United Kingdom
Exploring Possible Transition Pathways for Hydrogen Energy: A Hybrid Approach Using Socio-technical Scenarios and Energy System Modelling
Jul 2014
Publication
Hydrogen remains an important option for long-term decarbonisation of energy and transport systems. However studying the possible transition paths and development prospects for a hydrogen energy system is challenging. The long-term nature of technological transitions inevitably means profound uncertainties diverging perspectives and contested priorities. Both modelling approaches and narrative storyline scenarios are widely used to explore the possible future of hydrogen energy but each approach has shortcomings.<br/>This paper presents a hybrid approach to assessing hydrogen transitions in the UK by confronting qualitative socio-technical scenarios with quantitative energy systems modelling through a process of ‘dialogue’ between scenario and model. Three possible transition pathways are explored each exploring different uncertainties and possible decision points. Conclusions are drawn for both the future of hydrogen and on the value of an approach that brings quantitative formal models and narrative scenario techniques into dialogue.
Hy4Heat Progress Report
Jan 2021
Publication
Hy4Heat’s mission is to establish if it is technically possible safe and convenient to replace natural gas (methane) with hydrogen in residential and commercial buildings and gas appliances. This will enable the government to determine whether to proceed to a community trial.
There is growing international consensus that hydrogen will be essential to successfully tackling climate change. So BEIS is working to develop hydrogen as a strategic decarbonised energy carrier for the UK which will be an essential element of the UK’s efforts to transform and decarbonise our energy system in line with our legally binding 2050 net zero commitment. Hydrogen can be used across multiple end-use sectors including industry transport heat and power. BEIS is looking to support and develop low carbon hydrogen production methods which will position hydrogen as a highly effective decarbonisation option particularly in hard-to electrify sectors and processes.
At the end of 2017 BEIS appointed Arup to be the programme manager for the Hy4Heat programme. Arup partnered with technical and industry specialists: Kiwa Gastec Progressive Energy Embers and Yo Energy and together the team oversees the programme and technical management of all the work packages. For the past three years Hy4Heat has been exploring whether replacing natural gas (methane) with hydrogen for domestic heating and cooking is feasible and could be part of a plausible potential pathway to help meet heat decarbonisation targets. To do this the programme has been seeking to provide the technical performance usability and safety evidence to demonstrate whether hydrogen can be used for heat in buildings.
This report and any attachment is freely available on the Hy4Heat website here. The report can also be downloaded directly by clicking on the pdf icon above.
There is growing international consensus that hydrogen will be essential to successfully tackling climate change. So BEIS is working to develop hydrogen as a strategic decarbonised energy carrier for the UK which will be an essential element of the UK’s efforts to transform and decarbonise our energy system in line with our legally binding 2050 net zero commitment. Hydrogen can be used across multiple end-use sectors including industry transport heat and power. BEIS is looking to support and develop low carbon hydrogen production methods which will position hydrogen as a highly effective decarbonisation option particularly in hard-to electrify sectors and processes.
At the end of 2017 BEIS appointed Arup to be the programme manager for the Hy4Heat programme. Arup partnered with technical and industry specialists: Kiwa Gastec Progressive Energy Embers and Yo Energy and together the team oversees the programme and technical management of all the work packages. For the past three years Hy4Heat has been exploring whether replacing natural gas (methane) with hydrogen for domestic heating and cooking is feasible and could be part of a plausible potential pathway to help meet heat decarbonisation targets. To do this the programme has been seeking to provide the technical performance usability and safety evidence to demonstrate whether hydrogen can be used for heat in buildings.
This report and any attachment is freely available on the Hy4Heat website here. The report can also be downloaded directly by clicking on the pdf icon above.
