United Kingdom
Future Energy Scenarios 2022
Jul 2022
Publication
Future Energy Scenarios (FES) represent a range of different credible ways to decarbonise our energy system as we strive towards the 2050 target.<br/>We’re less than 30 years away from the Net Zero deadline which isn’t long when you consider investment cycles for gas networks electricity transmission lines and domestic heating systems.<br/>FES has an important role to play in stimulating debate and helping to shape the energy system of the future.
CCS Industrial Clusters: Building a Social License to Operate
Jun 2022
Publication
This paper explores the opportunities for and progress in establishing a social licence to operate (SLO) for CCS in industrial clusters in the UK focusing on the perspectives of key stakeholders. The evolution of narratives and networks relating to geographical clusters as niches for CCS in industrial decarbonisation is evaluated in relation to seven pillars supporting SLO. Evidence is drawn from a combination of cluster mapping documentary analysis and stakeholder interviews to identify the wider contexts underpinning industrial decarbonisation stakeholder networks interaction and communication critical narratives the conditions for establishing trust and confidence different scales of social licence and maintaining a SLO. The delivery of a sustainable industrial decarbonisation strategy will depend on multiple layers of social licence involving discourses at different scales and potentially for different systems (heat transport different industrial processes). Despite setbacks as a result of funding cancellations and changes to government policy the UK is positioned to be at the forefront of CCS deployment. While there is a high ambition and a strong narrative from government of the urgency to accelerate projects involving CCS clear coordinated strategy and funding frameworks are necessary to build confidence that UK policy is both compatible with net zero and economically viable.
Future Energy Scenarios 2021
Jul 2022
Publication
Our Future Energy Scenarios (FES) draw on hundreds of experts’ views to model four credible energy pathways for Britain over coming decades. Matthew Wright our head of strategy and regulation outlines what the 2021 outlook means for consumers society and the energy system itself.<br/>This year’s Future Energy Scenarios insight reveals a glimpse of a Britain that is powered with net zero carbon emissions.<br/>Our analysis shows that our country can achieve its legally-binding carbon reduction targets: in three out of four scenarios in the analysis the country reaches net zero carbon emissions by 2050 with Leading the Way – our most ambitious scenario – achieving it in 2047 and becoming net negative by 2050.
Green Hydrogen Energy Production: Current Status and Potential
Jan 2024
Publication
The technique of producing hydrogen by utilizing green and renewable energy sources is called green hydrogen production. Therefore by implementing this technique hydrogen will become a sustainable and clean energy source by lowering greenhouse gas emissions and reducing our reliance on fossil fuels. The key beneft of producing green hydrogen by utilizing green energy is that no harmful pollutants or greenhouse gases are directly released throughout the process. Hence to guarantee all of the environmental advantages it is crucial to consider the entire hydrogen supply chain involving storage transportation and end users. Hydrogen is a promising clean energy source and targets plan pathways towards decarbonization and net-zero emissions by 2050. This paper has highlighted the techniques for generating green hydrogen that are needed for a clean environment and sustainable energy solutions. Moreover it summarizes an overview outlook and energy transient of green hydrogen production. Consequently its perspective provides new insights and research directions in order to accelerate the development and identify the potential of green hydrogen production.
