United Kingdom
Multilateral Governance in a Global Hydrogen Economy: An Overview of Main Actors and Institutions, Key Challenges and Future Pathways
Nov 2024
Publication
This paper explores the current scope and direction of the emerging global governance of hydrogen within the broader context of the energy transition where technological innovation and institutional change intersect. Hydrogen as a critical yet complex energy vector requires coordinated governance efforts to navigate its development effectively. To this end we critically engage with key challenges facing the hydrogen sector and examine how institutional frameworks are addressing these issues. Departing from the broader scholarship on global energy governance we conceptually leverage the socio-technical transition and innovation system liter ature to understand the complexities underpinning the development of the global hydrogen economy. We identify three overarching issue areas pertaining to the nature and role of hydrogen in the global energy system: end-use sector development infrastructure and trade and environmental and socio-economic sustainability. Each of these areas presents distinct challenges to hydrogen’s global governance from stimulating supply and demand to managing geo-economic challenges and establishing comprehensive certification and standards. Through mapping multilateral institutions at the global and regional levels and their main objectives we offer insights into the emerging institutional architecture related to hydrogen and identify potential gaps in current governance. Our findings suggest that while newer hydrogen-specific institutions complement the broader agenda of the main established international organizations the overall global hydrogen structure remains a patchwork of diverse actors and frameworks each addressing hydrogen-related challenges to varying degrees. Our research contributes to a nuanced understanding of global governance in the hydrogen sector and advances scholarly discussions on how institutional and actor dynamics shape the emergence and development of new technologies.
Hydrogen Import and Export: Unlocking the UK's Hydrogen Trade Potential
May 2024
Publication
Hydrogen trade is an emerging area of interest for hydrogen developers end-users traders and governments around the world. It can enhance system flexibility energy security and clean growth enabling decarbonisation at a lower cost and faster pace. Thanks to its competitive advantage in existing ports terminals and interconnectors the UK is well placed to be the European trade hub for hydrogen and its carriers. With its access to world leading offshore wind generation capacity and geological storage the UK will almost certainly be a net exporter of hydrogen in the future delivering economic value and creating jobs. However hydrogen trade will not be a one-way process. In order to best position the UK as a future hydrogen trade hub there could be value in investing in small scale hydrogen imports and exports to ‘wet the pipes’ and stimulate investment in infrastructure. Imports could also enhance our energy security as a part of a diverse energy mix and support demand whilst domestic production gets up to speed. Both imports and exports will be key to build supply chains and skills and enhance clean growth. With major European economies having established their hydrogen trade strategy there is growing uncertainty as to how the United Kingdom will capitalise on its competitive advantage and position itself in the global hydrogen market. This is the first qualitative report released by Hydrogen UK’s Import and Export Taskforce. This report aims to provide a high-level overview of Hydrogen UK’s vision and recommendations with subsequent reports exploring this topic in further detail.
This report can be found on Hydrogen UK's website.
This report can be found on Hydrogen UK's website.
The Impact of Hydrogen on Decarbonisation and Resilience in Integrated Energy Systems
Nov 2024
Publication
The lack of clarity and uncertainty about hydrogen’s role demand applications and economics has been a barrier to the development of the hydrogen economy. In this paper an optimisation model for the integrated planning and operation of hydrogen and electricity systems is presented to identify the role of hydrogen technologies and linepack in decarbonising energy systems improving system flexibility and enhancing energy system security and resilience against extreme weather events. The studies are conducted on Great Britain’s (GB) 2050 net-zero electricity and gas transmission systems to analyse the hydrogen transport and capacity requirements within the existing infrastructure under different scenarios. This includes sensitivities on the level of flexibility high gas prices hydrogen production mixes enabled reversibility of electrolysers electricity generation cost and hydrogen storage facilities. In all sensitivity scenarios efficient hydrogen transport within the existing infrastructure is enabled by the optimal allocation of green and blue hydrogen sources distributed storage facilities and the intra-day flexibility provided by linepack. The findings highlight that increased renewable deployment transfers intermittency to the hydrogen network requiring greater linepack flexibility compared to the current paradigm (up to 83%). Furthermore the necessity of synergy between different gas and electricity systems components in providing flexibility security and resilience is quantified.
UK Hydrogen Roadmap: Financial and Strategic Insights into Oil and Gas Industry’s Transition
Dec 2024
Publication
Inspired by the announcement of the new Hydrogen Strategy for the UK in 2021 this study aimed to determine how the oil and gas industry responds and adapts to the changes. This paper analyses qualitative and quantitative data from the companies’ annual and energy reports. Four oil and gas companies involved in hydrogen projects in the UK were selected as case studies. The responses from the companies were collected using the content analysis research strategy in 2019–2021. A steady increase was observed based on the code frequency reflecting the increasing discussions and actions the companies took regarding this hydrogen pathway. Although only one company appears to be at the forefront of this transition progress with a score of almost 90% based on the strategy management analysis other companies continue to demonstrate their commitment to supporting the national target.
An Experimental Investigation of Hydrogen Production through Biomass Electrolysis
Jan 2024
Publication
This work investigated hydrogen production from biomass feedstocks (i.e. glucose starch lignin and cellulose) using a 100 mL h-type proton exchange membrane electrolysis cell. Biomass electrolysis is a promising process for hydrogen production although low in technology readiness level but with a series of recognised advantages: (i) lower-temperature conditions (compared to thermochemical processes) (ii) minimal energy consumption and low-cost post-production (iii) potential to synthesise high-volume H2 and (iv) smaller carbon footprint compared to thermochemical processes. A Lewis acid (FeCl3 ) was employed as a charge carrier and redox medium to aid in the depolymerisation/oxidation of biomass components. A comprehensive analysis was conducted measuring the H2 and CO2 emission volume and performing electrochemical analysis (i.e. linear sweep voltammetry and chronoamperometry) to better understand the process. For the first time the influence of temperature on current density and H2 evolution was studied at temperatures ranging from ambient temperature (i.e. 19 ◦C) to 80 ◦C. The highest H2 volume was 12.1 mL which was produced by FeCl3 -mediated electrolysis of glucose at ambient temperature which was up to two times higher than starch lignin and cellulose at 1.20 V. Of the substrates examined glucose also showed a maximum power-to-H2 -yield ratio of 30.99 kWh/kg. The results showed that hydrogen can be produced from biomass feedstock at ambient temperature when a Lewis acid (FeCl3 ) is employed and with a higher yield rate and a lower electricity consumption compared to water electrolysis.
Cost Modelling-based Route Applicablity Analysis of United Kingdom Pasenger Railway Decarbonization Options
Jun 2024
Publication
The UK government plans to phase out pure diesel trains by 2040 and fully decarbonize railways by 2050. Hydrogen fuel cell (HFC) trains electrified trains using pantographs (Electrified Trains) and battery electric multiple unit (BEMU) trains are considered the main solutions for decarbonizing railways. However the range of these decarbonization options’ line upgrade cost advantages is unclear. This paper analyzes the upgrade costs of three types of trains on different lines by constructing a cost model and using particle swarm optimization (PSO) including operating costs and fixed investment costs. For the case of decarbonization of the London St. Pancras to Leicester line the electrified train option is more cost-effective than the other two options under the condition that the service period is 30 years. Then the traffic density range in which three new energy trains have cost advantages on different line lengths is calculated. For route distances under 100 km and with a traffic density of less than 52 trips/day BEMU trains have the lowest average cost while electrified trains are the most costeffective in other ranges. For route distances over 100 km the average cost of HFC trains is lower than that of electrified trains at traffic densities below about 45 trips/day. In addition if hydrogen prices fall by 26 % the cost advantage range of HFC trains will increase to 70 trips per day. For route distances under 100 km BEMU trains still maintain their advantages in terms of lower traffic density.
An Assessment of Current Hydrogen Supply Chains in the Gulf Cooperation Council (GCC)
May 2024
Publication
The Gulf Cooperation Council (GCC) comprising: Saudi Arabia United Arab Emirates Kuwait Qatar Oman and Bahrain is home to an abundant number of resources including natural gas and solar and wind energy (renewables). Because of this the region is favourably positioned to become a significant player in both blue and green hydrogen production and their export. Current dependence on fossil fuels and ambitious national targets for decarbonisation have led the region and world to research the feasibility of switching to a hydrogen economy. This literature review critically examines the current advantages and strategies adopted by the GCC to expedite the implementation of hydrogen supply chains as well as investigation into the methodologies employed in current research for the modelling and optimisation of hydrogen supply chains. Insight into these endeavours is critical for stakeholders to assess the inherent challenges and opportunities in establishing a sustainable hydrogen economy. Despite a substantial global effort establishing a solid hydrogen supply chain presently faces various obstacles including the costs of clean hydrogen production. Scaling-up storage and transport methods is an issue that affects all types of hydrogen including carbon-intensive (grey) hydrogen. However the current costs of green hydrogen production mostly via the process of electrolysis is a major obstacle hindering the widescale deployment of clean hydrogen. Research in this literature review found that compressed gas and cryogenic liquid options have the highest storage capacities for hydrogen of 39.2 and 70.9 kg/m3 respectively. Meanwhile for hydrogen transportation pipelines and cryogenic tankers are the most conventional and efficient options with an efficiency of over 99 %. Cryogenic ships to carry liquid hydrogen also show potential due to their large storage capacities of 10000 tonnes per shipment However costs per vessel are currently still very expensive ranging between $ 465 and $620 million.
