France
Improved Hydrogen-Production-Based Power Management Control of a Wind Turbine Conversion System Coupled with Multistack Proton Exchange Membrane Electrolyzers
Mar 2020
Publication
This paper deals with two main issues regarding the specific energy consumption in an electrolyzer (i.e. the Faraday efficiency and the converter topology). The first aspect is addressed using a multistack configuration of proton exchange membrane (PEM) electrolyzers supplied by a wind turbine conversion system (WTCS). This approach is based on the modeling of the wind turbine and the electrolyzers. The WTCS and the electrolyzers are interfaced through a stacked interleaved DC–DC buck converter (SIBC) due to its benefits for this application in terms of the output current ripple and reliability. This converter is controlled so that it can offer dynamic behavior that is faster than the wind turbine avoiding overvoltage during transients which could damage the PEM electrolyzers. The SIBC is designed to be connected in array configuration (i.e. parallel architecture) so that each converter operates at its maximum efficiency. To assess the performance of the power management strategy experimental tests were carried out. The reported results demonstrate the correct behavior of the system during transient operation.
Worst Case Scenario for Delayed Explosion of Hydrogen Jets at a High Pressure: Ignition Position
Sep 2021
Publication
Delayed explosion of free field hydrogen releases at a high pressure is subject of multiple investigation performed by various authors in the past years. These studied considered various parameters such as pressures flow rates etc. and their influence on the resulting overpressure. However the influence of the ignition position on the maximum overpressure was not fully explored. Current investigation addressed by computational fluid dynamics (CFD) simulations and experimental measurement fills this gap. This work demonstrates that the ignition positions corresponding to 55%-65% of H2/air mixture give the maximum overpressure. This observation initially observed numerically and afterword confirmed experimentally. A simple model is also suggested.
On the Possibility to Simulate the Operation of a SI Engine using Alternative Gaseous Fuels
Nov 2019
Publication
A thermodynamic combustion model developed in AVL BOOST software was used in order to evaluate the pollutant emissions performance and efficiency parameters of a spark ignition engine Renault K7M-710 fueled with compressed natural gas hydrogen and blends of compressed natural gas and hydrogen (hythane). Multiple research studies have concluded that for the near future hythane could be the most promising alternative fuel because it has the advantages of both its components. In our previous work the model was validated for the performance and efficiency parameters by comparison of simulation results with experimental data acquired when the engine was fueled with gasoline. In this work the model was improved and can predict the values of pollutant emissions when the engine is running with the studied alternative fuels. As the percentage of hydrogen in hythane is increased the power of the engine rises the brake specific fuel consumption carbon dioxide carbon monoxide and total unburned hydrocarbon emissions decrease while nitrogen oxides increase. The values of peak fire pressure maximum pressure derivative and peak fire temperature in cycle are higher leading to an increased probability of knock occurrence. To avoid this phenomenon an optimum correlation between the natural gas-hydrogen blend the air-fuel ratio the spark advance and the engine operating condition needs to be found.
Hydrogen Storage in Pure and Boron-Substituted Nanoporous Carbons—Numerical and Experimental Perspective
Aug 2021
Publication
Nanoporous carbons remain the most promising candidates for effective hydrogen storage by physisorption in currently foreseen hydrogen-based scenarios of the world’s energy future. An optimal sorbent meeting the current technological requirement has not been developed yet. Here we first review the storage limitations of currently available nanoporous carbons then we discuss possible ways to improve their storage performance. We focus on two fundamental parameters determining the storage (the surface accessible for adsorption and hydrogen adsorption energy). We define numerically the values nanoporous carbons have to show to satisfy mobile application requirements at pressures lower than 120 bar. Possible necessary modifications of the topology and chemical compositions of carbon nanostructures are proposed and discussed. We indicate that pore wall fragmentation (nano-size graphene scaffolds) is a partial solution only and chemical modifications of the carbon pore walls are required. The positive effects (and their limits) of the carbon substitutions by B and Be atoms are described. The experimental ‘proof of concept’ of the proposed strategies is also presented. We show that boron substituted nanoporous carbons prepared by a simple arc-discharge technique show a hydrogen adsorption energy twice as high as their pure carbon analogs. These preliminary results justify the continuation of the joint experimental and numerical research effort in this field.