Freeze-dried Ammonia Borane-polyethylene Oxide Composites: Phase Behaviour and Hydrogen Release
Feb 2018
Publication
A solid-state hydrogen storage material comprising ammonia borane (AB) and polyethylene oxide (PEO) has been produced by freeze-drying from aqueous solutions from 0% to 100% AB by mass. The phase mixing behaviour of AB and PEO has been investigated using X-ray diffraction which shows that a new ‘intermediate’ crystalline phase exists different from both AB and PEO as observed in our previous work (Nathanson et al. 2015). It is suggested that hydrogen bonding interactions between the ethereal oxygen atom (–O–) in the PEO backbone and the protic hydrogen atoms attached to the nitrogen atom (N–H) of AB molecules promote the formation of a reaction intermediate leading to lowered hydrogen release temperatures in the composites compared to neat AB. PEO also acts to significantly reduce the foaming of AB during hydrogen release. A temperature-composition phase diagram has been produced for the AB-PEO system to show the relationship between phase mixing and hydrogen release.
The Impact of Disruptive Powertrain Technologies on Energy Consumption and Carbon Dioxide Emissions from Heavy-duty Vehicles
Jan 2020
Publication
Minimising tailpipe emissions and the decarbonisation of transport in a cost effective way remains a major objective for policymakers and vehicle manufacturers. Current trends are rapidly evolving but appear to be moving towards solutions in which vehicles which are increasingly electrified. As a result we will see a greater linkage between the wider energy system and the transportation sector resulting in a more complex and mutual dependency. At the same time major investments into technological innovation across both sectors are yielding rapid advancements into on-board energy storage and more compact/lightweight on-board electricity generators. In the absence of sufficient technical data on such technology holistic evaluations of the future transportation sector and its energy sources have not considered the impact of a new generation of innovation in propulsion technologies. In this paper the potential impact of a number of novel powertrain technologies are evaluated and presented. The analysis considers heavy duty vehicles with conventional reciprocating engines powered by diesel and hydrogen hybrid and battery electric vehicles and vehicles powered by hydrogen fuel cells and freepiston engine generators (FPEGs). The benefits are compared for each technology to meet the expectations of representative medium and heavy-duty vehicle drivers. Analysis is presented in terms of vehicle type vehicle duty cycle fuel economy greenhouse gas (GHG) emissions impact on the vehicle etc.. The work shows that the underpinning energy vector and its primary energy source are the most significant factor for reducing primary energy consumption and net CO2 emissions. Indeed while an HGV with a BEV powertrain offers no direct tailpipe emissions it produces significantly worse lifecycle CO2 emissions than a conventional diesel powertrain. Even with a de-carbonised electricity system (100 g CO2/kWh) CO2 emissions are similar to a conventional Diesel fuelled HGV. For the HGV sector range is key to operator acceptability of new powertrain technologies. This analysis has shown that cumulative benefits of improved electrical powertrains on-board storage efficiency improvements and vehicle design in 2025 and 2035 mean that hydrogen and electric fuelled vehicles can be competitive on gravimetric and volumetric density. Overall the work demonstrates that presently there is no common powertrain solution appropriate for all vehicle types but how subtle improvements at a vehicle component level can have significant impact on the design choices for the wider energy system.
HyNet North West- from Vision to Reality
Jan 2018
Publication
HyNet North West (NW) is an innovative integrated low carbon hydrogen production distribution and carbon capture utilisation and storage (CCUS) project. It provides hydrogen distribution and CCUS infrastructure across Liverpool Manchester and parts of Cheshire in support of the Government’s Clean Growth Strategy (CGS) and achievement of the UK’s emissions reduction targets.<br/>Hydrogen will be produced from natural gas and sent via a new pipeline to a range of industrial sites for injection as a blend into the existing natural gas network and for use as a transport fuel. Resulting carbon dioxide (CO2) will be captured and together with CO2 from local industry which is already available sent by pipeline for storage offshore in the nearby Liverpool Bay gas fields. Key data for the Project are presented in Table ES1.