Safety of Cryogenic Liquid Hydrogen Bunkering Operations - The Gaps Between Existing Knowhow and Industry Needs
Sep 2023
Publication
Hydrogen plays an important role in the global transition towards Net-Zero emission. While pipelines are a viable option to transport large quantities of compressed hydrogen over long distances it is not always practical in many applications. In such situations a viable option is to transport and deliver large quantities of hydrogen as cryogenic liquid. The liquefaction process cools hydrogen to cryogenic temperatures below its boiling point of -259.2 0C. Such extreme low temperature implies specific hazards and risks which are different from those associated with the relatively well-known compressed gaseous hydrogen. Managing these specific issues brings new challenges for the stakeholders.<br/>Furthermore the transfer of liquid hydrogen (LH2) and its technical handling is relatively well known for industrial gas or space applications. Experience with LH2 in public and populated areas such as truck and aircraft refuelling stations or port bunkering stations for example is limited or non-existent. Safety requirements in these applications which involve or are in proximity of untrained public are different from rocket/aerospace industry.<br/>The manuscript reviews knowhow already gained by the international hydrogen safety community; and on such basis elucidate the gaps which are yet to be filled to meet industry needs to design and operate inherently safe LH2 operations including the implications for regulations codes and standards (RCS). Where relevant the associated gaps in some underpinning sciences will be mentioned; and the need to contextualise the information and safety practices from NASA1/ESA2/JAXA3 to inform risk adoption will be summarised.
Prospects of Low and Zero-carbon Renewable Fuels in 1.5-degree Net Zero Emission Actualisation by 2050: A Critical Review
Sep 2022
Publication
The Paris Climate Agreement seeks to keep global temperature increases under 2° Celsius ideally 1.5° Celsius. This goal necessitates significant emission reductions. By 2030 emissions are expected to range between 52 and 58 GtCO2e from their 2016 level of approximately 52 GtCO2e. This review paper explores a number of low and zero-carbon renewable fuels such as hydrogen green ammonia green methanol biomethane natural gas and synthetic methane (with natural gas and synthetic methane subject to CCUS both at processing and at final use) as alternative solutions for providing a way to rebalance transition paths in order to achieve the goals of the Paris Agreement while also reaping the benefits of other sustainability targets. The results show renewables will need to account for approximately 90% of total electricity generation by 2050 and approximately 25% of non-electric energy usage in buildings and industry. However low and zero-carbon renewable fuels currently only contributes about 15% to the global energy shares and it will take about 10% more capacity to reach the 2050 goal. The transportation industry will need to take important steps toward energy efficiency and fuel switching in order to achieve the 20% emission reduction. Therefore significant new commitments to efficient low-carbon alternatives will be necessary to make this enormous change. According to this paper investing in energy efficiency and lowcarbon alternative energy must rise by a factor of about five by 2050 in comparison to 2015 levels if the 1.5 °C target is to be realised.
New Flow Simulation Framework for Underground Hydrogen Storage Modelling Considering Microbial and Geochemical Reactions
Jul 2025
Publication
The widespread use of hydrogen as an energy source relies on efficient large-scale storage techniques. Underground Hydrogen Storage (UHS) is a promising solution to balance the gap between renewable energy production and constant energy demand. UHS employs geological structures like salt caverns depleted reservoirs or aquifers for hydrogen storage enabling long-term and scalable storage capacity. Therefore robust and reliable predictive tools are essential to assess the risks associated with geological hydrogen storage. This paper presents a novel reactive transport model called “Underground Gas Flow simulAtions with Coupled bio-geochemical reacTions” or “UGFACT” designed for various gas injection processes accounting for geochemical and microbial reactions. The flow module and geochemical reactions in the UGFACT model were verified against two commercial reservoir simulators E300 and CMG-GEM showing excellent agreement in fluid flow variables and geochemical behaviour. A major step forward of this model is to integrate flow dynamics geochemical reactions and microbial activity. UGFACT was used to conduct a simple storage cycle in a 1D geometry across three different reservoirs each with different mineralogies and water compositions: Bentheimer sandstone Berea sandstone and Grey Berea sandstone under three microbial conditions (“No Reaction” “Moderate Rate” “High Rate”). The findings suggest that Bentheimer sandstone and Berea sandstone sites may experience severe effects from ongoing microbial and geochemical reactions whereas Grey Berea sandstone shows no significant H2 loss. Additionally the model predicts that under the high-rate microbial conditions the hydrogen consumption rate can reach to as much as 11 mmol of H2 per kilogram of water per day (mmol / kg⋅day) driven by methanogenesis and acetogenesis.
Hydrogen UK Manifesto
Jul 2024
Publication
Hydrogen presents the UK with a substantial opportunity to drive economic growth and secure skilled jobs by leveraging our natural geological and geographical advantages robust supply chain and existing energy expertise. Hydrogen UK’s most recent Economic Impact Assessment estimates that the hydrogen sector in the UK could support approximately 30000 direct jobs and contribute more than £7 billion gross value added annually by 2030. On a global scale the hydrogen market is projected to be worth $2.5 trillion by 2050.
With international competition increasing the UK must act now to capitalise on this potential. These projections are supported by a recognition that hydrogen is one of the key solutions to decarbonising the UK economy complementing other low-carbon solutions such as electrification carbon capture biofuels and energy efficiency. Additionally hydrogen will play a vital role in enhancing the UK’s energy security by storing domestically produced energy to balance intermittent renewable sources like wind and solar. As a critical component of the clean energy transition hydrogen is indispensable to achieving net zero.
As it stands the UK is well placed to capitalise on the hydrogen opportunity and emerge as a global leader. We have made early strides in establishing a framework for hydrogen development with various pilot projects and strategic investments already underway. However the next five years will be critical for the sector as we move from strategy and planning to development and delivery. It is imperative to get the first lowcarbon production projects over the line and into construction as a matter of urgency and then deliver substantial infrastructure development regulatory clarity and sustained financial support to scale-up production and distribution. A new Government presents an opportunity for policymakers to solidify commitments and accelerate the deployment of hydrogen technology ensuring the UK remains competitive in the global race.
Our manifesto outlines policy recommendations for the new UK Government to take across production distribution and storage infrastructure end use applications trade and beyond which will support a thriving British industrial base that creates jobs and growth for British people. To achieve this the UK hydrogen industry calls on policymakers to speed up the deployment of hydrogen through the recommendations set out in this Manifesto.
This report can be found on Hydrogen UK's website.
With international competition increasing the UK must act now to capitalise on this potential. These projections are supported by a recognition that hydrogen is one of the key solutions to decarbonising the UK economy complementing other low-carbon solutions such as electrification carbon capture biofuels and energy efficiency. Additionally hydrogen will play a vital role in enhancing the UK’s energy security by storing domestically produced energy to balance intermittent renewable sources like wind and solar. As a critical component of the clean energy transition hydrogen is indispensable to achieving net zero.
As it stands the UK is well placed to capitalise on the hydrogen opportunity and emerge as a global leader. We have made early strides in establishing a framework for hydrogen development with various pilot projects and strategic investments already underway. However the next five years will be critical for the sector as we move from strategy and planning to development and delivery. It is imperative to get the first lowcarbon production projects over the line and into construction as a matter of urgency and then deliver substantial infrastructure development regulatory clarity and sustained financial support to scale-up production and distribution. A new Government presents an opportunity for policymakers to solidify commitments and accelerate the deployment of hydrogen technology ensuring the UK remains competitive in the global race.
Our manifesto outlines policy recommendations for the new UK Government to take across production distribution and storage infrastructure end use applications trade and beyond which will support a thriving British industrial base that creates jobs and growth for British people. To achieve this the UK hydrogen industry calls on policymakers to speed up the deployment of hydrogen through the recommendations set out in this Manifesto.
This report can be found on Hydrogen UK's website.