Techno-Economic Assessment of Natural Gas Pyrolysis in Molten Salts
Jan 2022
Publication
Steam methane reforming with CO2 capture (blue hydrogen) and water electrolysis based on renewable electricity (green hydrogen) are commonly assumed to be the main supply options in a future hydrogen economy. However another promising method is emerging in the form of natural gas pyrolysis (turquoise hydrogen) with pure carbon as a valuable by-product. To better understand the potential of turquoise hydrogen this study presents a techno-economic assessment of a molten salt pyrolysis process. Results show that moderate reactor pressures around 12 bar are optimal and that reactor size must be limited by accepting reactor performance well below the thermodynamic equilibrium. Despite this challenge stemming from slow reaction rates the simplicity of the molten salt pyrolysis process delivers high efficiencies and promising economics. In the long-term carbon could be produced for 200–300 €/ton granting access to high-volume markets in the metallurgical and chemical process industries. Such a scenario makes turquoise hydrogen a promising alternative to blue hydrogen in regions with public resistance to CO2 transport and storage. In the medium-term expensive first-of-a-kind plants could produce carbon around 400 €/ton if hydrogen prices are set by conventional blue hydrogen production. Pure carbon at this cost level can access smaller high-value markets such as carbon anodes and graphite ensuring profitable operation even for first movers. In conclusion the economic potential of molten salt pyrolysis is high and further demonstration and scale-up efforts are strongly recommended.
An Evaluation of Turbocharging and Supercharging Options for High-Efficiency Fuel Cell Electric Vehicles
Dec 2018
Publication
Mass-produced off-the-shelf automotive air compressors cannot be directly used for boosting a fuel cell vehicle (FCV) application in the same way that they are used in internal combustion engines since the requirements are different. These include a high pressure ratio a low mass flow rate a high efficiency requirement and a compact size. From the established fuel cell types the most promising for application in passenger cars or light commercial vehicle applications is the proton exchange membrane fuel cell (PEMFC) operating at around 80 ◦C. In this case an electric-assisted turbocharger (E-turbocharger) and electric supercharger (single or two-stage) are more suitable than screw and scroll compressors. In order to determine which type of these boosting options is the most suitable for FCV application and assess their individual merits a co-simulation of FCV powertrains between GT-SUITE and MATLAB/SIMULINK is realised to compare vehicle performance on the Worldwide Harmonised Light Vehicle Test Procedure (WLTP) driving cycle. The results showed that the vehicle equipped with an E-turbocharger had higher performance than the vehicle equipped with a two-stage compressor in the aspects of electric system efficiency (+1.6%) and driving range (+3.7%); however for the same maximal output power the vehicle’s stack was 12.5% heavier and larger. Then due to the existence of the turbine the E-turbocharger led to higher performance than the single-stage compressor for the same stack size. The solid oxide fuel cell is also promising for transportation application especially for a use as range extender. The results show that a 24-kWh electric vehicle can increase its driving range by 252% due to a 5 kW solid oxide fuel cell (SOFC) stack and a gas turbine recovery system. The WLTP driving range depends on the charge cycle but with a pure hydrogen tank of 6.2 kg the vehicle can reach more than 600 km.
Dynamic Emulation of a PEM Electrolyzer by Time Constant Based Exponential Model
Feb 2019
Publication
The main objective of this paper is to develop a dynamic emulator of a proton exchange membrane (PEM) electrolyzer (EL) through an equivalent electrical model. Experimental investigations have highlighted the capacitive effect of EL when subjecting to dynamic current profiles which so far has not been reported in the literature. Thanks to a thorough experimental study the electrical domain of a PEM EL composed of 3 cells has been modeled under dynamic operating conditions. The dynamic emulator is based on an equivalent electrical scheme that takes into consideration the dynamic behavior of the EL in cases of sudden variation in the supply current. The model parameters were identified for a suitable current interval to consider them as constant and then tested with experimental data. The obtained results through the developed dynamic emulator have demonstrated its ability to accurately replicate the dynamic behavior of a PEM EL.
