not only from an environmental perspective but also from an economical one enabling the way into the green transition and the fight against climate change.
Reducing the Environmental Impact of International Aviationg through Sustainable Aviation Fuel with Integrated Carbon Capture and Storage
Feb 2024
Publication
Sustainable aviation fuels (SAFs) represent the short-term solution to reduce fossil carbon emissions from aviation. The Carbon Offsetting and Reduction Scheme for International Aviation (CORSIA) was globally adopted to foster and make SAFs production economically competitive. Fischer-Tropsch synthetic paraffinic kerosene (FTSPK) produced from forest residue is a promising CORSIA-eligible fuel. FT conversion pathway permits the integration of carbon capture and storage (CCS) technology which provides additional carbon offsetting ca pacities. The FT-SPK with CCS process was modelled to conduct a comprehensive analysis of the conversion pathway. Life-cycle assessment (LCA) with a well-to-wake approach was performed to quantify the SAF’s carbon footprint considering both biogenic and fossil carbon dynamics. Results showed that 0.09 kg FT-SPK per kg of dry biomass could be produced together with other hydrocarbon products. Well-to-wake fossil emissions scored 21.6 gCO2e per MJ of FT-SPK utilised. When considering fossil and biogenic carbon dynamics a negative carbon flux (-20.0 gCO2eMJ− 1 ) from the atmosphere to permanent storage was generated. However FT-SPK is limited to a 50 %mass blend with conventional Jet A/A1 fuel. Using the certified blend reduced Jet A/A1 fossil emissions in a 37 % and the net carbon flux resulted positive (30.9 gCO2eMJ− 1 ). Sensitivity to variations in process as sumptions was investigated. The lifecycle fossil-emissions reported in this study resulted 49 % higher than the CORSIA default value for FT-SPK. In a UK framework only 0.7 % of aviation fuel demand could be covered using national resources but the emission reduction goal in aviation targeted for 2037 could be satisfied when considering CCS.
Techno-economic Analysis of the Production of Synthetic Fuels using CO2 Generated by the Cement Industry and Green Hydrogen
Jul 2024
Publication
Cement industry due to the decomposition of CaCO3 and the production of clinker emits large amounts of CO2 into the atmosphere. This anthropogenic gas can be captured and through its synthesis with green hydrogen methanol and finally synthetic fuels are achieved. By using e-fuel Europe’s climate neutrality objectives could be achieved. However the energy transition still lacks a clear roadmap and decisions are strongly affected by the geopolitical situation the energy demand and the economy. Therefore different scenarios are analysed to assess the influence of key factors on the overall economic viability of the process: 1) A business-as-usual scenario EU perspectives 2) allowing e-fuels and 3) improving H2 production processes. The technical feasibility of the production of synthetic fuels is verified. The most optimistic projections indicate future production costs of synthetic fuels will be lower than those of fossil fuels. This is directly related to the cost of green hydrogen production.
Design and Scale-up of a Hydrogen Oxy-fuel Burner for High-temperature Industrial Processes
Aug 2025
Publication
The present study investigates the design and scale-up of a pure hydrogen oxy-fuel combustion burner for industrial applications. In recent years this technology has garnered attention as an effective approach to the decarbonisation of high-temperature industrial processes. Replacing air with oxygen in combustion processes significantly reduces nitrogen oxides emissions and leads to sustainable energy use. A laboratory-scale burner was designed with inlet nozzle dimensions adapted to the specific properties of hydrogen and oxygen as fuel and oxidant respectively. Implementing oxy-fuel combustion requires addressing several technical issues to prevent the burner wall from overheating and to ensure a stable flame. An infrared camera was used to characterise the performance and operating conditions of the laboratory-scale burner in the range of 2.5–30 kW. The 10 kW baseline case was analysed numerically and validated experimentally using thermocouples. This revealed stable lifted flames with maximum temperatures of 2800 K and a flame length of 0.15 m. A key challenge in engineering is transferring results from laboratory-scale to large-scale industrial applications. Once validated the prototype design was scaled up numerically from 10 kW to 1 MW investigating the feasibility of different scaling criteria. The impact of these criteria on flame characteristics mixing patterns and the volumetric distribution of the reaction zone was then assessed. The constant velocity criterion yielded the lowest pressure drops although it also resulted in longer flame lengths. In contrast the constant residence time criterion generated the highest pressure drops. The increased velocities associated with this criterion enhanced mixing leading to shorter flame lengths as noted in the cases of 200 kW decreasing from 0.98 m under constant velocity criterion to 0.46 m. The intermediate criteria demonstrated a feasible alternative for scaling up the burner by effectively balancing flame length mixing rate and pressure losses. Nevertheless all criteria enabled the burner to sustain high combustion efficiency. Overall this investigation provides valuable insight into the potential of hydrogen oxy-fuel combustion technology to reduce carbon emissions in high-temperature processes.
Design of a Flexible, Modular, Scalable Infrastructure to Inland Intake of Offshore Hydrogen Production
May 2025
Publication
Hydrogen is one of the energy vectors that are called to play a key role in a decarbonised energy future. On the other hand offshore energy is one of the options to increase renewable energy generation either electricity or other vectors as hydrogen. At this respect the OCEANH2 project aims to design a plant for the generation storage and distribution of modular flexible and intelligent offshore green hydrogen hybridizing floating wind and photovoltaic technology produced in locations at Gran Canarias and Carboneras (Spain) 1250 and 700 m to the coast. The intake of hydrogen to land is one of the bottlenecks of such project impacting in the whole economy of the levelized cost of hydrogen that is produced. From the analysis that is presented it is concluded that the practical alternatives in the framework of the OCEANH2 project are mainly by dedicated carbon steel pipelines due to the existing uncertainties on the utilization of non-metallic pipes and the low distance to the intake facilities at the port in the project. We have evaluated as well the implementation of hydrogen refuelling stations and truck loading stations for short-distance hydrogen delivery based on compressed hydrogen with a capital cost of 1.7 and 7 M€ for a hydrogen management of 100 kg/day. Hydrogen transport by vessel when produced hydrogen offshore has been discarded for the particular case of OCEANH2.
Optimizing Proton Exchange Membrane Electrolyzer Performance Through Dynamic Pressure and Temperature Control: A Mixed-integer Linear Programming Approach
Aug 2025
Publication
Hydrogen is a key energy carrier for decarbonizing multiple sectors particularly when produced via water electrolysis powered by renewable energy. Proton exchange membrane (PEM) electrolyzers are well suited for this application due to their ability to rapidly adjust to fluctuating power inputs. Despite being conventionally operated at high temperatures and pressures to reduce heating and compression needs recent studies suggest that under partial loads lower operating conditions may enhance efficiency. This study introduces a novel optimization framework for dynamically adjusting pressure and temperature in PEM electrolyzers. The model integrates an efficiency map within a Mixed-Integer Linear Programming (MILP) formulation and applies McCormick tightening to address nonlinearities. A one-week case study demonstrates operational cost reductions of up to 12.5 % through optimal control favoring lower temperatures and pressures at low current densities and higher temperatures near rated load while maintaining moderate pressures. The results show improved efficiency and reduced hydrogen crossover enhancing safety and enabling scalable application over extended time horizons. These insights are valuable for long-term planning and evaluation of hydrogen production and storage systems.