Geothermal Energy Prospect for Decarbonization, EWF Nexus and Energy Poverty Mitigation in East Africa; The Role of Hydrogen Production
Aug 2023
Publication
The affordability and availability of water and energy have a huge impact on food production. Research has shown that there exists a direct and indirect link between power production and clean water generation. Hence the inclusion/importance given to the energy-water-food (EWF) nexus in the United Nations’ sustainable development goals. Acknowledging the importance of decarbonization to the global future there exists a gap in literature on the development of models that can enhance the EWF nexus reduce energy poverty and achieve 100% renewable energy in the electricity sector. Therefore the technical and economic prospect of geothermal energy for bridging the aforementioned gaps in existing works of literature is presented in this study. The energy poverty/wealthy status of a country has been confirmed to have a significant impact on economic development as economic development is largely reflected in the food-water availability. Ditto this study is focused on the interconnectivity of the EWF nexus while incorporating global decarbonization targets. Geothermal energy is of the utmost significance in East Africa due to its abundant potential and distinctive geological features. Located in the Great Rift Valley the region has an abundance of geothermal reservoirs making it an ideal location for geothermal power generation. This study is novel as a comprehensive assessment framework for energy poverty is developed and innovative models utilizing primarily the geothermal resource in the East African region to mitigate this problem are proposed and analyzed. The role of hydrogen generation from critical excess electricity production is also analyzed. The East Africa region is considered the case study for implementing the models developed. A central renewable energy grid is proposed/modelled to meet the energy demand for seven East African countries namely; Ethiopia Tanzania Uganda Djibouti Comoros Eritrea and Rwanda. This study considers 2030 2040 and 2050 as the timestamp for the implementation of the proposed models. The hybrid mix of the biomass power plant solar photovoltaic (PV) pumped hydro storage system and onshore wind power is considered to furthermore show the potency of renewable energy resources in this region. Results showed that the use of geothermal energy to meet energy demands in the case study will mitigate energy poverty and enhance the region’s EWF.
Economic Impact Assessment for the Hydrogen Sector to 2030
Apr 2024
Publication
Hydrogen is one of the key solutions to decarbonising the UK economy along with other carbon abatement solutions such as electrification CCUS biofuels and energy efficiency. It provides a low carbon alternative to fossil fuels that has many of the same desirable features such as burning with a high temperature flame without producing carbon emissions during combustion. Hydrogen will be particularly valuable in hard-to-decarbonise sectors that have few cost-effective alternatives including elements of industry heavy transport and dispatchable power generation. However it’s use could be much more widespread depending on how costs preferences and policy for different low carbon solutions develop. The Government’s Hydrogen Strategy estimates that based on analysis from the Climate Change Committee (CCC) in 2050 between 20% and 35% of the UK’s final energy demand could be met with low carbon hydrogen1 . While hydrogen provides a promising solution to reducing emissions current deployment of low carbon hydrogen is low with almost all hydrogen in the UK produced from unabated fossil fuels resulting in high emissions. In the UK hydrogen production must meet the Low Carbon Hydrogen Standard (LCHS) to access government support. This is currently set at 20g CO2 e/MJ(LHV) and will ensure that future deployment will deliver significant emissions reductions when switching from fossil fuels2. The period to 2030 will be a critical time for the UK to seize the economic opportunity presented by low carbon hydrogen sector. Internationally increasing attention has been placed on hydrogen as a solution to global emissions. In the USA the Inflation Reduction Act (IRA) has provided fixed rate tax credits of up to $3/kg (£2.4/kgII) for clean hydrogen production3. Closer to home the EU is targeting 10 million tonnes of domestic electrolytic production and an additional 10 million tonnes of electrolytic hydrogen imports by 20304. This will be achieved through a variety of policy levers including an auction for fixed price subsidy support for electrolytic production with a ceiling of €4.5/kg5 (£3.84/kgIII). In the UK Government have set an ambitious target of up to 10 GW of low carbon hydrogen production by 2030 with at least half of this from electrolytic sources6. This will be supported by the Hydrogen Production Business Model (HPBM) a two-way variable CfD which could potentially provide hydrogen for a price as low as the natural gas price7 . As global supply chains investment and skills are in international competition the UK must continue its ambitious hydrogen aspirations to ensure the decarbonisation and economic opportunity presented by low carbon hydrogen is captured. This study estimates the economic impact of the low carbon hydrogen sector in the UK by 2030. The impact is assessed by estimating the costs of hydrogen deployment and applying employment and GVA multipliers to these costs based on historic economic activity. These estimates are broken down by different forms of low carbon hydrogen production and end use as well as the enabling infrastructure required to connect production and demand namely hydrogen networks and storage. Both the employment and GVA are estimated for each of these value chain elements for every year between 2024 and 2030. Employment and economic growth from the hydrogen sector will be created across the UK with many benefits arising in regions that have faced historic underinvestment such as the industrial clusters and Scotland. Beyond the high-level economic benefits estimated in this study the hydrogen sector creates an opportunity for the hundreds of thousands oil and gas sector jobs in the UK to transition to a low carbon alternative.
This report can be found on Hydrogen UK's website.
This report can be found on Hydrogen UK's website.
Conceptual Design and Aerostructural Trade-Offs in HydrogenPowered Strut-Braced Wing Aircraft: Insights into Dry and Wet Ultra-High Aspect Ratio Wings
Jan 2025
Publication
Stringent sustainability goals are set for the next generation of aircraft. A promising novel airframe concept is the ultra-high aspect ratio Strut-Braced Wing (SBW) aircraft. Hydrogen-based concepts are active contenders for sustainable propulsion. The study compares a medium-range Liquid Hydrogen (LH2) to a kerosene-based SBW aircraft designed with the same top-level requirements. For both concepts overall design operating costs and emissions are evaluated using the tool SUAVE. Furthermore aerostructural optimizations are performed for the wing mass of SBW aircraft with and without wing-based fuel tanks. Results show that the main difference in the design point definition results from a higher zero-lift drag due to an extended fuselage housing the LH2 tanks with a small reduction in the required wing loading. Structural mass increases of the LH2 aircraft due to additional tanks and fuselage structure are mostly offset by fuel mass savings. While the fuel mass accounts for nearly 25% of the kerosene design’s Maximum Take-Off Mass (MTOM) this reduces to 10% for the LH2 design. The LH2 aircraft has 16% higher operating costs with emission levels reduced to 57–82% of the kerosene aircraft depending on the LH2 production method. For static loads the absence of fuel acting as bending moment relief in the wing results in an increase in wing structural mass. However the inclusion of roll rate requirements causes large wing mass increases for both concepts significantly outweighing dry wing penalties.
The UK Hydrogen Innovation Opportunity: Sectors and Scenarios
Sep 2024
Publication
This report explores how hydrogen could be taken up in the UK and how this in turn translates to each sector from both global and UK perspectives to understand the practical implications of global and UK targets and projections on hydrogen innovation opportunities:
♦ Assessing demand for hydrogen sets out the context and the approach taken in the assessment of global and UK sector hydrogen needs including the development of specific UK scenarios for hydrogen deployment and innovation across the energy system and supply chain.
♦ Key insights discusses the insights and an overview of the outputs from the implementation of the UK deployment scenarios in whole energy system modelling.
♦ Hydrogen production storage and distribution and demand explore these areas in more detail setting out the current state and potential trajectories for hydrogen in each sector both globally and in the UK up to 2050.
This report can also be downloaded free on the Hydrogen Innovation Initative website.
♦ Assessing demand for hydrogen sets out the context and the approach taken in the assessment of global and UK sector hydrogen needs including the development of specific UK scenarios for hydrogen deployment and innovation across the energy system and supply chain.
♦ Key insights discusses the insights and an overview of the outputs from the implementation of the UK deployment scenarios in whole energy system modelling.
♦ Hydrogen production storage and distribution and demand explore these areas in more detail setting out the current state and potential trajectories for hydrogen in each sector both globally and in the UK up to 2050.
This report can also be downloaded free on the Hydrogen Innovation Initative website.