Regional Uptake of Direct Reduction Iron Production Using Hydrogen Under Climate Policy
Nov 2022
Publication
The need to reduce CO2 emissions to zero by 2050 has meant an increasing focus on high emitting industrial sectors such as steel. However significant uncertainties remain as to the rate of technology diffusion across steel production pathways in different regions and how this might impact on climate ambition. Informed by empirical analysis of historical transitions this paper presents modelling on the regional deployment of Direction Reduction Iron using hydrogen (DRI-H2). We find that DRI-H2 can play a leading role in the decarbonisation of the sector leading to near-zero emissions by 2070. Regional spillovers from early to late adopting regions can speed up the rate of deployment of DRI-H2 leading to lower cumulative emissions and system costs. Without such effects cumulative emissions are 13% higher than if spillovers are assumed and approximately 15% and 20% higher in China and India respectively. Given the estimates of DRI-H2 cost-effectiveness relative to other primary production technologies we also find that costs increase in the absence of regional spillovers. However other factors can also have impacts on deployment emission reductions and costs including the composition of the early adopter group material efficiency improvements and scrap recycling rates. For the sector to achieve decarbonisation key regions will need to continue to invest in low carbon steel projects recognising their broader global benefit and look to develop and strengthen policy coordination on technologies such as DRI-H2.
Impacts of Greenhouse Gas Neutrality Strategies on Gas Infrastructure and Costs: Implications from Case Studies Based on French and German GHG-neutral Scenarios
Sep 2022
Publication
The European Union’s target to reach greenhouse gas neutrality by 2050 calls for a sharp decrease in the consumption of natural gas. This study assesses impacts of greenhouse gas neutrality on the gas system taking France and Germany as two case studies which illustrate a wide range of potential developments within the European Union. Based on a review of French and German GHG-neutral scenarios it explores impacts on gas infrastructure and estimates the changes in end-user methane price considering a business-as-usual and an optimised infrastructure pathway. Our results show that gas supply and demand radically change by mid-century across various scenarios. Moreover the analysis suggests that deep transformations of the gas infrastructure are required and that according to the existing pricing mechanisms the end-user price of methane will increase driven by the switch to low-carbon gases and intensified by infrastructure costs.
Spherically Expanding Flame Simulations in Cantera Using a Lagrangian Formulation
Sep 2021
Publication
A Lagrangian-based one-dimensional approach has been developed using Cantera to study the dynamics of spherically expanding flames. The detailed reaction model USC-Mech II has been employed to examine flame propagating in hydrogen-air mixtures. In the first part our approach has been validated against laminar flame speed and Markstein number data from the literature. It was shown that the laminar flame speed was predicted within 5% on average but that discrepancies were observed for the Markstein number especially for rich mixtures. In the second part a detailed analysis of the thermo-chemical dynamics along the path of Lagrangian particles propagating in stretched flames was performed. For mixtures with negative Markstein lengths it was found that at high stretch rates the mixture entering the reaction-dominated period is less lean with respect to the initial mixture than at low stretch rate. This induces a faster rate of chemical heat release and of active radical production which results in a higher flame propagation speed. Opposite effects were observed for mixtures with positive Markstein lengths for which slower flame propagation was observed at high stretch rates compared to low stretch rates."