Feasibility Analysis of the New Generation of Fuels in the Maritime Sector
May 2025
Publication
The main motivation for this paper was the lack of studies and comparative analyses on the new generation of alternative fuels in the marine sector such as methane methanol ammonia and hydrogen. Firstly a review of international legislation and the status of these new fuels was carried out highlighting the current situation and the different existing alternatives for reducing greenhouse gas (GHG) emissions. In addition the status and evolution of the current order book for ships since the beginning of this decade were used for this analysis. Secondly each fuel and its impact on the geometry and operation of the engine were evaluated in a theoretical engine called MW-1. Lastly an economic analysis of the current situation of each fuel and its availability in the sector was carried out in order to select using the indicated methodology the most viable fuel at present to replace traditional fuels with a view to the decarbonization set for 2050.
Practical Implementation of Hydrogen in Buildings: An Integration Model Based on Flowcharts and a Variable Matrix for Decision-Making
May 2025
Publication
Buildings are major energy consumers accounting for a significant portion of global energy consumption. Integrating hydrogen systems electrolyzers accumulation and fuel cells is proposed as a clean and efficient energy alternative to mitigate this impact and move toward a more sustainable future. This paper presents a systematic procedure for incorporating these technologies into buildings considering building engineers and stakeholders. First an in-depth analysis of buildings’ main energy consumption parameters is conducted identifying areas of energy need with the most significant optimization potential. Next a detailed review of the various opportunities for hydrogen applications in buildings is conducted evaluating their advantages and limitations. Performing a scientific review to find and understand the requirements of building engineers and the stakeholders has given notions of integration that emphasize the needs. As a result of the review process and identifying the needs to integrate hydrogen into buildings a flowchart is proposed to facilitate decision-making regarding integrating hydrogen systems into buildings. This flowchart is accompanied by a matrix of variables that considers the defined requirements allowing for combining the most suitable solution for each case. The results of this research contribute to advancing the adoption of hydrogen technologies in buildings thus promoting the transition to a more sustainable and resilient energy model.
Pathways to 100% Renewable Energy in Island Systems: A Systematic Review of Challenges, Solutions Strategies, and Success Cases
May 2025
Publication
The transition to 100% renewable energy systems is critical for achieving global sustainability and reducing dependence on fossil fuels. Island power systems due to their geographical isolation limited interconnectivity and reliance on imported fuels face unique challenges in this transition. These systems’ vulnerability to supply–demand imbalances voltage instability and frequency deviations necessitates tailored strategies for achieving grid stability. This study conducts a systematic review of the technical and operational challenges associated with transitioning island energy systems to fully renewable generation following the Preferred Reporting Items for Systematic Reviews and MetaAnalyses (PRISMA) methodology. Out of 991 identified studies 81 high-quality articles were selected focusing on key aspects such as grid stability energy storage technologies and advanced control strategies. The review highlights the importance of energy storage solutions like battery energy storage systems hydrogen storage pumped hydro storage and flywheels in enhancing grid resilience and supporting frequency and voltage regulation. Advanced control strategies including grid-forming and grid-following inverters as well as digital twins and predictive analytics emerged as effective in maintaining grid efficiency. Real-world case studies from islands such as El Hierro Hawai’i and Nusa Penida illustrate successful strategies and best practices emphasizing the role of supportive policies and community engagement. While the findings demonstrate that fully renewable island systems are technically and economically feasible challenges remain including regulatory financial and policy barriers.
Non-Renewable and Renewable Exergy Costs of Water Electrolysis in Hydrogen Production
Mar 2025
Publication
Hydrogen production via water electrolysis and renewable electricity is expected to play a pivotal role as an energy carrier in the energy transition. This fuel emerges as the most environmentally sustainable energy vector for non-electric applications and is devoid of CO2 emissions. However an electrolyzer´s infrastructure relies on scarce and energyintensive metals such as platinum palladium iridium (PGM) silicon rare earth elements and silver. Under this context this paper explores the exergy cost i.e. the exergy destroyed to obtain one kW of hydrogen. We disaggregated it into non-renewable and renewable contributions to assess its renewability. We analyzed four types of electrolyzers alkaline water electrolysis (AWE) proton exchange membrane (PEM) solid oxide electrolysis cells (SOEC) and anion exchange membrane (AEM) in several exergy cost electricity scenarios based on different technologies namely hydro (HYD) wind (WIND) and solar photovoltaic (PV) as well as the different International Energy Agency projections up to 2050. Electricity sources account for the largest share of the exergy cost. Between 2025 and 2050 for each kW of hydrogen generated between 1.38 and 1.22 kW will be required for the SOEC-hydro combination while between 2.9 and 1.4 kW will be required for the PV-PEM combination. A Grassmann diagram describes how non-renewable and renewable exergy costs are split up between all processes. Although the hybridization between renewables and the electricity grid allows for stable hydrogen production there are higher non-renewable exergy costs from fossil fuel contributions to the grid. This paper highlights the importance of nonrenewable exergy cost in infrastructure which is required for hydrogen production via electrolysis and the necessity for cleaner production methods and material recycling to increase the renewability of this crucial fuel in the energy transition.
Offshore Facilities to Produce Hydrogen
Jun 2017
Publication
As a result of international agreements on the reduction of CO2 emissions new technologies using hydrogen are being developed. Hydrogen despite being the most abundant element in Nature cannot be found in its pure state. Water is one of the most abundant sources of hydrogen on the planet. The proposal here is to use energy from the sea in order to obtain hydrogen from water. If plants to obtain hydrogen were to be placed in the ocean the impact of long submarines piping to the coast will be reduced. Further this will open the way for the development of ships propelled by hydrogen. This paper discusses the feasibility of an offshore installation to obtain hydrogen from the sea using ocean wave energy.