Low-Carbon Industrial Heating in the EU and UK: Integrating Waste Heat Recovery, High-Temperature Heat Pumps, and Hydrogen Technologies
Aug 2025
Publication
This research introduces a two-stage low-carbon industrial heating process leveraging advanced waste heat recovery (WHR) technologies and exploiting waste heat (WH) to drive decentralised hydrogen production. This study is supported by a data-driven analysis of individual technologies followed by 0D modelling of the integrated system for technical and feasibility assessment. Within 10 years the EU industry will be supported by two main strategies to transition to low-carbon energy: (a) shifting from grid-mix electricity towards fully renewable sources and (b) expanding low-carbon hydrogen infrastructure within industrial clusters. On the demand side process heating in the industrial sector accounts for 70% of total energy consumption in industry. Almost one-fifth of the energy consumed to fulfil the process heat demand is lost as waste. The proposed heating solution is tailored for process heat in industry and stands apart from the dual-mode residential heating system (i.e. heat pump and gas boiler) as it is based on integrated and simultaneous operation to meet industry-level reliability at higher temperatures focusing on WHR and low-carbon hydrogen. The solution uses a cascaded heating approach. Low- and medium-temperature WH are exploited to drive high-temperature heat pumps (HTHPs) followed by hydrogen burners fuelled by hydrogen generated on-site by electrolysers which are powered by advanced WHR technologies. The results revealed that the deployment of the solution at scale could fulfil ~14% of the process heat demand in EU/UK industries by 2035. Moreover with further availability of renewable energy sources and clean hydrogen it could have a higher contribution to the total process heat demand as a low-carbon solution. The economic analysis estimates that adopting the combined heating solution—benefiting from the full capacity of WHR for the HTHP and on-site hydrogen production—would result in a levelised cost of heat of ~EUR 84/MWh which is lower than that of full electrification of industrial heating in 2035.
Great Britain's Hydrogen Infrastructure Development - Investment Priorities and Locational Flexibility
Aug 2024
Publication
Future pathways for Great Britain’s energy system decarbonization have highlighted the importance of lowcarbon hydrogen as an energy carrier and demand flexibility support. However the potential application within various sectors (heating industry transport) and production capacity through different technologies (methane reformation with carbon capture biomass gasification electrolysis) is highly varying introducing substantial uncertainties for hydrogen infrastructure development. This study sets out infrastructure priorities and identifies locational flexibility for hydrogen supply and demand options. Advances on limitations of previous research are made by developing an open-source model of the hydrogen system of Great Britain based on three Net Zero scenarios set out by National Grid in their Future Energy Scenarios in high temporal and spatial resolution. The model comprehensively covers demand sectors and supply options in addition to extending the locational considerations of the Future Energy Scenarios. This study recommends prioritizing the establishment of green hydrogen hubs in the near-term aligning with demands for synthetic fuels production industry and power which can facilitate the subsequent roll out of up to 10GW of hydrogen production capacity by 2050. The analysis quantifies a high proportion of hydrogen supply and demand which can be located flexibly.
Renewable Hydrogen Trade, in a Global Decarbonised Energy System
Jan 2025
Publication
Renewable hydrogen has emerged as a potentially critical energy carrier for achieving climate change mitigation goals. International trade could play a key role in meeting hydrogen demand in a globally decarbonized energy system. To better understand this role we have developed a modelling framework that incorporates hydrogen supply and demand curves and a market equilibrium model to maximize social welfare. Applying this framework we investigate two scenarios: an unrestricted trade scenario where hydrogen trade is allowed between all regions globally and a regional independence scenario where trade is restricted to be intra-regional only. Under the unrestricted trade scenario global hydrogen demand could reach 234 Mt by 2050 with 31.2% met through international trade. Key trade routes identified include North Africa to Europe the Middle East to Developing Asia and South America to Japan and South Korea. In the regional independence scenario most regions could meet their demand domestically except for Japan and South Korea due to self-insufficiency. Finally this analysis reveals that producers in North Africa and South America are likely to gain more economic value from international trade compared to other producing regions. The results offer key insights for policymakers and investors for shaping future hydrogen trade policies and investment decisions.
Modeling Critical Enablers of Hydrogen Supply Chains for Decarbonization: Insights from Emerging Economies
Mar 2025
Publication
The current global energy environment is experiencing a substantial shift towards minimizing carbon emissions and enhancing sustainability due to persistent problems. Demand for sustainable end-to-end energy solutions has boosted green hydrogen as the solution to decarbonize the world. The current study has identified and evaluated 7 main criteria of 27 sub-criteria for enabling the hydrogen supply Chains for decarbonization using the Fuzzy DEMATEL technique. The results show that the most prominent enablers criteria under causal factors are: cluster-based approach for developing a green hub Cost and investment decisions Hydrogen trade policy and regulatory actions and Technology. The effect group factors include: Assessment of ecological concerns- Ecology effect Availability of Energy sources and Awareness and public outreach. This study offers insights to understand the dynamics of the hydrogen supply chains and its way ahead towards decarbonization and transition towards a low-carbon economy. This research helps various academic and industrial stakeholders to give pace to green hydrogen uptake as a vital decarbonization tool and act as a base for strategic and collaborative decisions for a resilient and responsible energy landscape.
Hydrogen Liquefaction and Storage: Recent Progress and Perspectives
Feb 2023
Publication
The global energy sector accounts for ~75% of total greenhouse gas (GHG) emissions. Low-carbon energy carriers such as hydrogen are seen as necessary to enable an energy transition away from the current fossilderived energy paradigm. Thus the hydrogen economy concept is a key part of decarbonizing the global en ergy system. Hydrogen storage and transport are two of key elements of hydrogen economy. Hydrogen can be stored in various forms including its gaseous liquid and solid states as well as derived chemical molecules. Among these liquid hydrogen due to its high energy density ambient storage pressure high hydrogen purity (no contamination risks) and mature technology (stationary liquid hydrogen storage) is suitable for the transport of large-volumes of hydrogen over long distances and has gained increased attention in recent years. However there are critical obstacles to the development of liquid hydrogen systems namely an energy intensive liquefaction process (~13.8 kWh/kgLH2) and high hydrogen boil-off losses (liquid hydrogen evaporation during storage 1–5% per day). This review focuses on the current state of technology development related to the liquid hydrogen supply chain. Hydrogen liquefaction cryogenic storage technologies liquid hydrogen transmission methods and liquid hydrogen regasification processes are discussed in terms of current industrial applications and underlying technologies to understand the drivers and barriers for liquid hydrogen to become a commer cially viable part of the emerging global hydrogen economy. A key finding of this technical review is that liquid hydrogen can play an important role in the hydrogen economy - as long as necessary technological transport and storage innovations are achieved in parallel to technology demonstrations and market development efforts by countries committed liquid hydrogen as part of their hydrogen strategies.
Hydrogen Supply Chain for Future Hydrogen-fuelled Railway in the UK: Transport Sector Focused
Aug 2024
Publication
Though being attractive on railway decarbonisation for regional lines excessive cost caused by immature hydrogen supply chain is one of the significant hurdles for promoting hydrogen traction to rolling stocks. Therefore we conduct bespoke research on the UK’s hydrogen supply chain for railway concentrating on hydrogen transportation. Firstly a map for the planned hydrogen production plants and potential hydrogen lines is developed with the location capacity and usage. A spatially explicit model for the hydrogen supply chain is then introduced which optimises the existing grid-based methodology on accuracy and applicability. Compressed hydrogen at three pressures and liquid hydrogen are considered as the mediums incorporating by road and rail transport. Furthermore three scenarios for hydrogen rail penetration are simulated respectively to discuss the levelised cost and the most suitable national transport network. The results show that the developed model with mix-integer linear programming (MILP) can well design the UK’s hydrogen distribution for railway traction. Moreover the hydrogen transport medium and vehicle should adjust to suit for different era where the penetration of hydrogen traction varies. The levelised cost of hydrogen (LCOH) decreases from 6.13 £/kg to 5.13 £/kg on average from the conservative scenario to the radical scenario. Applying different transport combinations according to the specific situation can satisfy the demand while reducing cost for multi-supplier and multitargeting hydrogen transport.
Design Trends and Challenges in Hydrogen Direct Injection (H2DI) Internal Combustion Engines - A Review
Sep 2024
Publication
The hydrogen internal combustion engine (H2-ICE) is proposed as a robust and viable solution to decarbonise the heavy-duty on- and off-road as well as the light-duty automotive sectors of the transportation markets and is therefore the subject of rapidly growing research interest. With the potential for engine performance improvement by controlling the internal mixture formation and avoiding combustion anomalies hydrogen direct injection (H2DI) is a promising combustion mode. Furthermore the H2-ICE poses an attractive proposition for original equipment manufacturers (OEMs) and their suppliers since the fundamental base engine design components and manufacturing processes are largely unchanged. Nevertheless to deliver the highest thermal efficiency and zero-harm levels of tailpipe emissions moderate adaptations are needed to the engine control air path fuel injection and ignition systems. Therefore in this article critical design features fuel-air mixing combustion regimes and exhaust after-treatment systems (EATS) for H2DI engines are carefully assessed.