Impact of Hydrogen Liquefaction on Hydrogen Fuel Quality for Transport Applications (ISO-14687:2019)
Aug 2022
Publication
Decarbonisation of the energy sector is becoming increasingly more important to the reduction in climate change. Renewable energy is an effective means of reducing CO2 emissions but the fluctuation in demand and production of energy is a limiting factor. Liquid hydrogen allows for long-term storage of energy. Hydrogen quality is important for the safety and efficiency of the end user. Furthermore the quality of the hydrogen gas after liquefaction has not yet been reported. The purity of hydrogen after liquefaction was assessed against the specification of Hydrogen grade D in the ISO-14687:2019 by analysing samples taken at different locations throughout production. Sampling was carried out directly in gas cylinders and purity was assessed using multiple analytical methods. The results indicate that the hydrogen gas produced from liquefaction is of a higher purity than the starting gas with all impurities below the threshold values set in ISO-14687:2019. The amount fraction of water measured in the hydrogen sample increased with repeated sampling from the liquid hydrogen tank suggesting that the sampling system used was affected by low temperatures (−253 ◦C). These data demonstrate for the first time the impact of liquefaction on hydrogen purity assessed against ISO-14687:2019 showing that liquified hydrogen is a viable option for long-term energy storage whilst also improving quality.
Techno-economic Feasibility of Hybrid PV/wind/battery/thermal Storage Trigeneration System: Toward 100% Energy Independency and Green Hydrogen Production
Dec 2022
Publication
With the clear adverse impacts of fossil fuel-based energy systems on the climate and environment ever-growing interest and rapid developments are taking place toward full or nearly full dependence on renewable energies in the next few decades. Estonia is a European country with large demands for electricity and thermal energy for district heating. Considering it as the case study this work explores the feasibility and full potential of optimally sized photovoltaic (PV) wind and PV/wind systems equipped with electric and thermal storage to fulfill those demands. Given the large excess energy from 100% renewable energy systems for an entire country this excess is utilized to first meet the district heating demand and then to produce hydrogen fuel. Using simplified models for PV and wind systems and considering polymer electrolyte membrane (PEM) electrolysis a genetic optimizer is employed for scanning Estonia for optimal installation sites of the three systems that maximize the fulfillment of the demand and the supply–demand matching while minimizing the cost of energy. The results demonstrate the feasibility of all systems fully covering the two demands while making a profit compared to selling the excess produced electricity directly. However the PV-driven system showed enormous required system capacity and amounts of excess energy with the limited solar resources in Estonia. The wind system showed relatively closer characteristics to the hybrid system but required a higher storage capacity by 75.77%. The hybrid PV/wind-driven system required a total capacity of 194 GW most of which belong to the wind system. It was also superior concerning the amount (15.05 × 109 tons) and cost (1.42 USD/kg) of the produced green hydrogen. With such full mapping of the installation capacities and techno-economic parameters of the three systems across the country this study can assist policymakers when planning different country-scale cogeneration systems.
Society, Materials, and the Environment: The Case of Steel
Mar 2020
Publication
This paper reviews the relationship between the production of steel and the environment as it stands today. It deals with raw material issues (availability scarcity) energy resources and generation of by-products i.e. the circular economy the anthropogenic iron mine and the energy transition. The paper also deals with emissions to air (dust Particulate Matter heavy metals Persistant Organics Pollutants) water and soil i.e. with toxicity ecotoxicity epidemiology and health issues but also greenhouse gas emissions i.e. climate change. The loss of biodiversity is also mentioned. All these topics are analyzed with historical hindsight and the present understanding of their physics and chemistry is discussed stressing areas where knowledge is still lacking. In the face of all these issues technological solutions were sought to alleviate their effects: many areas are presently satisfactorily handled (the circular economy—a historical’ practice in the case of steel energy conservation air/water/soil emissions) and in line with present environmental regulations; on the other hand there are important hanging issues such as the generation of mine tailings (and tailings dam failures) the emissions of greenhouse gases (the steel industry plans to become carbon-neutral by 2050 at least in the EU) and the emission of fine PM which WHO correlates with premature deaths. Moreover present regulatory levels of emissions will necessarily become much stricter.
THyGA - Tightness Testing of Gas Distribution Components in 40%H2+60%CH4
Aug 2022
Publication
The present work is concerned with the evaluation of the tightness of the components located on domestic and commercial gas lines from the gas meter to the end user appliance in presence of a mixture 40%H2+60%CH4 at 35 mbar. The components were taken from installations being used currently in Germany Denmark Belgium and France. The current standard methods to evaluate natural gas distribution tightness propose testing duration of several minutes. In this work the components tightness was first evaluated using such standard methods before carrying out tests on longer period of time and evaluate the potential influence of time and the results were compared to admissible leakage rates for natural gas in distribution network and in appliances.