Properties of the Hydrogen Oxidation Reaction on Pt/C catalysts at Optimised High Mass Transport Conditions and its Relevance to the Anode Reaction in PEFCs and Cathode Reactions in Electrolysers
Jul 2015
Publication
Using a high mass transport floating electrode technique with an ultra-low catalyst loading (0.84–3.5 μgPt cm−2) of commonly used Pt/C catalyst (HiSPEC 9100 Johnson Matthey) features in the hydrogen oxidation reaction (HOR) and hydrogen evolution reaction (HER) were resolved and defined which have rarely been previously observed. These features include fine structure in the hydrogen adsorption region between 0.18 < V vs. RHE < 0.36 V vs. RHE consisting of two peaks an asymptotic decrease at potentials greater than 0.36 V vs. RHE and a hysteresis above 0.1 V vs. RHE which corresponded to a decrease in the cathodic scan current by up to 50% of the anodic scan. These features are examined as a function of hydrogen and proton concentration anion type and concentration potential scan limit and temperature. We provide an analytical solution to the Heyrovsky–Volmer equation and use it to analyse our results. Using this model we are able to extract catalytic properties (without mass transport corrections; a possible source of error) by simultaneously fitting the model to HOR curves in a variety of conditions including temperature hydrogen partial pressure and anion/H+ concentration. Using our model we are able to rationalise the pH and hydrogen concentration dependence of the hydrogen reaction. This model may be useful in application to fuel cell and electrolyser simulation studies.
Plasmonic Nickel Nanoparticles Decorated on to LaFeO3 Photocathode for Enhanced Solar Hydrogen Generation
Nov 2018
Publication
Plasmonic Ni nanoparticles were incorporated into LaFeO3 photocathode (LFO-Ni) to excite the surface plasmon resonances (SPR) for enhanced light harvesting for enhancing the photoelectrochemical (PEC) hydrogen evolution reaction. The nanostructured LFO photocathode was prepared by spray pyrolysis method and Ni nanoparticles were incorporated on to the photocathode by spin coating technique. The LFO-Ni photocathode demonstrated strong optical absorption and higher current density where the untreated LFO film exhibited a maximum photocurrent of 0.036 mA/cm2 at 0.6 V vs RHE and when incorporating 2.84 mmol Ni nanoparticles the photocurrent density reached a maximum of 0.066 mA/cm2 at 0.6 V vs RHE due to the SPR effect. This subsequently led to enhanced hydrogen production where more than double (2.64 times) the amount of hydrogen was generated compared to the untreated LFO photocathode. Ni nanoparticles were modelled using Finite Difference Time Domain (FDTD) analysis and the results showed optimal particle size in the range of 70–100 nm for Surface Plasmon Resonance (SPR) enhancement.
Enabling Efficient Networks For Low Carbon Futures: Options for Governance and Regulation
Sep 2015
Publication
This report summarises key themes emerging from the Energy Technologies Institute’s (ETI) project ‘Enabling efficient networks for low carbon futures’. The project aimed to explore the options for reforming the governance and regulatory arrangements to enable major changes to and investment in the UK’s energy network infrastructures. ETI commissioned four expert perspectives on the challenges and options facing the UK.
Advanced Hydrogen and CO2 Capture Technology for Sour Syngas
Apr 2011
Publication
A key challenge for future clean power or hydrogen projects via gasification is the need to reduce the overall cost while achieving significant levels of CO2 capture. The current state of the art technology for capturing CO2 from sour syngas uses a physical solvent absorption process (acid gas removal–AGR) such as Selexol™ or Rectisol® to selectively separate H2S and CO2 from the H2. These two processes are expensive and require significant utility consumption during operation which only escalates with increasing levels of CO2 capture. Importantly Air Products has developed an alternative option that can achieve a higher level of CO2 capture than the conventional technologies at significantly lower capital and operating costs. Overall the system is expected to reduce the cost of CO2 capture by over 25%.<br/>Air Products developed this novel technology by leveraging years of experience in the design and operation of H2 pressure swing adsorption (PSA) systems in its numerous steam methane reformers. Commercial PSAs typically operate on clean syngas and thus need an upstream AGR unit to operate in a gasification process. Air Products recognized that a H2 PSA technology adapted to handle sour feedgas (Sour PSA) would enable a new and enhanced improvement to a gasification system. The complete Air Products CO2 Capture technology (CCT) for sour syngas consists of a Sour PSA unit followed by a low-BTU sour oxycombustion unit and finally a CO2 purification / compression system.