Advances, Progress, and Future Directions of Renewable Wind Energy in Brazil (2000–2025–2050)
May 2025
Publication
Brazil has emerged as one of the global leaders in adopting renewable energy standing out in the implementation of onshore wind energy and more recently in the development of future offshore wind energy projects. Onshore wind energy has experienced exponential growth in the last decade positioning Brazil as one of the countries with the largest installed capacity in the world by 2023 with 30 GW. Wind farms are mainly concentrated in the northeast region where winds are constant and powerful enabling efficient and cost-competitive generation. Although in its early stages offshore wind energy presents significant potential of 1228 GW due to Brazil’s extensive coastline which exceeds 7000 km. Offshore wind projects promise greater generating capacity and stability as offshore winds are more constant than onshore winds. However their development faces challenges such as high initial costs environmental impacts on marine ecosystems and the need for specialized infrastructure. From a sustainability perspective this article discusses that both types of wind energy are key to Brazil’s energy transition. They reduce dependence on fossil fuels generate green jobs and foster technological innovation. However it is crucial to implement policies that foster synergy with green hydrogen production and minimize socio-environmental impacts such as impacts on local communities and biodiversity. Finally the article concludes that by 2050 Brazil is expected to consolidate its leadership in renewable energy by integrating advanced technologies such as larger more efficient turbines energy storage systems and green hydrogen production. The combination of onshore and offshore wind energy and other renewable sources could position the country as a global model for a clean sustainable and resilient energy mix.
The Role of Integrated Multi-Energy Systems Toward Carbon-Neutral Ports: A Data-Driven Approach Using Empirical Data
Feb 2025
Publication
Ports are critical hubs in the global supply chain yet they face mounting challenges in achieving carbon neutrality. Port Integrated Multi-Energy Systems (PIMESs) offer a comprehensive solution by integrating renewable energy sources such as wind photovoltaic (PV) hydrogen and energy storage with traditional energy systems. This study examines the implementation of a real-word PIMES showcasing its effectiveness in reducing energy consumption and emissions. The findings indicate that in 2024 the PIMES enabled a reduction of 1885 tons of CO2 emissions with wind energy contributing 84% and PV 16% to the total decreases. The energy storage system achieved a charge–discharge efficiency of 99.15% while the hydrogen production system demonstrated an efficiency of 63.34% producing 503.87 Nm3/h of hydrogen. Despite these successes challenges remain in optimizing renewable energy integration expanding storage capacity and advancing hydrogen technologies. This paper highlights practical strategies to enhance PIMESs’ performances offering valuable insights for policymakers and port authorities aiming to balance energy efficiency and sustainability and providing a blueprint for carbon-neutral port development worldwide.
Continuous Fermentative Biohydrogen Production from Fruit-Vegetable Waste: A Parallel Approach to Assess Process Reproducibility
Sep 2025
Publication
Dark fermentation (DF) has gained increasing interest over the past two decades as a sustainable route for biohydrogen production; however understanding how reproducible the process can be both from macro- and microbiological perspectives remains limited. This study assessed the reproducibility of a parallel continuous DF system using fruit-vegetable waste as a substrate under strictly controlled operational conditions. Three stirred-tank reactors were operated in parallel for 90 days monitoring key process performance indicators. In addition to baseline operation different process enhancement strategies were tested including bioaugmentation supplementation with nutrients and/or additional fermentable carbohydrates and modification of key operational parameters such as pH and hydraulic retention time all widely used in the field to improve DF performance. Microbial community structure was also analyzed to evaluate its reproducibility and potential relationship with process performance and metabolic patterns. Under these conditions key performance indicators and core microbial features were reproducible to a large extent yet full consistency across reactors was not achieved. During operation unforeseen operational issues such as feed line clogging pH control failures and mixing interruptions were encountered. Despite these disturbances the system maintained an average hydrogen productivity of 3.2 NL H2/L-d with peak values exceeding 6 NL H2/L-d under optimal conditions. The dominant microbial core included Bacteroides Lactobacillus Veillonella Enterococcus Eubacterium and Clostridium though their relative abundances varied notably over time and between reactors. An inverse correlation was observed between lactate concentration in the fermentation broth and the amount of hydrogen produced suggesting it can serve as a precursor for hydrogen. Overall the findings presented here demonstrate that DF processes can be resilient and broadly reproducible. However they also emphasize the sensitivity of these processes to operational disturbances and microbial shifts. This underscores the necessity for refined control strategies and further systematic research to translate these insights into stable high-performance real-world systems.
Development, Application and Optimization of Hydrogen Refueling Processes for Railway Vehicles
Apr 2025
Publication
In recent years numerous hydrogen-powered rail vehicles have been developed and their deployment within public transport is steadily increasing. To avoid disadvantages compared to diesel vehicles refueling times of 15 min are stated in the industry as target independent of climate zones or vehicle configurations. As refueling time varies with these parameters this work presents the corresponding refueling times and defines optimization potentials. A simulation model was set up and parametrized with a reference vehicle and hydrogen refueling station from the FCH2RAIL project. Measurement data from this station and vehicle were analyzed and compared to simulation results for model validation. The results show that at high ambient temperature pre-cooling reduces refueling time by 71 % and type 4 tanks increase refueling time by 20 % compared to type 3. Overall optimized tank design and thermal management reduce the refueling time for rail vehicles from over 2 h to 15 min.
Ensuring Southern Spain’s Energy Future: A LEAP-Based Scenario for Meeting 2030 and 2050 Goals
Aug 2025
Publication
The transition towards a low-carbon energy system remains a critical challenge for regions heavily dependent on fossil fuels such as Andalusia. This study proposes an energy planning framework based on the Low Emissions Analysis Platform (LEAP) to model alternative scenarios and assess the feasibility of meeting the 2030 and 2050 decarbonisation targets. Three scenarios are evaluated the Tendential Scenario (TS01) the Efficient Scenario (ES01) and the Efficient UJA (EEUJA) Scenario with this last being specifically designed to ensure full compliance with regional energy goals. The results indicate that while the Tendential Scenario falls short in reducing primary energy consumption and greenhouse gas (GHG) emissions the Efficient Scenario achieves significant progress though it is still insufficient to meet renewable energy integration targets. The proposed EEUJA Scenario introduces more ambitious measures including large-scale electrification smart grids energy storage and green hydrogen deployment resulting in a 39.5% reduction in primary energy demand by 2030 and 97% renewable energy penetration by 2050. Furthermore by implementing sector-specific decarbonisation strategies for the industry transport residential and services sectors Andalusia could position itself as a frontrunner in the energy transition while minimising economic and environmental risks. These findings underscore the importance of policy enforcement technological innovation and financial incentives in securing a sustainable energy future. The methodology developed in this study is replicable for other regions aiming for carbon neutrality and energy resilience through strategic planning and scenario analysis.
Bio-energy Generation from Synthetic Winery Wastewaters
Nov 2020
Publication
In Spain the winery industry exerts a great influence on the national economy. Proportional to the scale of production a significant volume of waste is generated estimated at 2 million tons per year. In this work a laboratory-scale reactor was used to study the feasibility of the energetic valorization of winery effluents into hydrogen by means of dark fermentation and its subsequent conversion into electrical energy using fuel cells. First winery wastewater was characterized identifying and determining the concentration of the main organic substrates contained within it. To achieve this a synthetic winery effluent was prepared according to the composition of the winery wastewater studied. This effluent was fermented anaerobically at 26 ◦C and pH = 5.0 to produce hydrogen. The acidogenic fermentation generated a gas effluent composed of CO2 and H2 with the percentage of hydrogen being about 55% and the hydrogen yield being about 1.5 L of hydrogen at standard conditions per liter of wastewater fermented. A gas effluent with the same composition was fed into a fuel cell and the electrical current generated was monitored obtaining a power generation of 1 W·h L−1 of winery wastewater. These results indicate that it is feasible to transform winery wastewater into electricity by means of acidogenic fermentation and the subsequent oxidation of the bio-hydrogen generated in a fuel cell.