Safety Assessment of Hydrogen Production Using Alkaline Water Electrolysis
Aug 2024
Publication
This paper presents a comprehensive safety assessment of hydrogen production using Alkaline Water Electrolysis (AWE). The study utilizes various risk assessment methodologies including Hazard Identification (HAZID) What-If analysis Fault Tree Analysis (FTA) Event Tree Analysis (ETA) and Bow Tie analysis to systematically identify and evaluate potential hazards associated with the AWE process. Key findings include the identification of critical hazards such as hydrogen leaks oxygen-related risks and maintenance challenges. The assessment emphasizes the importance of robust safety measures including preventive and mitigative strategies to manage these risks effectively. Consequence modeling highlights significant threat zones for thermal radiation and explosion risks underscoring the need for comprehensive safety protocols and emergency response plans. This work contributes valuable insights into hydrogen safety providing a framework for risk assessment and mitigation in hydrogen production facilities crucial for the safe and sustainable development of hydrogen infrastructure in the global energy transition.
The UK Hydrogen Innovation Opportunity: Hydrogen Technology Roadmaps
Apr 2024
Publication
This report lays out roadmaps for the nine technology families identified in the UK Hydrogen Innovation Opportunity. The content in these roadmaps has been developed through a combination of extensive industrial engagement and aggregation of existing sector and technology roadmaps. This document also signposts to reports that highlight innovation challenges and opportunities for two underpinning technology families - materials and digital. The technology roadmaps in this document each include the following:
♦ UK and global market forecast for 2030 and 2050 for the respective technology family.
♦ Key technologies that make up the technology family.
♦ The associated innovation opportunities associated with each key technology together with development and industrialisation timelines and the sectors that will benefit from the innovation.
The list of innovation opportunities on each roadmap is by no means exhaustive but they are a sample that were selected because they highlighted some key innovation actions for the UK. To make this selection a range of factors were considered including global and UK economic demand the UK political imperative and UK potential to win market share. The development and industrialisation timelines are recommendations only and do not signify that this work is already planned or funded.
This report can also be downloaded for free on the Hydrogen Innovation Initiative website.
♦ UK and global market forecast for 2030 and 2050 for the respective technology family.
♦ Key technologies that make up the technology family.
♦ The associated innovation opportunities associated with each key technology together with development and industrialisation timelines and the sectors that will benefit from the innovation.
The list of innovation opportunities on each roadmap is by no means exhaustive but they are a sample that were selected because they highlighted some key innovation actions for the UK. To make this selection a range of factors were considered including global and UK economic demand the UK political imperative and UK potential to win market share. The development and industrialisation timelines are recommendations only and do not signify that this work is already planned or funded.
This report can also be downloaded for free on the Hydrogen Innovation Initiative website.
Assessing the Sustainability of Liquid Hydrogen for Future Hypersonic Aerospace Flight
Dec 2022
Publication
This study explored the applications of liquid hydrogen (LH2 ) in aerospace projects followed by an investigation into the efficiency of ramjets scramjets and turbojets for hypersonic flight and the impact of grey blue and green hydrogen as an alternative to JP-7 and JP-8 (kerosene fuel). The advantage of LH2 as a propellant in the space sector has emerged from the relatively high energy density of hydrogen per unit volume enabling it to store more energy compared to conventional fuels. Hydrogen also has the potential to decarbonise space flight as combustion of LH2 fuel produces zero carbon emissions. However hydrogen is commonly found in hydrocarbons and water and thus it needs to be extracted from these molecular compounds before use. Only by considering the entire lifecycle of LH2 including the production phase can its sustainability be understood. The results of this study compared the predicted Life Cycle Assessment (LCA) emissions of the production of LH2 using grey blue and green hydrogen for 2030 with conventional fuel (JP-7 and JP-8) and revealed that the total carbon emissions over the lifecycle of LH2 were greater than kerosene-derived fuels.
The Role of Negative Emissions Technologies in the UK's Net-zero Strategy
Jun 2024
Publication
The role of negative emissions technologies (NETs) in climate change mitigation remains contentious. Although numerous studies indicate significant carbon dioxide removal (CDR) requirements for Paris Agreement mitigation goals to be achieved others point out challenges and risks associated with high CDR strategies. Using a multiscale modeling approach we explore NETs’ potential for a single country the United Kingdom (UK). Here we report that the UK has cost-effective potential to remove 79 MtCO2 per year by 2050 rising to 126–134 MtCO2 per year with well-integrated NETs in industrial clusters. Results highlight that biomass gasification for hydrogen generation with CCS is emerging as a key NET despite biomass availability being a limiting factor. Moreover solid DACCS systems utilizing industrial waste heat integration offer a solution to offsetting increases in demand from transportation and industrial sectors. These results emphasize the importance of a multiscale whole-systems assessment for integrating NETs into industrial strategies.
CFD Dispersion Simulations of Compressed Hydrogen Releases through TPRD Inside Scaled Tunnel
Sep 2023
Publication
To achieve the net zero carbon emissions goals by 2050 the transition to cleaner forms and carriers of energy should be accelerated without though jeopardizing the public safety. Although hydrogen has been deemed to play significant role in the energy transition for years now there are still concerns for its risks that hamper its widespread implementation in several applications like for instance automobile applications. Hydrogen-powered vehicles raise concerns about their safety especially inside confined spaces like tunnels and thus research on that topic has been intensified during the last years. In this context experiments have been conducted by UK HSE within the EU-funded project HyTunnel-CS to examine hydrogen dispersion and deflagration inside a scaled tunnel resulting from fuel cell car bus and train release.<br/>In this work that was also carried out within the HyTunnel-CS we present the Computational Fluid Dynamics (CFD) simulations of the HSE unignited experiments. Blowdown tests related to high-pressure hydrogen releases through Thermal Pressure Relief Device (TPRD) installed in car and in train were modeled using the ADREA-HF code. The scope of these simulations was two-fold: a) contribute to the design of the experiments (e.g. indicate sensor positioning ignition point etc.) and the interpretation of hydrogen behavior and b) validate the CFD code. For the former pre-test simulations preceded the experiments to provide design recommendations. When the experiments were conducted the measurements were used for the code validation. Overall the CFD results are in satisfactory agreement with the experiments. Finally simulations with different ventilation rates and with model vehicles inside the tunnel were conducted to examine their effect on mixture dispersion and tunnel safety.
A Techno-economic Analysis of Ammonia-fuelled Powertrain Systems for Rail Freight
Apr 2023
Publication
All diesel-only trains in the UK will be removed from services by 2040. High volumetric density rapid refuelling ability and sophisticated experience in infrastructure and logistics make ammonia a perfect hydrogen carrying fuel for rail freight which urgently requires an economically viable solution. This study conducted a novel techno-economic study of ammonia-fuelled fuel cell powertrains to be compared with current diesel engine-based system and emerging direct hydrogen-fuelled fuel cell system. The results demonstrate that hydrogen-fuelled Proton Exchange Membrane Fuel Cells (PEMFCs) and ammonia-fuelled PEMFCs (using an ammonia cracker) are more cost-effective in terms of Levelized Cost of Electricity. The ammonia fuel storage requires 61.5-75 % less space compared to the hydrogen storage. Although the ammonia-fuelled Solid Oxide Fuel Cells (SOFCs) powertrain has the highest electricity generation efficiency (56%) the overall cost requires a major reduction by 70% before it could be considered as an economically viable solution.
Review on the Thermal Neutrality of Application-orientated Liquid Organic Hydrogen Carrier for Hydrogen Energy Storage and Delivery
Aug 2023
Publication
The depletion and overuse of fossil fuels present formidable challenge to energy supply system and environment. The human society is in great need of clean renewable and sustainable energy which can guarantee the long-term utilization without leading to escalation of greenhouse effect. Hydrogen as an extraordinary secondary energy is capable of realizing the target of environmental protection and transferring the intermittent primary energy to the application terminal while its nature of low volumetric energy density and volatility need suitable storage method and proper carrier. In this context liquid organic hydrogen carrier (LOHC) among a series of storage methods such as compressed and liquefied hydrogen provokes a considerable amount of research interest since it is proven to be a suitable carrier for hydrogen with safety and stability. However the dehydrogenation of hydrogen-rich LOHC materials is an endothermic process and needs large energy consumption which hampers the scale up of the LOHC system. The heat issue is thus essential to be addressed for fulfilling the potential of LOHC. In this work several strategies of heat intensification and management for LOHC system including the microwave irradiation circulation of exhaust heat and direct LOHC fuel cell are summarized and analyzed to provide suggestions and directions for future research.