Modeling Thermal Response of Polymer Composite Hydrogen Cylinders
Oct 2015
Publication
With the anticipated introduction of hydrogen fuel cell vehicles to the market there is an increasing need to address the fire resistance of hydrogen cylinders for onboard storage. Sufficient fire resistance is essential to ensure safe evacuation in the event of car fire accidents. The authors have developed a Finite Element (FE) model for predicting the thermal response of composite hydrogen cylinders within the frame of the open source FE code Elmer. The model accounts for the decomposition of the polymer matrix and effects of volatile gas transport in the composite. Model comparison with experimental data has been conducted using a classical one-dimensional test case of polymer composite subjected to fire. The validated model was then used to analyze a type-4 hydrogen cylinder subjected to an engulfing external propane fire mimicking a published cylinder fire experiment. The external flame is modelled and simulated using the open source code FireFOAM. A simplified failure criteria based on internal pressure increase is subsequently used to determine the cylinder fire resistance.
Kinetics Study and Modelling of Steam Methane Reforming Process Over a NiO/Al2O3 Catalyst in an Adiabatic Packed Bed Reactor
Dec 2016
Publication
Kinetic rate data for steam methane reforming (SMR) coupled with water gas shift (WGS) over an 18 wt. % NiO/α-Al2O3 catalyst are presented in the temperature range of 300–700 °C at 1 bar. The experiments were performed in a plug flow reactor under the conditions of diffusion limitations and away from the equilibrium conditions. The kinetic model was implemented in a one-dimensional heterogeneous mathematical model of catalytic packed bed reactor developed on gPROMS model builder 4.1.0®. The mathematical model of SMR process was simulated and the model was validated by comparing the results with the experimental values. The simulation results were in excellent agreement with the experimental results. The effect of various operating parameters such as temperature pressure and steam to carbon ratio on fuel and water conversion (%) H2 yield (wt. % of CH4) and H2 purity was modelled and compared with the equilibrium values.
Gas Goes Green: Britain's Hydrogen Network Plan Report
Jan 2021
Publication
Britain stands on the cusp of a world-leading hydrogen revolution and one which we are almost uniquely positioned to take advantage of. With an extensive world-leading gas grid huge amounts of offshore wind resource and liquid energy markets there are few other places as well positioned as the UK to lead the international race to build a hydrogen economy. Published as part of Energy Networks Association’s Gas Goes Green programme Britain’s Hydrogen Network Plan will play a vital role in delivering the UK’s ambitions for hydrogen as set out in the Prime Minister’s Ten Point Plan For A Green Industrial Revolution.<br/>This Plan sets out how Britain’s gas network companies will enable 100% hydrogen to be transported for use in different sectors of the UK economy. It also identifies the wider actions needed to provide hydrogen production and storage showing how transitioning the gas networks to hydrogen will allow hydrogen to play a full role in achieving net zero in the hard to decarbonise sectors such as industry heavy transport and domestic heating saving an estimated 40 million tonnes of CO2 emissions every year. All five of Britain’s gas network companies responsible for owning and operating £24bn of critical national energy infrastructure are committing through this Plan to delivering this work. It forms a key part of their ambition to building the world’s first zero carbon gas grid here in the UK.<br/>Britain’s Hydrogen Network Plan is founded on four tenets that will underpin the role of Britain’s gas network infrastructure in a hydrogen economy. These tenets reflect the breadth and scale of the impact that the transformation of our gas networks will have. They will guide how gas network companies ensure people’s safety in a fast moving and changing energy system. They reflect how the companies will maintain security of supply to our homes and businesses as we move away from the natural gas that has been the bedrock of our energy system for half a century. They will support the public’s ability to choose the right technology so households and businesses can choose the low carbon technologies that are best suited to their needs. And they will deliver jobs and investment so the transition of our gas networks has a lasting and enduring economic impact in communities across the country.<br/>As we look to the future the exciting role that hydrogen has to play in delivering a net zero economy is becoming increasingly clear. We look forward to working closely with the customers we serve the Government and the wider energy industry to turn that ambition into reality.