An Optimization Cost Strategy for Storage-enabled Hydrogen Flow Network Using Monte Carlo Simulation
Aug 2025
Publication
This article presents an innovative approach to address the optimization and planning of hydrogen network transmission focusing on minimizing computational and operational costs including capital operational and maintenance expenses. The mathematical models developed for gas flow rate pipelines junctions and storage form the basis for the optimization problem which aims to reduce costs while satisfying equality inequality and binary constraints. To achieve this we implement a dynamic algorithm incorporating 100 scenarios to account for uncertainty. Unlike conventional successive linear programming methods our approach solves successive piecewise problems and allows comparisons with other techniques including stochastic and deterministic methods. Our method significantly reduces computational time (56 iterations) compared to deterministic (92 iterations) and stochastic (77 iterations) methods. The non-convex nature of the model necessitates careful selection of starting points to avoid local optimal solutions which is addressed by transforming the primal problem into a linear program by fixing the integer variable. The LP problem is then efficiently solved using the Complex Linear Programming Expert (CPLEX) solver enhanced by Monte Carlo simulations for 100 scenarios achieving a 39.13% reduction in computational time. In addition to computational efficiency this approach leads to operational cost savings of 25.02% by optimizing the selection of compressors (42.8571% decreased) and storage facilities. The model’s practicality is validated through realworld simulations on the Belgian gas network demonstrating its potential in solving large-scale hydrogen network transmission planning and optimization challenges.
Energy Equivalent Consumption and Optimization Strategies for Hybrid Hydrogen Fuel Systems in Multirotor Drones
Jan 2025
Publication
This paper presents an improved Equivalent Consumption Minimization Strategy (ECMS) designed to optimize energy management for the hybrid hydrogen fuel power setups in multirotor drones. The proposed strategy aims to reduce hydrogen consumption and enhance the performance of the system consisting of Proton Exchange Membrane Fuel Cells (PEMFCs) and lithium batteries. Multirotor drones experience rapid power fluctuations due to their agile maneuvering but PEMFCs are unable to meet these demands swiftly due to their inherent limitations. To address this lithium batteries supplement peak power requirements and absorb excess energy on the DC bus. However this can lead to energy loss if the batteries are charged when not required. Our improved ECMS considers these inefficiencies and adjusts energy distribution to reduce hydrogen consumption and optimize the system’s performance. The proposed strategy effectively maintains the lithium batteries’ State of Charge (SOC) reduces hydrogen usage and enhances overall system efficiency when compared to traditional ECMS approaches.
Optimization of Hydrogen Combustion in Diesel Engines: A CFD-Based Approach for Efficient Hydrogen Mixing and Emission Reduction
Apr 2025
Publication
Hydrogen internal combustion engines (ICEs) have gained significant attention as a promising solution for achieving zero-carbon emissions in the transportation sector. This study investigates the conversion of a 2 L Diesel ICE into a lean hydrogen-powered ICE focusing on key challenges such as hydrogen mixing pre-ignition combustion flame development and NOx emissions. The novelty of this research lies in the specific modifications made to optimize engine performance and reduce emissions while utilizing the existing Diesel engine infrastructure. The study identifies several important design changes for the successful conversion of a Diesel engine to hydrogen including the following: Intake port design: transitioning from a swirl to a tumble design to enhance hydrogen mixing; Injection and spark plug configuration: using a lateral injection system combined with a central spark plug to improve combustion; Piston design: employing a lenticular piston shape with adaptable depth to enhance mixing; Mitigating Coanda effect: preventing hydrogen issues at the spark plug using deflectors or caps; and Head design: maintaining a flat head design for efficient mixing while ensuring adequate cooling to avoid pre-ignition. These findings highlight the importance of specific modifications for converting Diesel engines to hydrogen providing a solid foundation for further research in hydrogen-powered ICEs which could contribute to carbon emission reduction and a more sustainable energy transition.
Pipeline Regulation for Hydrogen: Choosing Between Paths and Networks
Oct 2025
Publication
The reliance on hydrogen as part of the transition towards a low-carbon economy will require developing dedicated pipeline infrastructure. This deployment will be shaped by regulatory frameworks governing investment and access conditions ultimately structuring how the commodity is traded. The paper assesses the market design for hydrogen infrastructure assuming the application of unbundling requirements. For this purpose it develops a general economic framework for regulating pipeline infrastructure focusing on asset specificity market power and access rules. The paper assesses the scope of application of infrastructure regulation which can be set to individual pipelines or to entire networks. When treated as entire networks the infrastructure can provide flexibility to enhance market liquidity. However this requires establishing network monopolies which rely on central planning and reduce the overall dynamic efficiency of the sector. The paper further compares the regulation applied to US and EU natural gas pipeline infrastructure. Based on the different challenges faced by the EU hydrogen sector including absence of wholesale concentration and large infrastructure needs the paper draws lessons for a regulatory framework establishing the main building blocks of a hydrogen target model. The paper recommends a review of the current EU regulatory framework in the Hydrogen and Decarbonised Gas Package to enable i) the application of regulation to individual pipelines rather than entire networks; ii) the use of negotiated third-party access light-touch regulation and possibly marketbased coordination mechanisms for the access to the infrastructure and iii) a more significant role for long-term capacity contracts to underpin infrastructure investments.
Proton Exchange Membrane Fuel Cells (PEMFCs): Advances and Challenges
Sep 2021
Publication
The study of the electrochemical catalyst conversion of renewable electricity and carbon oxides into chemical fuels attracts a great deal of attention by different researchers. The main role of this process is in mitigating the worldwide energy crisis through a closed technological carbon cycle where chemical fuels such as hydrogen are stored and reconverted to electricity via electrochemical reaction processes in fuel cells. The scientific community focuses its efforts on the development of high-performance polymeric membranes together with nanomaterials with high catalytic activity and stability in order to reduce the platinum group metal applied as a cathode to build stacks of proton exchange membrane fuel cells (PEMFCs) to work at low and moderate temperatures. The design of new conductive membranes and nanoparticles (NPs) whose morphology directly affects their catalytic properties is of utmost importance. Nanoparticle morphologies like cubes octahedrons icosahedrons bipyramids plates and polyhedrons among others are widely studied for catalysis applications. The recent progress around the high catalytic activity has focused on the stabilizing agents and their potential impact on nanomaterial synthesis to induce changes in the morphology of NPs.