Bio-Hydrogen Production from Wastewater: A Comparative Study of Low Energy Intensive Production Processes
Feb 2021
Publication
Billions of litres of wastewater are produced daily from domestic and industrial areas and whilst wastewater is often perceived as a problem it has the potential to be viewed as a rich source for resources and energy. Wastewater contains between four and five times more energy than is required to treat it and is a potential source of bio-hydrogen—a clean energy vector a feedstock chemical and a fuel widely recognised to have a role in the decarbonisation of the future energy system. This paper investigates sustainable low-energy intensive routes for hydrogen production from wastewater critically analysing five technologies namely photo-fermentation dark fermentation photocatalysis microbial photo electrochemical processes and microbial electrolysis cells (MECs). The paper compares key parameters influencing H2 production yield such as pH temperature and reactor design summarises the state of the art in each area and highlights the scale-up technical challenges. In addition to H2 production these processes can be used for partial wastewater remediation providing at least 45% reduction in chemical oxygen demand (COD) and are suitable for integration into existing wastewater treatment plants. Key advancements in lab-based research are included highlighting the potential for each technology to contribute to the development of clean energy. Whilst there have been efforts to scale dark fermentation electro and photo chemical technologies are still at the early stages of development (Technology Readiness Levels below 4); therefore pilot plants and demonstrators sited at wastewater treatment facilities are needed to assess commercial viability. As such a multidisciplinary approach is needed to overcome the current barriers to implementation integrating expertise in engineering chemistry and microbiology with the commercial experience of both water and energy sectors. The review concludes by highlighting MECs as a promising technology due to excellent system modularity good hydrogen yield (3.6–7.9 L/L/d from synthetic wastewater) and the potential to remove up to 80% COD from influent streams.
Reducing the Environmental Impact of International Aviationg through Sustainable Aviation Fuel with Integrated Carbon Capture and Storage
Feb 2024
Publication
Sustainable aviation fuels (SAFs) represent the short-term solution to reduce fossil carbon emissions from aviation. The Carbon Offsetting and Reduction Scheme for International Aviation (CORSIA) was globally adopted to foster and make SAFs production economically competitive. Fischer-Tropsch synthetic paraffinic kerosene (FTSPK) produced from forest residue is a promising CORSIA-eligible fuel. FT conversion pathway permits the integration of carbon capture and storage (CCS) technology which provides additional carbon offsetting ca pacities. The FT-SPK with CCS process was modelled to conduct a comprehensive analysis of the conversion pathway. Life-cycle assessment (LCA) with a well-to-wake approach was performed to quantify the SAF’s carbon footprint considering both biogenic and fossil carbon dynamics. Results showed that 0.09 kg FT-SPK per kg of dry biomass could be produced together with other hydrocarbon products. Well-to-wake fossil emissions scored 21.6 gCO2e per MJ of FT-SPK utilised. When considering fossil and biogenic carbon dynamics a negative carbon flux (-20.0 gCO2eMJ− 1 ) from the atmosphere to permanent storage was generated. However FT-SPK is limited to a 50 %mass blend with conventional Jet A/A1 fuel. Using the certified blend reduced Jet A/A1 fossil emissions in a 37 % and the net carbon flux resulted positive (30.9 gCO2eMJ− 1 ). Sensitivity to variations in process as sumptions was investigated. The lifecycle fossil-emissions reported in this study resulted 49 % higher than the CORSIA default value for FT-SPK. In a UK framework only 0.7 % of aviation fuel demand could be covered using national resources but the emission reduction goal in aviation targeted for 2037 could be satisfied when considering CCS.
Dynamic Hydrogen Demand Forecasting Using Hybrid Time Series Models: Insights for Renewable Energy Systems
Feb 2025
Publication
Hydrogen is gaining traction as a key energy carrier due to its clean combustion high energy content and versatility. As the world shifts towards sustainable energy hydrogen demand is rapidly increasing. This paper introduces a novel hybrid time series modeling approach designed and developed to accurately predict hydrogen demand by mixing linear and nonlinear models and accounting for the impact of non-recurring events and dynamic energy market changes over time. The model incorporates key economic variables like hydrogen price oil price natural gas price and gross domestic product (GDP) per capita. To address these challenges we propose a four-part framework comprising the Hodrick–Prescott (HP) filter the autoregressive fractionally integrated moving average (ARFIMA) model the enhanced empirical wavelet transform (EEWT) and high-order fuzzy cognitive maps (HFCM). The HP filter extracts recurring structural patterns around specific data points and resolves challenges in hybridizing linear and nonlinear models. The ARFIMA model equipped with statistical memory captures linear trends in the data. Meanwhile the EEWT handles non-stationary time series by adaptively decomposing data. HFCM integrates the outputs from these components with ridge regression fine-tuning the HFCM to handle complex time series dynamics. Validation using stochastic non-Gaussian synthetic data demonstrates that this model significantly enhances prediction performance. The methodology offers notable improvements in prediction accuracy and stability compared to existing models with implications for optimizing hydrogen production and storage systems. The proposed approach is also a valuable tool for policy formulation in renewable energy and smart energy transitions offering a robust solution for forecasting hydrogen demand
Electrolytic Hydrogen Production: How Green Must Green Be?