Photocatalytic Hydrogen Production by Biomimetic Indium Sulfide Using Mimosa Pudica Leaves as Template
Jan 2019
Publication
Biomimetic sulfur-deficient indium sulfide (In2.77S4) was synthesized by a template-assisted hydrothermal method using leaves of Mimosa pudica as a template for the first time. The effect of this template in modifying the morphology of the semiconductor particles was determined by physicochemical characterization revealing an increase in surface area decrease in microsphere size and pore size and an increase in pore volume density in samples synthesized with the template. X-ray photoelectron spectroscopy (XPS) analysis showed the presence of organic sulfur (Ssingle bondO/Ssingle bondC/Ssingle bondH) and sulfur oxide species (single bondSO2 SO32− SO42−) at the surface of the indium sulfide in samples synthesized with the template. Biomimetic indium sulfide also showed significant amounts of Fe introduced as a contaminant present on the Mimosa pudica leaves. The presence of these sulfur and iron species favors the photocatalytic activity for hydrogen production by their acting as a sacrificial reagent and promoting water oxidation on the surface of the templated particles respectively. The photocatalytic hydrogen production rates over optimally-prepared biomimetic indium sulfide and indium sulfide synthesized without the organic template were 73 and 22 μmol g−1 respectively indicating an improvement by a factor of three in the templated sample.
Scotland’s Energy Strategy Position Statement
Mar 2021
Publication
This policy statement provides:
An overview of our key priorities for the short to medium-term and then moves on to look at how we have continued to abide by the three key principles set out in Scotland's Energy Strategy published in 2017 in our policy design and delivery. Those principles are:
Separate sections have been included on Maximising Scotland's International Potential in the lead up to the UN Framework Convention on Climate Change Conference of the Parties (COP26) and on Consumers to reflect the challenging economic climate we currently face and to highlight the action being taken by the Scottish Government to ensure the cost of our energy transition does not fall unequally.
This statement provides an overview of our approach to supporting the energy sector in the lead up to COP26 and as we embark on a green economic recovery from the COVID-19 pandemic. It summarises how our recent policy publications such as our Hydrogen Policy Statement Local Energy Policy Statement and Offshore Wind Policy Statement collectively support the delivery of the Climate Change Plan update along with the future findings from our currently live consultations including our draft Heat in Buildings Strategy our Call for Evidence on the future development of the Low Carbon Infrastructure Transition Programme (LCITP) and our consultation on Scottish skills requirements for energy efficiency.
While this statement sets out our comprehensive programme of work across the energy sector the current Energy Strategy (2017) remains in place until any further Energy Strategy refresh is adopted by Ministers. It is at the stage of refreshing Scotland's Energy Strategy where we will embark on a series of stakeholder engagements and carry out the relevant impact assessments to inform our thinking on future policy development.
An overview of our key priorities for the short to medium-term and then moves on to look at how we have continued to abide by the three key principles set out in Scotland's Energy Strategy published in 2017 in our policy design and delivery. Those principles are:
- a whole-system view;
- an inclusive energy transition; and
- a smarter local energy model.
- Skills and Jobs;
- Supporting Local Communities:
- Investment; and
- Innovation
Separate sections have been included on Maximising Scotland's International Potential in the lead up to the UN Framework Convention on Climate Change Conference of the Parties (COP26) and on Consumers to reflect the challenging economic climate we currently face and to highlight the action being taken by the Scottish Government to ensure the cost of our energy transition does not fall unequally.
This statement provides an overview of our approach to supporting the energy sector in the lead up to COP26 and as we embark on a green economic recovery from the COVID-19 pandemic. It summarises how our recent policy publications such as our Hydrogen Policy Statement Local Energy Policy Statement and Offshore Wind Policy Statement collectively support the delivery of the Climate Change Plan update along with the future findings from our currently live consultations including our draft Heat in Buildings Strategy our Call for Evidence on the future development of the Low Carbon Infrastructure Transition Programme (LCITP) and our consultation on Scottish skills requirements for energy efficiency.
While this statement sets out our comprehensive programme of work across the energy sector the current Energy Strategy (2017) remains in place until any further Energy Strategy refresh is adopted by Ministers. It is at the stage of refreshing Scotland's Energy Strategy where we will embark on a series of stakeholder engagements and carry out the relevant impact assessments to inform our thinking on future policy development.