Strategic Hydrogen Management: Driving a Sustainable Energy Future
Mar 2025
Publication
The concept of sustainability and green energy has become increasingly relevant in our lives especially in the face of climate change and the growing demand for sustainable solutions in the energy sector. Driven by renewable energies there is a continuous effort to research and develop alternative energy sources and fuels. In this context the European Union (EU) Strategy for Hydrogen (H) has emerged placing this source as one of the central pillars in the fight against climate change. Hydrogen is seen as a potential fuel and energy source of the future. However in addition to political and structural challenges this new approach also faces significant technical obstacles. With the increase in population and human needs the need for energy continues to grow. The world population is projected to reach ten billion people by the year 2050 (Tarhan and Çil 2021). To meet this growing demand and promote a transition to clean energies many countries are incorporating renewable energy sources into their energy mix while still relying on fossil fuels. Developed countries are gradually reducing their use of fossil fuels in energy production. Considering that 80 per cent of our daily energy needs are still met by these sources the complete transition is complex and not immediate but it is an achievable goal.
Impact of Solar Thermal Energy and Calcium Looping Implementation on Biomass Gasification for Low-carbon Hydrogen Production
Sep 2025
Publication
In the search of low-carbon hydrogen production routes this study evaluates four biomass gasification processes: conventional steam gasification (CSG) sorption-enhanced gasification (SEG) and their solar-assisted variants (SSG and SSEG). The comparison focuses on three key aspects: hydrogen production overall energy efficiency (to H2 and power) and carbon capture potential (generation of a pure CO2 process stream for storage or utilization). For a realistic comparison a pseudo-equilibrium model of a double-bed gasifier was developed based on experimental correlations of char conversion under conventional and SEG conditions. The solar processes were designed for stable year-round operation considering seasonal weather variations by appropriately dimensioning the heliostat field and the thermal and chemical energy storage systems whose inventory dynamics were modelled. Both the gasifier and central solar tower models were rigorously validated with published data enhancing the reliability of the results. Solar-assisted configurations significantly outperform non-solar ones in hydrogen production with SSEG yielding 128 kg H2/ton biomassdaf compared to 90–95 kg for non-solar options. SEG demonstrates superior carbon capture potential (76 %) while solar-assisted systems achieve higher energy efficiency (67–73 % vs. 60–63 % for non-solar). These results underscore the potential of solar-assisted gasification for sustainable hydrogen production offering enhanced yields improved efficiency and substantial carbon capture capabilities. Future work will involve economic and environmental analysis to determine the best overall configuration.
A Review on the Use of Catalysis for Biogas Steam Reforming
Nov 2023
Publication
Hydrogen production from natural gas or biogas at different purity levels has emerged as an important technology with continuous development and improvement in order to stand for sustainable and clean energy. Regarding biogas which can be obtained from multiple sources hydrogen production through the steam reforming of methane is one of the most important methods for its energy use. In that sense the role of catalysts to make the process more efficient is crucial normally contributing to a higher hydrogen yield under milder reaction conditions in the final product. The aim of this review is to cover the main points related to these catalysts as every aspect counts and has an influence on the use of these catalysts during this specific process (from the feedstocks used for biogas production or the biodigestion process to the purification of the hydrogen produced). Thus a thorough review of hydrogen production through biogas steam reforming was carried out with a special emphasis on the influence of different variables on its catalytic performance. Also the most common catalysts used in this process as well as the main deactivation mechanisms and their possible solutions are included supported by the most recent studies about these subjects.
Hydrogen Recovery from Coke Oven Gas. Comparative Analysis of Technical Alternatives
Feb 2022
Publication
The recovery of energy and valuable compounds from exhaust gases in the iron and steel industry deserves specialattention due to the large power consumption and CO 2 emissions of the sector. In this sense the hydrogen content of coke oven gas(COG) has positioned it as a promising source toward a hydrogen-based economy which could lead to economic and environmentalbenefits in the iron and steel industry. COG is presently used for heating purposes in coke batteries or furnaces while in highproduction rate periods surplus COG is burnt in flares and discharged into the atmosphere. Thus the recovery of the valuablecompounds of surplus COG with a special focus on hydrogen will increase the efficiency in the iron and steel industry compared tothe conventional thermal use of COG. Different routes have been explored for the recovery of hydrogen from COG so far: i)separation/purification processes with pressure swing adsorption or membrane technology ii) conversion routes that provideadditional hydrogen from the chemical transformation of the methane contained in COG and iii) direct use of COG as fuel forinternal combustion engines or gas turbines with the aim of power generation. In this study the strengths and bottlenecks of themain hydrogen recovery routes from COG are reviewed and discussed.
New Protocol for Hydrogen Refueling Station Operation
Aug 2025
Publication
This work proposes a new method to refill fuel cell electric vehicle hydrogen tanks from a storage system in hydrogen refueling stations. The new method uses the storage tanks in cascade to supply hydrogen to the refueling station dispensers. This method reduces the hydrogen compressor power requirement and the energy consumption for refilling the vehicle tank; therefore the proposed alternative design for hydrogen refueling stations is feasible and compatible with low-intensity renewable energy sources like solar photovoltaic wind farms or micro-hydro plants. Additionally the cascade method supplies higher pressure to the dispenser throughout the day thus reducing the refueling time for specific vehicle driving ranges. The simulation shows that the energy saving using the cascade method achieves 9% to 45% depending on the vehicle attendance. The hydrogen refueling station design supports a daily vehicle attendance of 9 to 36 with a complete refueling process coverage. The carried-out simulation proves that the vehicle tank achieves the maximum attainable pressure of 700 bars with a storage system of six tanks. The data analysis shows that the daily hourly hydrogen demand follows a sinusoidal function providing a practical tool to predict the hydrogen demand for any vehicle attendance allowing the planners and station designers to resize the elements to fulfill the new requirements. The proposed system is also applicable to hydrogen ICE vehicles.
A Complete Control-Oriented Model for Hydrogen Hybrid Renewable Microgrids with High-Voltage DC Bus Stabilized by Batteries and Supercapacitors
Oct 2025
Publication
The growing penetration of renewable energy sources requires resilient microgrids capable of providing stable and continuous operation. Hybrid energy storage systems (HESS) which integrate hydrogen-based storage systems (HBSS) battery storage systems (BSS) and supercapacitor banks (SCB) are essential to ensuring the flexibility and robustness of these microgrids. Accurate modelling of these microgrids is crucial for analysis controller design and performance optimization but the complexity of HESS poses a significant challenge: simplified linear models fail to capture the inherent nonlinear dynamics while nonlinear approaches often require excessive computational effort for real-time control applications. To address this challenge this study presents a novel state space model with linear variable parameters (LPV) which effectively balances accuracy in capturing the nonlinear dynamics of the microgrid and computational efficiency. The research focuses on a high-voltage DC bus microgrid architecture in which the BSS and SCB are connected directly in parallel to provide passive DC bus stabilization a configuration that improves system resilience but has received limited attention in the existing literature. The proposed LPV framework employs recursive linearisation around variable operating points generating a time-varying linear representation that accurately captures the nonlinear behaviour of the system. By relying exclusively on directly measurable state variables the model eliminates the need for observers facilitating its practical implementation. The developed model has been compared with a reference model validated in the literature and the results have been excellent with average errors MAE RAE and RMSE values remaining below 1.2% for all critical variables including state-of-charge DC bus voltage and hydrogen level. At the same time the model maintains remarkable computational efficiency completing a 24-h simulation in just 1.49 s more than twice as fast as its benchmark counterpart. This optimal combination of precision and efficiency makes the developed LPV model particularly suitable for advanced model-based control strategies including real-time energy management systems (EMS) that use model predictive control (MPC). The developed model represents a significant advance in microgrid modelling as it provides a general control-oriented approach that enables the design and operation of more resilient efficient and scalable renewable energy microgrids.