Potential Cost Savings of Large-scale Blue Hydrogen Production via Sorption-enhanced Steam Reforming Process
Jan 2024
Publication
As countries work towards achieving net-zero emissions the need for cleaner fuels has become increasingly urgent. Hydrogen produced from fossil fuels with carbon capture and storage (blue hydrogen) has the potential to play a significant role in the transition to a low-carbon economy. This study examined the technical and economic potential of blue hydrogen produced at 600 MWth(LHV) and scaled up to 1000 MWth(LHV) by benchmarking sorption-enhanced steam reforming process against steam methane reforming (SMR) autothermal gasheated reforming (ATR-GHR) integrated with carbon capture and storage (CCS) and SMR with CCS. Aspen Plus® was used to develop the process model which was validated using literature data. Cost sensitivity analyses were also performed on two key indicators: levelised cost of hydrogen and CO2 avoidance cost by varying natural gas price electricity price CO2 transport and storage cost and carbon price. Results indicate that at a carbon price of 83 £/tCO2e the LCOH for SE-SR of methane is the lowest at 2.85 £/kgH2 which is 12.58% and 22.55% lower than that of ATR-GHR with CCS and SMR plant with CCS respectively. The LCOH of ATR-GHR with CCS and SMR plant with CCS was estimated to be 3.26 and 3.68 £/kgH2 respectively. The CO2 avoidance cost was also observed to be lowest for SE-SR followed by ATR-GHR with CCS then SMR plant with CCS and was observed to reduce as the plant scaled to 1000 MWth(LHV) for these technologies.
Design Investigation of Potential Long-Range Hydrogen Combustion Blended Wing Body Aircraft with Future Technologies
Jun 2023
Publication
Present work investigates the potential of a long-range commercial blended wing body configuration powered by hydrogen combustion engines with future airframe and propulsion technologies. Future technologies include advanced materials load alleviation techniques boundary layer ingestion and ultra-high bypass ratio engines. The hydrogen combustion configuration was compared to the configuration powered by kerosene with respect to geometric properties performance characteristics energy demand equivalent CO2 emissions and Direct Operating Costs. In addition technology sensitivity studies were performed to assess the potential influence of each technology on the configuration. A multi-fidelity sizing methodology using low- and mid-fidelity methods for rapid configuration sizing was created to assess the configuration and perform robust analyses and multi-disciplinary optimizations. To assess potential uncertainties of the fidelity of aerodynamic analysis tools high-fidelity aerodynamic analysis and optimization framework MACHAero was used for additional verification. Comparison of hydrogen and kerosene blended wing body aircraft showed a potential reduction of equivalent CO2 emission by 15% and 81% for blue and green hydrogen compared to the kerosene blended wing body and by 44% and 88% with respect to a conventional B777-300ER aircraft. Advancements in future technologies also significantly affect the geometric layout of aircraft. Boundary layer ingestion and ultra-high bypass ratio engines demonstrated the highest potential for fuel reduction although both technologies conflict with each other. However operating costs of hydrogen aircraft could establish a significant problem if pessimistic and base hydrogen price scenarios are achieved for blue and green hydrogen respectively. Finally configurational problems featured by classical blended wing body aircraft are magnified for the hydrogen case due to the significant volume requirements to store hydrogen fuel.
Recent Advances in Sustainable and Safe Marine Engine Operation with Alternative Fuels
Nov 2022
Publication
Pursuing net-zero emission operations in the shipping industry are quintessential for this sector to mitigate the environmental impact caused by hydrocarbon fuel combustion. Significant contributions to this are expected from the substitution of conventional marine fuels by alternative emission-free fuels with lower emission footprints. This study aims to conduct a comprehensive literature review for delineating the main characteristics of the considered alternative fuels specifically focusing on hydrogen methanol and ammonia which have recently attracted attention from both industry and academia. This study comparatively assesses the potential of using these fuels in marine engines and their subsequent performance characteristics as well as the associated environmental benefits. In addition the required storage conditions space as well as the associated costs are reviewed. Special attention is given to the safety characteristics and requirements for each alternative fuel. The results of this study demonstrate that the environmental benefits gained from alternative fuel use are pronounced only when renewable energy is considerably exploited for their production whereas the feasibility of each fuel depends on the vessel type used and pertinent storage constraints. Hydrogen ammonia and methanol are considered best-fit solutions for small scale shipping requiring minimal on-board storage. In addition the need for comparative assessments between diesel and alternative fuels is highlighted and sheds light on marine engines’ operational characteristics. Moreover using combinations of alternative and diesel fuels is identified as a direction towards decarbonisation of the maritime sector; intensifying the need for optimisation studies on marine engine design and operation. This study concludes with recommendations for future research directions thus contributing to fuel research concepts that can facilitate the shipboard use of alternative fuels.
A Multi-energy Multi-microgrid System Planning Model for Decarbonisation and Decontamination of Isolated Systems
May 2023
Publication
Decarbonising and decontaminating remote regions in the world presents several challenges. Many of these regions feature isolation dispersed demand in large areas and a lack of economic resources that impede the development of robust and sustainable networks. Furthermore isolated systems in the developing world are mostly based on diesel generation for electricity and firewood and liquefied petroleum gas for heating as these options do not require a significant infrastructure cost. In this context we present a stochastic multi-energy multi-microgrid system planning model that integrates electricity heat and hydrogen networks in isolated systems. The model is stochastic to capture uncertainty in renewable generation outputs particularly hydro and wind and thus design a multi-energy system proved secured against such uncertainty. The model also features two distinct constraints to limit the emissions of CO2 (for decarbonisation) and particulate matter (for decontamination) and incorporates firewood as a heating source. Moreover given that the focus is on low-voltage networks we introduce a fully linear AC power flow equations set allowing the planning model to remain tractable. The model is applied to a real-world case study to design a multi-energy multi-microgrid system in an isolated region in Chilean Patagonia. In a case with a zero limit over direct CO2 emissions the total system’s cost increases by 34% with respect to an unconstrained case. In a case with a zero limit over particulate matter emissions the total system’s cost increases by 189%. Finally although an absolute zero limit over both particulate matter and direct CO2 emissions leads to a total system’s cost increase of 650% important benefits in terms of decarbonisation and decontamination can be achieved at marginal cost increments.
An Energy Systems Model of a Large Commercial Liquid Hydrogen Aircraft in a Low-carbon Future
Apr 2023
Publication
Liquid hydrogen (LH2) aircraft have the potential to achieve carbon neutrality. However if the hydrogen is produced using electricity grids that utilise fossil fuel they have a non-zero carbon dioxide (CO2) emission associated with their well-to-wing pathway. To assess the potential of LH2 in aviation decarbonisation an energy systems comparison of large commercial LH2 liquified natural gas (LNG) conventional Jet-A and LH2 dual-fuel aircraft is presented. The performance of each aircraft is compared towards 2050 over which three system changes occur: (1) LH2 aircraft technology develops; (2) both world average and region-specific grid electricity which is used to produce the hydrogen decarbonises; and (3) the International Air Transportation Association (IATA) emissions targets which are used to restrict the passenger-range performance of each aircraft tighten. In 2050 the emissions of all aircraft are thus constrained to 0.063 kg-CO2/p-km relative to 0.110 kg-CO2/p-km for the unconstrained Jet A fuelled Boeing 787-8. It is estimated that in this year an LH2 aircraft powered by fuel cells and sourcing world average electricity can travel 6000 km 20% further than the conventional Jet A aircraft that is also constrained to meet the IATA targets but not as far as the LNG aircraft. At its maximum range the LH2 aircraft carries 84% of the Jet A passenger demand. Analysis using region-specific hydrogen indicates that LH2 aircraft can travel further than LNG aircraft in North America only accounting for 17% of the global demand. 1.59 times the current aviation energy consumption is required if all conventional aircraft are replaced with LH2 designs. Under stricter emissions constraints than those outlined by the IATA LH2 outperforms LNG in Europe and the Americas accounting for 41% of the global demand. Also in these regions the range energy consumption and passenger capacity of LH2 aircraft can be improved upon by combining the advantages of LH2 with LNG in dual-fuel aircraft concepts. The use of LH2 is therefore advantageous within several prominent niches of a future decarbonising aviation system.
Challenges of Industrial-Scale Testing Infrastructure for Green Hydrogen Technologies
Apr 2023
Publication
Green hydrogen is set to become the energy carrier of the future provided that production technologies such as electrolysis and solar water splitting can be scaled to global dimensions. Testing these hydrogen technologies on the MW scale requires the development of dedicated new test facilities for which there is no precedent. This perspective highlights the challenges to be met on the path to implementing a test facility for large-scale water electrolysis photoelectrochemical and photocatalytic water splitting and aims to serve as a much-needed blueprint for future test facilities based on the authors’ own experience in establishing the Hydrogen Lab Leuna. Key aspects to be considered are the electricity and utility requirements of the devices under testing the analysis of the produced H2 and O2 and the safety regulations for handling large quantities of H2 . Choosing the right location is crucial not only for meeting these device requirements but also for improving financial viability through supplying affordable electricity and providing a remunerated H2 sink to offset the testing costs. Due to their lower TRL and requirement for a light source large-scale photocatalysis and photoelectrochemistry testing are less developed and the requirements are currently less predictable.