Modifications in the Composition of CuO/ZnO/Al2O3 Catalyst for the Synthesis of Methanol by CO2 Hydrogenation
Jun 2021
Publication
Renewable methanol obtained from CO2 and hydrogen provided from renewable energy was proposed to close the CO2 loop. In industry methanol synthesis using the catalyst CuO/ZnO/Al2O3 occurs at a high pressure. We intend to make certain modification on the traditional catalyst to work at lower pressure maintaining high selectivity. Therefore three heterogeneous catalysts were synthesized by coprecipitation to improve the activity and the selectivity to methanol under mild conditions of temperature and pressure. Certain modifications on the traditional catalyst Cu/Zn/Al2O3 were employed such as the modification of the synthesis time and the addition of Pd as a dopant agent. The most efficient catalyst among those tested was a palladium-doped catalyst 5% Pd/Cu/Zn/Al2O3. This had a selectivity of 64% at 210 °C and 5 bar.
Acorn: Developing Full-chain Industrial Carbon Capture and Storage in a Resource- and Infrastructure-rich Hydrocarbon Province
Jun 2019
Publication
Juan Alcalde,
Niklas Heinemann,
Leslie Mabon,
Richard H. Worden,
Heleen de Coninck,
Hazel Robertson,
Marko Maver,
Saeed Ghanbari,
Floris Swennenhuis,
Indira Mann,
Tiana Walker,
Sam Gomersal,
Clare E. Bond,
Michael J. Allen,
Stuart Haszeldine,
Alan James,
Eric J. Mackay,
Peter A. Brownsort,
Daniel R. Faulkner and
Steve Murphy
Research to date has identified cost and lack of support from stakeholders as two key barriers to the development of a carbon dioxide capture and storage (CCS) industry that is capable of effectively mitigating climate change. This paper responds to these challenges through systematic evaluation of the research and development process for the Acorn CCS project a project designed to develop a scalable full-chain CCS project on the north-east coast of the UK. Through assessment of Acorn's publicly-available outputs we identify strategies which may help to enhance the viability of early-stage CCS projects. Initial capital costs can be minimised by infrastructure re-use particularly pipelines and by re-use of data describing the subsurface acquired during oil and gas exploration activity. Also development of the project in separate stages of activity (e.g. different phases of infrastructure re-use and investment into new infrastructure) enables cost reduction for future build-out phases. Additionally engagement of regional-level policy makers may help to build stakeholder support by situating CCS within regional decarbonisation narratives. We argue that these insights may be translated to general objectives for any CCS project sharing similar characteristics such as legacy infrastructure industrial clusters and an involved stakeholder-base that is engaged with the fossil fuel industry.
Energy Innovation Needs Assessment: Overview
Nov 2019
Publication
This project provides evidence to identify the key innovation needs across the UK’s energy system to inform the prioritisation of public sector investment in low-carbon innovation including any future phases of the Department for Business Energy & Industrial Strategy (BEIS) Energy Innovation1 Programme. The BEIS Energy Innovation Programme aims to accelerate the commercialisation of innovative clean energy technologies and processes into the 2020s and 2030s. The current Programme with a budget of £505 million from 2015-2021 consists of six themes and invests in smart systems industry & CCS (Carbon Capture and Storage) the built environment nuclear renewables and support for energy entrepreneurs and green financing.
Vivid Economics was contracted to lead a consortium with technical expertise in each of the Energy Innovation Needs Assessment (EINA) priority areas. The programme relied on evidence from a programme of workshops with over 180 participants energy system modelling and detailed technical advice. Partners include the Carbon Trust E4tech Imperial College London and Fraser-Nash. The Energy Systems Catapult (ESC) provided analytical evidence using their Energy System Modelling Environment (ESME) to support an early pre-screening of technologies.
Innovations have been prioritised where there is a strong case for UK Government investment. The prioritisation in this report is based on evidence of the potential benefits to the UK via a lower cost energy system and larger export markets. We also consider whether there is a need for UK Government intervention in addition to private and international efforts.