Jan 2025
Publication
Electrolytic hydrogen from renewable sources is central to many nations' net-zero emission strategies serving as a low-carbon alternative for traditional uses and enabling decarbonisation across multiple sectors. Current stringent policies in the EU and US are set to soon require hourly time-matching of renewable electricity generation used by electrolysers aimed at ensuring that hydrogen production does not cause significant direct or indirect emissions. Whilst such requirements enhance the “green credentials” of hydrogen they also increase its production costs. A modest relaxation of these requirements offers a practicable route for scaling up low-carbon hydrogen production optimising both costs and emission reductions. Moreover in jurisdictions with credible and near-to-medium-term decarbonisation targets immediate production of electrolytic hydrogen utilising grid electricity would have a lifetime carbon intensity comparable to or even below blue hydrogen and very significantly less than that of diesel emphasising the need to prioritise rapid grid decarbonisation of the broader grid.
Hydrogen for Long-haul Road Freight: A Realist Retroductive Assessment
Jun 2025
Publication
This study focuses on arguably the most contentious choice of energy supply option available for decarbonizing general-purpose long-haul road freight: hydrogen. For operators infrastructure providers energy providers and vehicle manufacturers to make the investments necessary to enable this transition it is essential to evaluate the feasibility of individual energy supply choices. A literature review is conducted identifying ten requirements for an energy supply choice to be feasible which are then translated into “what would need to be true” conditions for hydrogen to meet these requirements. Considering these evidence from literature is used to assess the likelihood of each condition becoming true within the lifespan of a vehicle bought today. It is concluded that it is unlikely that hydrogen will become feasible in this time frame meaning it can be disregarded as a current vehicle purchase consideration as it will not undermine the competitiveness or resale value of a vehicle using a different energy source bought today. There are two principal innovations in the study approach: the consideration of socio-technical and political as well as techno-economic factors; and the application of realist retroductive option assessment. While not necessary to address the research question regarding hydrogen a realist retroductive assessment is also presented for other prominent low carbon energy source options: battery electric electric road systems (ERS) and biofuels; and the conditions under which these options could be feasible are considered.
Virtual Failure Assessment Diagrams for Hydrogen Transmission Pipelines
Jun 2025
Publication
We combine state-of-the-art thermo-metallurgical welding process modeling with coupled diffusion-elastic– plastic phase field fracture simulations to predict the failure states of hydrogen transport pipelines. This enables quantitatively resolving residual stress states and the role of brittle hard regions of the weld such as the heat affected zone (HAZ). Failure pressures can be efficiently quantified as a function of asset state (existing defects) materials and weld procedures adopted and hydrogen purity. Importantly simulations spanning numerous relevant conditions (defect size and orientations) are used to build Virtual Failure Assessment Diagrams (FADs) enabling a straightforward uptake of this mechanistic approach in fitness-for-service assessment. Model predictions are in very good agreement with FAD approaches from the standards but show that the latter are not conservative when resolving the heterogeneous nature of the weld microstructure. Appropriate mechanistic FAD safety factors are established that account for the role of residual stresses and hard brittle weld regions.