Decarbonizing Insular Energy Systems: A Literature Review of Practical Strategies for Replacing Fossil Fuels with Renewable Energy Sources
Feb 2025
Publication
The reliance on fossil fuels for electricity production in insular regions creates critical environmental economic and logistical challenges particularly for ecologically fragile islands. Transitioning to renewable energy is essential to mitigate these impacts enhance energy security and preserve unique ecosystems. This systematic review addresses key research questions: what practical strategies have proven effective in reducing fossil fuel dependency in island contexts and what barriers hinder their widespread adoption? By applying the PRISMA methodology this study examines a decade (2014–2024) of research on renewable energy systems highlighting successful initiatives such as the integration of solar and wind systems in Hawaii energy storage advancements in La Graciosa hybrid renewable grids in the Galápagos Islands and others. Specific barriers include high upfront costs regulatory challenges and technical limitations such as grid instability due to renewable energy intermittency. This review contributes by synthesizing lessons from diverse case studies and identifying innovative approaches like hydrogen storage predictive control systems and community-driven renewable projects. The findings offer actionable insights for policymakers and researchers to accelerate the transition towards sustainable energy systems in island environments.
Process Flexibility of Soprtion-enhanced Steam Reforming for Hydrogen Production from Gas Mixtures Representative of Biomass-derived Syngas
Sep 2025
Publication
Hydrogen is a critical enabler of CO2 valorization essential for the synthesis of carbon-neutral fuels such as efuels and advanced biofuels. Biohydrogen produced from renewable biomass is a stable and dispatchable source of low-carbon hydrogen helping to address supply fluctuations caused by the intermittency of renewable electricity and the limited availability of electrolytic hydrogen. This study experimentally demonstrates that sorption-enhanced steam reforming (SESR) is a robust and adaptable process for hydrogen production from biomass-derived syngas-like gas streams. By incorporating in situ CO2 capture SESR overcomes the thermodynamic limits of conventional reforming achieving high hydrogen yields (>96 %) and purities (up to 99.8 vol%) across a wide range of syngas compositions. The process maintains high conversion efficiency despite variations in CO CH4 and CO2 concentrations and sustains performance even with H2-rich feeds conditions that typically inhibit reforming reactions. Among the operating parameters temperature has the greatest influence on performance followed by the steam-to-carbon ratio and space velocity. Multi-objective optimization shows that SESR can maintain high hydrogen yield (>96 %) selectivity (>99 %) and purity (>99.5 vol%) within a moderately flexible operating window. Methane reforming is identified as the main performance-limiting step with a stronger constraint on H2 yield and purity than CO conversion through the water–gas shift reaction. In addition to hydrogen SESR produces a concentrated CO2 stream suitable for downstream utilization or storage. These results support the potential of SESR as a flexible and efficient approach for hydrogen production from heterogeneous renewable feedstocks.
Green Hydrogen Techno-economic Assessments from Simulated and Measured Solar Photovoltaic Power Profiles
Nov 2024
Publication
Studies estimating the production cost of hydrogen-based fuels known as e-fuels often use renewable power profile time series obtained from open-source simulation tools that rely on meteorological reanalysis and satellite data such as Renewables.ninja or PVGIS. These simulated time series contain errors compared to real on-site measured data which are reflected in e-fuels cost estimates plant design and operational performance increasing the risk of inaccurate plant design and business models. Focusing on solar-powered e-fuels this study aims to quantify these errors using high-quality on-site power production data. A state-of-the-art optimization techno-economic model was used to estimate e-fuel production costs by utilizing either simulated or high-quality measured PV power profiles across four sites with different climates. The results indicate that in cloudy climates relying on simulated data instead of measured data can lead to an underestimation of the fuel production costs by 36 % for a hydrogen user requiring a constant supply considering an original error of 1.2 % in the annual average capacity factor. The cost underestimation can reach 25 % for a hydrogen user operating between 40 % and 100 % load and 17.5 % for a fully flexible user. For comparison cost differences around 20 % could also result from increasing the electrolyser or PV plant costs by around 55 % which highlights the importance of using high-quality renewable power profiles. To support this an open-source collaborative repository was developed to facilitate the sharing of measured renewable power profiles and provide tools for both time series analysis and green hydrogen techno-economic assessments.
European Hydrogen Train the Trainer Programme for Responders: The Impact of HyResponder on Training Across Europe
Jan 2025
Publication
Síle Brennan,
Christian Brauner,
Dennis Davis,
Natalie DeBacker,
Alexander Dyck,
César García Hernández,
André Vagner Gaathaug,
Petr Kupka,
Laurence Grand-Clement,
Etienne Havret,
Deborah Houssin-Agbomson,
Laurent Lecomte,
Eric Maranne,
Pippa Steele,
Paola Russo,
Adolfo Pinilla,
Gerhard Schoepf,
Tom Van Esbroeck and
Vladimir V. Molkov
The impact of the HyResponder project on the training of responders in 10 European countries is described. An overview is presented of training activities undertaken within the project in Austria Belgium Czech Republic France Germany Italy Norway Spain Switzerland and the United Kingdom. National leads with training expertise are given and the longer-term plans in each region are mentioned. Responders from each region took part in a specially tailored “train the trainer” programme and then delivered training within their regions. A flexible approach to training within the HyResponder network has enabled fit for purpose region appropriate activities to be delivered impacting over 1250 individuals during the project and many more beyond. Teaching and learning materials in hydrogen safety for responders have been made available in 8 languages: English Czech Dutch French German Italian Norwegian Spanish. They are being used to inform training within each of the partner countries. Dedicated national working groups focused on hydrogen safety training for responders have been established in Belgium the Czech Republic Italy and Switzerland.