A distinctive feature of this project is its focus on innovation that benefits the whole energy system. Internationally there are other efforts attempting to answer the question of where to target resources to maximise benefits from innovation2. In selecting priorities we identify innovations that can unlock value across electricity heat transport sectors and the rest of the economy.
Vivid Economics was contracted to lead a consortium with technical expertise in each of the Energy Innovation Needs Assessment (EINA) priority areas. The programme relied on evidence from a programme of workshops with over 180 participants energy system modelling and detailed technical advice. Partners include the Carbon Trust E4tech Imperial College London and Fraser-Nash. The Energy Systems Catapult (ESC) provided analytical evidence using their Energy System Modelling Environment (ESME) to support an early pre-screening of technologies.
Innovations have been prioritised where there is a strong case for UK Government investment. The prioritisation in this report is based on evidence of the potential benefits to the UK via a lower cost energy system and larger export markets. We also consider whether there is a need for UK Government intervention in addition to private and international efforts.
A distinctive feature of this project is its focus on innovation that benefits the whole energy system. Internationally there are other efforts attempting to answer the question of where to target resources to maximise benefits from innovation2. In selecting priorities we identify innovations that can unlock value across electricity heat transport sectors and the rest of the economy.
Energy Saving Technologies and Mass-thermal Network Optimization for Decarbonized Iron and Steel Industry: A Review
Jul 2020
Publication
The iron and steel industry relies significantly on primary energy and is one of the largest energy consumers in the manufacturing sector. Simultaneously numerous waste heat is lost and discharged directly into the environment in the process of steel production. Thus considering conservation of energy energy-efficient improvement should be a holistic target for iron and steel industry. The research gap is that almost all the review studies focus on the primary energy saving measures in iron and steel industry whereas few work summarize the secondary energy saving technologies together with former methods. The objective of this paper is to develop the concept of mass-thermal network optimization in iron and steel industry which unrolls a comprehensive map to consider current energy conservation technologies and low grade heat recovery technologies from an overall situation. By presenting an overarching energy consumption in the iron and steel industry energy saving potentials are presented to identify suitable technologies by using mass-thermal network optimization. Case studies and demonstration projects around the world are also summarized. The general guideline is figured out for the energy optimization in iron and steel industry while the improved mathematical models are regarded as the future challenge.
SGN Project Report - Flame Visibility Risk Assessment
Feb 2021
Publication
This report contains information on the relative risks of natural gas and hydrogen fires particularly regarding their visibility. The fires considered are those that could occur on the H100 Fife trial network. The H100 Fife project will connect a number of residential houses to 100% hydrogen gas supply. The project includes hydrogen production storage and a new distribution network. From a review of large and small-scale tests and incidents it is concluded that hydrogen flames are likely to be clearly visible for releases above 2 bar particularly for larger release rates. At lower pressures hydrogen flame visibility will be affected by ambient lighting background colour and release orientation although this is also the case for natural gas. Potential safety implications from lack of flame visibility are that SGN workers other utility workers or members of the public could inadvertently come into contact with an ignited release. However some releases would be detected through noise thrown soil or interaction with objects. From a workshop and review of risk reduction measures and analysis of historical interference damage incidents it is concluded that flames with the potential for reduced visibility are adequately controlled. This is due to the likelihood of such scenarios occurring being low and that the consequences of coming into contact with such a flame are unlikely to be severe. These conclusions are supported by cost-benefit analysis that shows that no additional risk mitigation measures are justified for the H100 project. It is recommended that the cost-benefit analysis is revisited before applying the approach to a network wider than the H100 project. It was observed that the addition of odorant at relevant concentrations did not have an effect on the visibility of hydrogen flames.
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
2020 It's Time To Get Real
Mar 2020
Publication
Gi Editor Sharon Baker-Hallam sits down with Chris Stark CEO of the Committee on Climate Change to talk about this year’s Sir Denis Rooke Memorial Lecture the economic opportunities to be found in going green and why 2020 is a critical year in the ongoing battle against rising global temperatures
No more items...