Blowout Prediction on a Salt Cavern Selected for a Hydrogen Storage Pilot
Oct 2022
Publication
To prevent climate change Europe and the world must shift to low-carbon and renewable energies. Hydrogen as an energy vector provides viable solutions for replacing polluting and carbon-emitting fossil fuels. Gaseous hydrogen can be stored underground and coupled with existing natural gas pipe networks. Salt cavern storage is the best suited technology to meet the challenges of new energy systems. Hydrogen storage caverns are currently operated in the UK and Texas. A preliminary risk analysis dedicated to underground hydrogen salt caverns highlighted the importance of containment losses (leaks) and the formation of gas clouds following blowouts whose ignition may generate dangerous phenomena such as jet fires unconfined vapor cloud explosions (UVCEs) or flashfires. A blowout is not a frequent accident in gas storage caverns. A safety valve is often set at a 30 m depth below ground level; it is automatically triggered following a pressure drop at the wellhead. Nevertheless a blowout remains to be one of the significant accidental scenarios likely to occur during hydrogen underground storage in salt caverns. In this paper we present modelling the subterraneous and aerial parts of a blowout on an EZ53 salt cavern fully filled with hydrogen.
The Role of Hydrogen for Deep Decarbonization of Energy Systems: A Chilean Case Study
Mar 2023
Publication
In this paper we implement a long-term multi-sectoral energy planning model to evaluate the role of green hydrogen in the energy mix of Chile a country with a high renewable potential under stringent emission reduction objectives in 2050. Our results show that green hydrogen is a cost-effective and environmentally friendly route especially for hard-to-abate sectors such as interprovincial and freight transport. They also suggest a strong synergy of hydrogen with electricity generation from renewable sources. Our numerical simulations show that Chile should (i) start immediately to develop hydrogen production through electrolyzers all along the country (ii) keep investing in wind and solar generation capacities ensuring a low cost hydrogen production and reinforce the power transmission grid to allow nodal hydrogen production (iii) foster the use of electric mobility for cars and local buses and of hydrogen for long-haul trucks and interprovincial buses and (iv) develop seasonal hydrogen storage and hydrogen cells to be exploited for electricity supply especially for the most stringent emission reduction objectives.
X-in-the-Loop Methodology for Proton Exchange Membrane Fuel Cell Systems Design: Review of Advances and Challenges
Jul 2025
Publication
Proton Exchange Membrane Fuel Cells (PEMFCs) are seen as an alternative for heavy-duty transportation electrification. Powered by a green hydrogen source they can provide high efficiency and low carbon emissions compared to traditional fuels. However to be competitive these systems require high reliability when operated in real-life conditions as well as safe and efficient operating management. In order to achieve these goals the X-in-the-loop (also called model-based design) methodology is well suited. It has been largely adopted for PEMFC system development and optimisation as they are complex multi-component systems. In this paper a systematic analysis of the scientific literature is conducted to review the methodology implementation for the design and improvement of the PEMFC systems. It exposes a precise definition of each development step in the methodology. The analysis shows that it can be employed in different ways depending on the subsystems considered and the objectives sought. Finally gaps in the literature and technical challenges for fuel cell systems that should be addressed are identified.