Different Strategies in an Integrated Thermal Management System of a Fuel Cell Electric Bus Under Real Driving Cycles in Winter
May 2023
Publication
Due to the climate crisis and the restriction measures taken in the last decade electric buses are gaining popularity in the transport sector. However one of the most significant disadvantages of this type of vehicle is its low autonomy. Many electric buses with proton-exchange membrane fuel cells (PEMFC) systems have been developed to solve this problem in recent years. These have an advantage over battery-electric buses because the autonomy depends on the capacity of the hydrogen tanks. As with batteries thermal management is crucial for fuel cells to achieve good performance and prolong service life. For this reason it is necessary to investigate different strategies or configurations of a fuel cell electric bus’s integral thermal management system (ITMS). In the present work a novel global model of a fuel cell electric bus (FCEB) has been developed which includes the thermal models of the essential components. This model was used to evaluate different strategies in the FCEB integrated thermal management system simulating driving cycles of the public transport system of Valencia Spain under winter weather conditions. The first strategy was to use the heat generated by the fuel cell to heat the vehicle’s cabin achieving savings of up to 7%. The second strategy was to use the waste heat from the fuel cells to preheat the batteries. It was found that under conditions where a high-power demand is placed on the fuel cell it is advisable to use the residual heat to preheat the battery resulting in an energy saving of 4%. Finally a hybrid solution was proposed in which the residual heat from fuel cells is used to heat both the cabin and the battery resulting in an energy saving of 10%.
A COMSOL Framework for Predicting Hydrogen Embrittlement - Part 1: Coupled Hydrogen Transport
Mar 2025
Publication
Hydrogen threatens the structural integrity of metals and thus predicting hydrogen-material interactions is key to unlocking the role of hydrogen in the energy transition. Quantifying the interplay between material deformation and hydrogen diffusion ahead of cracks and other stress concentrators is key to the prediction and prevention of hydrogen-assisted failures. In this work a generalised theoretical and computational framework is presented that for the first time encompasses: (i) stress-assisted diffusion (ii) hydrogen trapping due to multiple trap types rigorously accounting for the rate of creation of dislocation trap sites (iii) hydrogen transport through dislocations (iv) equilibrium (Oriani) and non-equilibrium (McNabb-Foster) trapping kinetics (v) hydrogen-induced softening and (vi) hydrogen uptake considering the role of hydrostatic stresses and local electrochemistry. Particular emphasis is placed on the numerical implementation in COMSOL Multiphysics releasing the relevant models and discussing stability discretisation and solver details. Each of the elements of the framework is independently benchmarked against results from the literature and implications for the prediction of hydrogen-assisted fractures are discussed. The second part of this work (Part II) shows how these crack tip predictions can be combined with crack growth simulations.
Green Hydrogen: Resources Consumption, Technological Maturity, and Regulatory Framework
Aug 2023
Publication
Current climate crisis makes the need for reducing carbon emissions more than evident. For this reason renewable energy sources are expected to play a fundamental role. However these sources are not controllable but depend on the weather conditions. Therefore green hydrogen (hydrogen produced from water electrolysis using renewable energies) is emerging as the key energy carrier to solve this problem. Although different properties of hydrogen have been widely studied some key aspects such as the water and energy footprint as well as the technological development and the regulatory framework of green hydrogen in different parts of the world have not been analysed in depth. This work performs a data-driven analysis of these three pillars: water and energy footprint technological maturity and regulatory framework of green hydrogen technology. Results will allow the evaluation of green hydrogen deployment both the current situation and expectations. Regarding the water footprint this is lower than that of other fossil fuels and competitive with other types of hydrogen while the energy footprint is higher than that of other fuels. Additionally results show that technological and regulatory framework for hydrogen is not fully developed and there is a great inequality in green hydrogen legislation in different regions of the world.
Renewable Energy Sources for Green Hydrogen Generation in Colombia and Applicable Case of Studies
Nov 2023
Publication
Electrification using renewable energy sources represents a clear path toward solving the current global energy crisis. In Colombia this challenge also involves the diversification of the electrical energy sources to overcome the historical dependence on hydropower. In this context green hydrogen represents a key energy carrier enabling the storage of renewable energy as well as directly powering industrial and transportation sectors. This work explores the realistic potential of the main renewable energy sources including solar photovoltaics (8172 GW) hydropower (56 GW) wind (68 GW) and biomass (14 GW). In addition a case study from abroad is presented demonstrating the feasibility of using each type of renewable energy to generate green hydrogen in the country. At the end an analysis of the most likely regions in the country and paths to deploy green hydrogen projects are presented favoring hydropower in the short term and solar in the long run. By 2050 this energy potential will enable reaching a levelized cost of hydrogen (LCOH) of 1.7 1.5 3.1 and 1.4 USD/kg-H2 for solar photovoltaic wind hydropower and biomass respectively.
Hydrogen Revolution in Europe: Bibliometric Review of Industrial Hydrogen Applications for a Sustainable Future
Jul 2024
Publication
Industrial applications of hydrogen are key to the transition towards a sustainable lowcarbon economy. Hydrogen has the potential to decarbonize industrial sectors that currently rely heavily on fossil fuels. Hydrogen with its unique and versatile properties has several in-industrial applications that are fundamental for sustainability and energy efficiency such as the following: (i) chemical industry; (ii) metallurgical sector; (iii) transport; (iv) energy sector; and (v) agrifood sector. The development of a bibliometric analysis of industrial hydrogen applications in Europe is crucial to understand and guide developments in this emerging field. Such an analysis can identify research trends collaborations between institutions and countries and the areas of greatest impact and growth. By examining the scientific literature and comparing it with final hydrogen consumption in different regions of Europe the main actors and technologies that are driving innovation in industrial hydrogen use on the continent can be identified. The results obtained allow for an assessment of the knowledge gaps and technological challenges that need to be addressed to accelerate the uptake of hydrogen in various industrial sectors. This is essential to guide future investments and public policies towards strategic areas that maximize the economic and environmental impact of industrial hydrogen applications in Europe.