Hydrogen Supply Chain and Refuelling Network Design: Assessment of Alternative Scenarios for the Long-haul Road Freight in the UK
Mar 2023
Publication
Shifting from fossil fuels to clean alternative fuel options such as hydrogen is an essential step in decarbonising the road freight transport sector and facilitating an efficient transition towards zero-emissions goods distribution of the future. Designing an economically viable and competitive Hydrogen Supply Chain (HSC) to support and accelerate the widespread adoption of hydrogen powered Heavy Goods Vehicles (H2-HGVs) is however significantly hindered by the lack of the infrastructure required for producing storing transporting and distributing the required hydrogen. This paper focuses on a bespoke design of a hydrogen supply chain and distribution network for the long-haul road freight transportation in the UK and develops an improved end-to-end and spatially-explicit optimisation tool to perform scenario analysis and provide important first-hand managerial and policy making insights. The proposed methodology improves over existing grid-based methodologies by incorporating spatially-explicit locations of Hydrogen Refuelling Stations (HRSs) and allowing further flexibility and accuracy. Another distinctive feature of the method and the analyses carried out in the paper pertains to the inclusion of bulk geographically agnostic as well as geological underground hydrogen storage options and reporting on significant cost saving opportunities. Finally the curve for H2-HGVs penetration levels safety stock period decisions and the transport mode capacity against hydrogen levelized cost at pump have been generated as important policy making tools to provide decision support and insights into cost resilience and reliability of the HSC.
Two-Layer Optimization Planning Model for Integrated Energy Systems in Hydrogen Refueling Original Station
May 2023
Publication
With the aggravation of global environmental pollution problems and the need for energy restructuring hydrogen energy as a highly clean resource has gradually become a hot spot for research in countries around the world. Facing the requirement of distributed hydrogen in refueling the original station for hydrogen transportation and other usage this paper proposes a comprehensive energy system planning model for hydrogen refueling stations to obtain the necessary devices construction the devices’ capacity decisions and the optimal operation behaviors of each device. Comparing to traditional single hydrogen producing technics in the traditional planning model the proposed model in this paper integrates both water-electrolysis-based and methanol-based manufacturing technics. A two-level optimization model is designed for this comprehensive system. The result of the numerical study shows that the proposed model can achieve a better optimal solution for distributed hydrogen production. Also it considers the single producing situation when price of one primary resource is sufficient higher than the other.
Lessons Learned from Large Scale Hydrogen Production Project
Sep 2023
Publication
In August 2022 Shell started construction of Holland Hydrogen I (HH I) a 200 MW electrolyser plant in the port of Rotterdam’s industrial zone on Maasvlakte II in the Netherlands. HH I will produce up to 60000 kg of renewable hydrogen per day. The development and demonstration of a safe layout and plant design had been challenging due to ambitious HH I project premises many technical novelties common uncertainties in hydrogen leak effect prediction a lack of large-scale water electrolyzer operating history and limited standardization in this industry sector. This paper provides an industry perspective of the major challenges in commercial electrolyzer plant HSSE risk assessment and risk mitigation work processes required to develop and demonstrate a safe design and it describes lessons learned in this area during the HH I project. Furthermore the paper lists major common gaps in relevant knowledge engineering tools standards and OEM deliverables that need closure to enable future commercial electrolyzer plant projects to develop an economically viable and plant design and layout more efficiently and cost-effectively.
Outlook and Challenges for Hydrogen Storage in Nanoporous Materials
Feb 2016
Publication
Darren P. Broom,
Colin Webb,
Katherine Hurst,
P. A. Parilla,
Thomas Gennett,
C. M. Brown,
Renju Zacharia,
E. Tylianakis,
E. Klontzas,
George E. Froudakis,
Th. A. Steriotis,
Pantelis N. Trikalitis,
Donald L. Anton,
B. Hardy,
David A. Tamburello,
Claudio Corgnale,
B. A. van Hassel,
D. Cossement,
Richard Chahine and
Michael Hirscher
Considerable progress has been made recently in the use of nanoporous materials for hydrogen storage. In this article the current status of the field and future challenges are discussed ranging from important open fundamental questions such as the density and volume of the adsorbed phase and its relationship to overall storage capacity to the development of new functional materials and complete storage system design. With regard to fundamentals the use of neutron scattering to study adsorbed H2 suitable adsorption isotherm equations and the accurate computational modelling and simulation of H2 adsorption are discussed. The new materials covered include flexible metal–organic frameworks core–shell materials and porous organic cage compounds. The article concludes with a discussion of the experimental investigation of real adsorptive hydrogen storage tanks the improvement in the thermal conductivity of storage beds and new storage system concepts and designs.
On the Cost of Zero Carbon Hydrogen: A Techno-economic Analysis of Steam Methane Reforming with Carbon Capture and Storage
May 2023
Publication
This article challenges the view that zero carbon hydrogen from steam methane reforming (SMR) is prohibitively expensive and that the cost of CO2 capture increases exponentially as residual emissions approach zero; a flawed narrative often eliminating SMR produced hydrogen as a route to net zero. We show that the capture and geological storage of 100% of the fossil CO2 produced in a SMR is achievable with commercially available post-combustion capture technology and an open art solvent. The Levelised Cost of Hydrogen (LCOH) of 69£/MWhth HHV (2.7£/kg) for UK production remains competitive to other forms of low carbon hydrogen but retains a hydrogen lifecycle carbon intensity of 5 gCO2e/MJ (LHV) due to natural gas supply chain and embodied greenhouse gas (GHG) emissions. Compensating for the remaining lifecycle GHG emissions via Direct Air Capture with geological CO2 Storage (DACCS) increases the LCOH to 71–86 £/MWhth HHV (+3–25%) for a cost estimate of 100–1000 £/tCO2 for DACCS and the 2022 UK natural gas supply chain methane emission rates. Finally we put in perspective the cost of CO2 avoidance of fuel switching from natural gas to hydrogen with long term price estimates for natural gas use and DACCS and hydrogen produced from electrolysis.
Hydrogen Trapping and Embrittlement in Metals - A Review
Apr 2024
Publication
Hydrogen embrittlement in metals (HE) is a serious challenge for the use of high strength materials in engineering practice and a major barrier to the use of hydrogen for global decarbonization. Here we describe the factors and variables that determine HE susceptibility and provide an overview of the latest understanding of HE mechanisms. We discuss hydrogen uptake and how it can be managed. We summarize hydrogen trapping and the techniques used for its characterization. We also review literature that argues that hydrogen trapping can be used to decrease HE susceptibility. We discuss the future research that is required to advance the understanding of HE and hydrogen trapping and to develop HE-resistant alloys.
European Hydrogen Train the Trainer Framework for Responders: Outcomes of the Hyresponder Project
Sep 2023
Publication
Síle Brennan,
Didier Bouix,
Christian Brauner,
Dominic Davis,
Natalie DeBacker,
Alexander Dyck,
André Vagner Gaathaug,
César García Hernández,
Laurence Grand-Clement,
Etienne Havret,
Deborah Houssin-Agbomson,
Petr Kupka,
Laurent Lecomte,
Eric Maranne,
Vladimir V. Molkov,
Pippa Steele,
Adolfo Pinilla,
Paola Russo and
Gerhard Schoepf
HyResponder is a European Hydrogen Train the Trainer programme for responders. This paper describes the key outputs of the project and the steps taken to develop and implement a long-term sustainable train the trainer programme in hydrogen safety for responders across Europe and beyond. This FCH2 JU (now Clean Hydrogen Joint Undertaking) funded project has built on the successful outcomes of the previous HyResponse project. HyResponder has developed further and updated educational operational and virtual reality training for trainers of responders to reflect the state-of-the-art in hydrogen safety including liquid hydrogen and expand the programme across Europe and specifically within the 10 countries represented directly within the project consortium: Austria Belgium the Czech Republic France Germany Italy Norway Spain Switzerland and the United Kingdom. For the first time four levels of educational materials from fire fighter through to specialist have been developed. The digital training resources are available on the e-Platform (https://hyresponder.eu/e-platform/). The revised European Emergency Response Guide is now available to all stakeholders. The resources are intended to be used to support national training programs. They are available in 8 languages: Czech Dutch English French German Italian Norwegian and Spanish. Through the HyResponder activities trainers from across Europe have undertaken joint actions which are in turn being used to inform the delivery of regional and national training both within and beyond the project. The established pan-European network of trainers is shaping the future in the important for inherently safer deployment of hydrogen systems and infrastructure across Europe and enhancing the reach and impact of the programme.