Assessing and Modelling Hydrogen Reactivity in Underground Hydrogen Storage: A Review and Models Simulating the Lobodice Town Gas Storage
Apr 2023
Publication
Underground Hydrogen storage (UHS) is a promising technology for safe storage of large quantities of hydrogen in daily to seasonal cycles depending on the consumption requirements. The development of UHS requires anticipating hydrogen behavior to prevent any unexpected economic or environmental impact. An open question is the hydrogen reactivity in underground porous media storages. Indeed there is no consensus on the effects or lack of geochemical reactions in UHS operations because of the strong coupling with the activity of microbes using hydrogen as electron donor during anaerobic reduction reactions. In this work we apply different geochemical models to abiotic conditions or including the catalytic effect of bacterial activity in methanogenesis acetogenesis and sulfate-reduction reactions. The models are applied to Lobodice town gas storage (Czech Republic) where a conversion of hydrogen to methane was measured during seasonal gas storage. Under abiotic conditions no reaction is simulated. When the classical thermodynamic approach for aqueous redox reactions is applied the simulated reactivity of hydrogen is too high. The proper way to simulate hydrogen reactivity must include a description of the kinetics of the aqueous redox reactions. Two models are applied to simulate the reactions of hydrogen observed at Lobodice gas storage. One modeling the microbial activity by applying energy threshold limitations and another where microbial activity follows a Monod-type rate law. After successfully calibrating the bio-geochemical models for hydrogen reactivity on existing gas storage data and constraining the conditions where microbial activity will inhibit or enhance hydrogen reactivity we now have a higher confidence in assessing the hydrogen reactivity in future UHS in aquifers or depleted reservoirs.
Alternative and Innovative Solid Oxide Electrolysis Cell Materials: A Short Review
Jun 2021
Publication
Solid oxide electrolysis cell is the leading technology for production of green hydrogen by high temperature electrolysis. However optimization of existing reference materials constituting the cell and development of innovative materials remain critical for solid oxide electrolysis cell. In particular they are key to reach performance and durability targets compatible with a commercialization for the three main markets identified as follows: large-scale H2 production Power-to-X and Power-to-Power. This short review summarizes the latest progress in research and development of alternative and innovative materials for solid oxide electrolysis cells with a main focus on cathode-supported cell materials. A brief description of the layers constituting the solid oxide electrolysis cell is provided with the associated current state-of-the-art materials. A further emphasis on the most promising alternative and innovative materials for each layer follows based on the major aspects from an industrial perspective to reach a competitive hydrogen production cost for the main targeted markets: performance durability scaling up/manufacturing ability and operational flexibility.
CFD Simulation of a Hybrid Solar/Electric Reactor for Hydrogen and Carbon Production from Methane Cracking
Jan 2023
Publication
Methane pyrolysis is a transitional technology for environmentally benign hydrogen production with zero greenhouse gas emissions especially when concentrated solar energy is the heating source for supplying high-temperature process heat. This study is focused on solar methane pyrolysis as an attractive decarbonization process to produce both hydrogen gas and solid carbon with zero CO2 emissions. Direct normal irradiance (DNI) variations arising from inherent solar resource variability (clouds fog day-night cycle etc.) generally hinder continuity and stability of the solar process. Therefore a novel hybrid solar/electric reactor was designed at PROMES-CNRS laboratory to cope with DNI variations. Such a design features electric heating when the DNI is low and can potentially boost the thermochemical performance of the process when coupled solar/electric heating is applied thanks to an enlarged heated zone. Computational fluid dynamics (CFD) simulations through ANSYS Fluent were performed to investigate the performance of this reactor under different operating conditions. More particularly the influence of various process parameters including temperature gas residence time methane dilution and hybridization on the methane conversion was assessed. The model combined fluid flow hydrodynamics and heat and mass transfer coupled with gas-phase pyrolysis reactions. Increasing the heating temperature was found to boost methane conversion (91% at 1473 K against ~100% at 1573 K for a coupled solar-electric heating). The increase of inlet gas flow rate Q0 lowered methane conversion since it affected the gas space-time (91% at Q0 = 0.42 NL/min vs. 67% at Q0 = 0.84 NL/min). A coupled heating also resulted in significantly better performance than with only electric heating because it broadened the hot zone (91% vs. 75% methane conversion for coupled heating and only electric heating respectively). The model was further validated with experimental results of methane pyrolysis. This study demonstrates the potential of the hybrid reactor for solar-driven methane pyrolysis as a promising route toward clean hydrogen and carbon production and further highlights the role of key parameters to improve the process performance.
No more items...