Implementation of a Decision-making Approach for a Hydrogen-based Multi-energy System Considering EVs and FCEVs Availability
Aug 2024
Publication
Innovative green vehicle concepts have become increasingly prevailing in consumer purchasing habits as technology evolves. The global transition towards sustainable transportation indicates an increase in new-generation vehicles including both fuel-cell electric vehicles (FCEVs) and plug-in electric vehicles (PEVs) that will take on roads in the future. This change requires new-generation stations to support electrification. This study introduced a prominent multi-energy system concept with a hydrogen refueling station. The proposed multi-energy system (MES) consists of green hydrogen production a hydrogen refueling station for FCEVs hydrogen injection into natural gas (NG) and a charging station for PEVs. An on-site renewable system projected at the station and a polymer electrolyte membrane electrolyzer (PEM) to produce hydrogen for two significant consumers support MES. In addition the MES offers the ability to conduct two-way trade with the grid if renewable energy systems are insufficient. This study develops a comprehensive multi-energy system with an economically optimized energy management model using a mixed-integer linear programming (MILP) approach. The determinative datasets of vehicles are generated in a Python environment using Gauss distribution. The fleet of FCEVs and PEVs are currently available on the market. The study includes fleets of the most common models from well-known brands. The results indicate that profits increase when the storage capacity of the hydrogen tank is higher and natural gas injections are limitless. Optimization results for all cases tend to choose higher-priced natural gas injections over hydrogen refueling because of the difference in costs of refueling and injection expenses. The analyses reveal the highest hydrogen sales to the natural gas (NG) grid by consuming 2214.31 kg generating a revenue of $6966 and in contrast the lowest hydrogen sales to the natural gas grid at 1045.38 kg resulting in a revenue of $3286. Regarding electricity the highest sales represent revenue of $7701 and $2375 for distribution system consumption and electric vehicles (EV) respectively. Conversely Cases 1 and 2 have achieved sales to EV of $2286 and $2349 respectively but do not have any sales to distribution system consumption regarding the constraints. Overall the optimization results show that the solution is optimal for a multi-energy system operator to achieve higher profits and that all end-user parties are satisfied.
Internal Combustion Engines and Carbon-Neutral Fuels: A Perspective on Emission Neutrality in the European Union
Mar 2024
Publication
Nowadays there is an intense debate in the European Union (EU) regarding the limits to achieve the European Green Deal to make Europe the first climate-neutral continent in the world. In this context there are also different opinions about the role that thermal engines should play. Furhermore there is no clear proposal regarding the possibilities of the use of green hydrogen in the transport decarbonization process even though it should be a key element. Thus there are still no precise guidelines regarding the role of green hydrogen with it being exclusively used as a raw material to produce E-fuels. This review aims to evaluate the possibilities of applying the different alternative technologies available to successfully complete the process already underway to achieve Climate Neutrality by about 2050 depending on the maturity of the technologies currently available and those anticipated to be available in the coming decades.
Numerical Study on the Use of Ammonia/Hydrogen Fuel Blends for Automotive Sparking-ignition Engines
Jun 2023
Publication
The importance of new alternative fuels has assumed great relevance in the last decades to face the issues of global warming and pollutant emissions from energy production. The scientific community is responsible for developing solutions to achieve the necessary environmental restriction policies. In this context ammonia appears as a potential fuel candidate and energy vector that may solve the technological difficulties of using hydrogen (H2 ) directly in internal combustion engines. Its high hydrogen content per unit mass higher energy density than liquid hydrogen well-developed infrastructure and experience in handling and storage make it suitable to be implemented as a long-term solution. In this work a virtual engine model was developed to perform prospective simulations of different operating conditions using ammonia and H2 -enriched ammonia as fuel in a spark-ignition (SI) engine integrating a chemical kinetics model and empirical correlations for combustion prediction. In addition specific conditions were evaluated to consider and to understand the governing parameters of ammonia combustion using computational fluid dynamics (CFD) simulations. Results revealed similar thermal efficiency than methane fuel with considerable improvements after appropriate H2 - enrichment. Moreover increasing the intake temperature and the turbulence intensity inside the cylinder evinced significant reductions in combustion duration. Finally higher compression ratios ensure efficiency gains with no evidence of abnormal combustion (knocking) even at high compression ratios (above 16:1) and low engine speeds (800 rpm). Numerical simulations showed the direct influence of the flame front surface area and the turbulent combustion velocity on efficiency reflecting the need for optimizing the SI engines design paradigm for ammonia applications.
Phasing Out Steam Methane Reformers with Water Electrolysis in Producing Renewable Hydrogen and Ammonia: A Case Study Based on the Spanish Energy Markets
Jul 2023
Publication
Deploying renewable hydrogen presents a significant challenge in accessing off-takers who are willing to make long-term investments. To address this challenge current projects focus on large-scale deployment to replace the demand for non-renewable hydrogen particularly in ammonia synthesis for fertiliser production plants. The traditional process involving Steam Methane Reformers (SMR) connected to Haber-Bosch synthesis could potentially transition towards decarbonisation by gradually integrating water electrolysis. However the coexistence of these processes poses limitations in accommodating the integration of renewable hydrogen thereby creating operational challenges for industrial hubs. To tackle this issue this paper proposes an optimal dispatch model for producing green hydrogen and ammonia while considering the coexistence of different processes. Furthermore the objective is to analyse external factors that could determine the appropriate regulatory and pricing framework to facilitate the phase-out of SMR in favour of renewable hydrogen production. The paper presents a case study based in Spain utilising data from 2018 2022 and 2030 perspectives on the country's renewable resources gas and electricity wholesale markets pricing ranges and regulatory constraints to validate the model. The findings indicate that carbon emissions taxation and the availability and pricing of Power Purchase Agreements (PPAs) will play crucial roles in this transition - the carbon emission price required for total phasing out SMR with water electrolysis would be around 550 EUR/ton CO2.
Modelling and Operation Strategy Approaches for On-site Hydrogen Refuelling Stations
Aug 2023
Publication
The number of Fuel Cell Electric Vehicles (FCEVs) in circulation has undergone a significant increase in recent years. This trend is foreseen to be stronger in the near future. In correlation with the FCEVs market increase the hydrogen delivery infrastructure must be developed. With this aim many countries have announced ambitious projects. For example Spain has the objective of increasing the number of Hydrogen Refuelling Stations (HRS) with public access from three units in operation currently to about 150 by 2030. HRSs are complex systems with high variability in terms of layout design size of components operational strategy hydrogen generation method or hydrogen generation location. This paper is focused on on-site HRS with electrolysis-based hydrogen production which provides interesting advantages when renewable energy is utilized compared to off-site hydrogen production despite their complexity. To optimize HRS design and operation a simulation model must be implemented. This paper describes a generic on-site HRS with electrolysis-based hydrogen production a cascaded multi-tank storage system with multiple compressors renewable energy sources and multiple types of dispensing formats. A modelling approach of the layout is presented and tested with real-based parameters of an HRS currently under development which is capable of producing 11.34 kg/h of green H2 with irradiation at 1000 W/m2. For the operation an operational strategy is proposed. The modelled system is tested through several simulations. A sensitivity analysis of the effects of hydrogen demand and day-ahead hydrogen production objective on emissions demand satisfaction and variable costs is performed. Simulation results show how the operational strategy has achieved service up to 310 FCEVs refuelling events of heavy duty and light duty FCEVs bringing the total H2 sold up to almost 7200 H2kg in one month of winter. Additionally considering variable costs of the energy from the utility grid the model shows a profit in the range of 21–50 k€ for a daily demand of 60 H2kg/day and 100 H2kg/day respectively. In terms of emissions a year simulation with 60 H2kg/day of demand shows specific emissions in the production of H2 in Spain of 6.26 kgCO2eq/H2kg which represents a greenhouse gas emission intensity of 52.26 kgCO2eq/H2MJ.
No more items...