Navigating Turbulence: Hydrogen's Role in the Decarbonization of the Aviation Sector
Jan 2024
Publication
This paper offers a comprehensive analysis of the historical evolution and the current state of the aviation industry with a particular emphasis on the critical need for this sector to decarbonize. It delves into emerging propulsion technologies such as battery electric and hydrogen-based systems assessing their potential impact on sustainability within the aviation sector. Special attention is devoted to the global regulatory framework notably carbon offsetting and emission reduction scheme for international aviation which encapsulates initiatives such as lower carbon aviation fuels and sustainable aviation fuels. Examining the environmental challenges facing aviation the paper underscores the necessity for a balanced and comprehensive strategy that integrates various approaches to achieve sustainable solutions. By addressing both the historical context and contemporary advances the paper aims to provide a nuanced understanding of the complexities surrounding aviation's decarbonization journey acknowledging the industry's strides while recognizing the ongoing challenges in the pursuit of sustainability.
The ATHENA Framework: Analysis and Design of a Strategic Hydrogen Refuelling Infrastructure
Apr 2023
Publication
With the pressured timescale in determining effective and viable net zero solutions within the transport sector it is important to understand the extent of implementing a new refuelling infrastructure for alternative fuel such as hydrogen. The proposed ATHENA framework entails three components which encapsulates the demand data analysis an optimisation model in determining the minimal cost hydrogen refuelling infrastructure design and an agent-based model simulating the operational system. As a case study the ATHENA framework is applied to Northern England focusing on the design of a hydrogen refuelling infrastructure for heavy goods vehicles. Analysis is performed in calibrating parameters and investigating different scenarios within the optimisation and agent-based simulation models. For this case study the system optimality is limited by the feasible number of tube trailer deliveries per day which suggests an opportunity for alternative delivery methods.
Knock Mitigation and Power Enhancement of Hydrogen Spark-Ignition Engine through Ammonia Blending
Jun 2023
Publication
Hydrogen and ammonia are primary carbon-free fuels that have massive production potential. In regard to their flame properties these two fuels largely represent the two extremes among all fuels. The extremely fast flame speed of hydrogen can lead to an easy deflagration-to-detonation transition and cause detonation-type engine knock that limits the global equivalence ratio and consequently the engine power. The very low flame speed and reactivity of ammonia can lead to a low heat release rate and cause difficulty in ignition and ammonia slip. Adding ammonia into hydrogen can effectively modulate flame speed and hence the heat release rate which in turn mitigates engine knock and retains the zero-carbon nature of the system. However a key issue that remains unclear is the blending ratio of NH3 that provides the desired heat release rate emission level and engine power. In the present work a 3D computational combustion study is conducted to search for the optimal hydrogen/ammonia mixture that is knock-free and meanwhile allows sufficient power in a typical spark-ignition engine configuration. Parametric studies with varying global equivalence ratios and hydrogen/ammonia blends are conducted. The results show that with added ammonia engine knock can be avoided even under stoichiometric operating conditions. Due to the increased global equivalence ratio and added ammonia the energy content of trapped charge as well as work output per cycle is increased. About 90% of the work output of a pure gasoline engine under the same conditions can be reached by hydrogen/ammonia blends. The work shows great potential of blended fuel or hydrogen/ammonia dual fuel in high-speed SI engines.
Integration of Renewable Energy Sources in Tandem with Electrolysis: A Technology Review for Green Hydrogen Production
Jun 2024
Publication
The global shift toward sustainable energy solutions emphasises the urgent need to harness renewable sources for green hydrogen production presenting a critical opportunity in the transition to a low-carbon economy. Despite its potential integrating renewable energy with electrolysis to produce green hydrogen faces significant technological and economic challenges particularly in achieving high efficiency and cost-effectiveness at scale. This review systematically examines the latest advancements in electrolysis technologies—alkaline proton exchange membrane electrolysis cell (PEMEC) and solid oxide—and explores innovative grid integration and energy storage solutions that enhance the viability of green hydrogen. The study reveals enhanced performance metrics in electrolysis processes and identifies critical factors that influence the operational efficiency and sustainability of green hydrogen production. Key findings demonstrate the potential for substantial reductions in the cost and energy requirements of hydrogen production by optimising electrolyser design and operation. The insights from this research provide a foundational strategy for scaling up green hydrogen as a sustainable energy carrier contributing to global efforts to reduce greenhouse gas emissions and advance toward carbon neutrality. The integration of these technologies could revolutionise energy systems worldwide aligning with policy frameworks and market dynamics to foster broader adoption of green hydrogen.
Review of the Production of Turquoise Hydrogen from Methane Catalytic Decomposition: Optimising Reactors for Sustainable Hydrogen Production
May 2024
Publication
Hydrogen is gaining prominence in global efforts to combat greenhouse gas emissions and climate change. While steam methane reforming remains the predominant method of hydrogen production alternative approaches such as water electrolysis and methane cracking are gaining attention. The bridging technology – methane cracking – has piqued scientific interest with its lower energy requirement (74.8 kJ/mol compared to steam methane reforming 206.278 kJ/mol) and valuable by-product of filamentous carbon. Nevertheless challenges including coke formation and catalyst deactivation persist. This review focuses on two main reactor types for catalytic methane decomposition – fixed-bed and fluidised bed. Fixed-bed reactors excel in experimental studies due to their operational simplicity and catalyst characterisation capabilities. In contrast fluidised-bed reactors are more suited for industrial applications where efforts are focused on optimising the temperature gas flow rate and particle characterisation. Furthermore investigations into various fluidised bed regimes aim to identify the most suitable for potential industrial deployment providing insights into the sustainable future of hydrogen production. While the bubbling regime shows promise for upscaling fluidised bed reactors experimental studies on turbulent fluidised-bed reactors especially in achieving high hydrogen yield from methane cracking are limited highlighting the technology’s current status not yet reaching commercialisation.
Recent Developments on Carbon Neutrality through Carbon Dioxide Capture and Utilization with Clean Hydrogen for Production of Alternative Fuels for Smart Cities
Jul 2024
Publication
This review comprehensively evaluates the integration of solar-powered electrolytic hydrogen (H2) production and captured carbon dioxide (CO2) management for clean fuel production considering all potential steps from H2 production methods to CO2 capture and separation processes. It is expected that the near future will cover CO2-capturing technologies integrated with solar-based H2 production at a commercially viable level and over 5 billion tons of CO2 are expected to be utilized potentially for clean fuel production worldwide in 2050 to achieve carbon-neutral levels. The H2 production out of hydrocarbon-based processes using fossil fuels emits greenhouse gas emissions of 17-38 kg CO2/kg H2. On the other hand . renewable energy based green hydrogen production emits less than 2 kg CO2/kg H2 which makes it really clean and appealing for implementation. In addition capturing CO2 and using for synthesizing alternative fuels with green hydrogen will help generate clean fuels for smart cities. In this regard the most sustainable and promising CO2 capturing method is post-combustion with an adsorption-separation-desorption processes using monoethanolamine adsorbent with high CO2 removal efficiencies from flue gases. Consequently this review article provides perspectives on the potential of integrating CO2-capturing technologies and renewable energy-based H2 production systems for clean production to create sustainable cities and communities.
Prospects for Long-Distance Cascaded Liquid—Gaseous Hydrogen Delivery: An Economic and Environmental Assessment
Oct 2024
Publication
As an important energy source to achieve carbon neutrality green hydrogen has always faced the problems of high use cost and unsatisfactory environmental benefits due to its remote production areas. Therefore a liquid-gaseous cascade green hydrogen delivery scheme is proposed in this article. In this scheme green hydrogen is liquefied into high-density and low-pressure liquid hydrogen to enable the transport of large quantities of green hydrogen over long distances. After longdistance transport the liquid hydrogen is stored and then gasified at transfer stations and converted into high-pressure hydrogen for distribution to the nearby hydrogen facilities in cities. In addition this study conducted a detailed model evaluation of the scheme around the actual case of hydrogen energy demand in Chengdu City in China and compared it with conventional hydrogen delivery methods. The results show that the unit hydrogen cost of the liquid-gaseous cascade green hydrogen delivery scheme is only 51.58 CNY/kgH2 and the dynamic payback periods of long- and short-distance transportation stages are 13.61 years and 7.02 years respectively. In terms of carbon emissions this scheme only generates indirect carbon emissions of 2.98 kgCO2/kgH2 without using utility electricity. In sum both the economic and carbon emission analyses demonstrate the advantages of the liquidgaseous cascade green hydrogen delivery scheme. With further reductions in electricity prices and liquefication costs this scheme has the potential to provide an economically/environmentally superior solution for future large-scale green hydrogen applications.
Energy Storage Strategy - Phase 3
Feb 2023
Publication
This report evaluates the main options to provide required hydrogen storage capacity including the relevant system-level considerations and provides recommendations for further actions including low-regrets actions that are needed in a range of scenarios.
No more items...