New Heavy-Duty Sampling System for Hydrogen Refuelling Stations—Comparison of Impact of Light-Duty Versus Heavy-Duty Sampling Techniques on Hydrogen Fuel Quality
May 2025
Publication
The hydrogen fuel quality is critical to the efficiency and longevity of fuel cell electric vehicles (FCEVs) with ISO 14687:2019 grade D establishing stringent impurity limits. This study compared two different sampling techniques for assessing the hydrogen fuel quality focusing on the National Physical Laboratory hydrogen direct sampling apparatus (NPL DirSAM) from a 35 MPa heavy-duty (HD) dispenser and qualitizer sampling from a 70 MPa light-duty (LD) nozzle both of which were deployed on the same day at a local hydrogen refuelling station (HRS). The collected samples were analysed as per the ISO 14687:2019 contaminants using the NPL H2-quality laboratory. The NPL DirSAM was able to sample an HD HRS demonstrating the ability to realise such sampling on an HD nozzle. The comparison of the LD (H2 Qualitizer sampling) and HD (NPL DirSAM) devices showed good agreement but significant variation especially for sulphur compounds non-methane hydrocarbons and carbon dioxide. These variations may be related to the HRS difference between the LD and HD devices (e.g. flow path refuelling conditions and precooling for light duty versus no precooling for heavy duty). Further study of HD and LD H2 fuel at HRSs is needed for a better understanding.
Optimizing Regional Energy Networks: A Hierarchical Multi-energy System Approach for Enhanced Efficiency and Privacy
Sep 2025
Publication
This research presents a hierarchically synchronized Multi-Energy System (MES) designed for regional communities incorporating a network of small-scale Integrated Energy Microgrids (IEMs) to augment efficiency and collective advantages. The MES framework innovatively integrates energy complementarity pairing algorithms with efficient iterative optimization processes significantly curtailing operational expenditures for constituent microgrids and bolstering both community-wide benefits and individual microgrid autonomy. The MES encompasses electricity hydrogen and heat resources while leveraging controllable assets such as battery storage systems fuel cell combined heat and power units and electric vehicles. A comparative study of six IEMs demonstrates an operational cost reduction of up to 26.72% and a computation time decrease of approximately 97.13% compared to traditional methods like ADMM and IDAM. Moreover the system preserves data privacy by limiting data exchange to aggregated energy information thus minimizing direct communication between IEMs and the MES. This synergy of multi-energy complementarity iterative optimization and privacy-aware coordination underscores the potential of the proposed approach for scalable community-centered energy systems.
Matching and Control Optimisation of Variable-Geometry Turbochargers for Hydrogen Fuel Cell Systems
Apr 2025
Publication
The turbocharging of hydrogen fuel cell systems (FCSs) has recently become a prominent research area aiming to improve FCS efficiency to help decarbonise the energy and transport sectors. This work compares the performance of an electrically assisted variable-geometry turbocharger (VGT) with a fixed-geometry turbocharger (FGT) by optimising both the sizing of the components and their operating points ensuring both designs are compared at their respective peak performance. A MATLAB-Simulink reducedorder model is used first to identify the most efficient components that match the fuel cell air path requirements. Maps representing the compressor and turbines are then evaluated in a 1D flow model to optimise cathode pressure and stoichiometry operating targets for net system efficiency using an accelerated genetic algorithm (A-GA). Good agreement was observed between the two models’ trends with a less than 10.5% difference between their normalised e-motor power across all operating points. Under optimised conditions the VGT showed a less than 0.25% increase in fuel cell system efficiency compared to the use of an FGT. However a sensitivity study demonstrates significantly lower sensitivity when operating at non-ideal flows and pressures for the VGT when compared to the FGT suggesting that VGTs may provide a higher level of tolerance under variable environmental conditions such as ambient temperature humidity and transient loading. Overall it is concluded that the efficiency benefits of VGT are marginal and therefore not necessarily significant enough to justify the additional cost and complexity that they introduce.
Hydrogen Safety for Systems at Ambient and Cryogenic Temperature: A Comparative Study of Hazards and Consequence Modelling
Feb 2025
Publication
Transport and storage of hydrogen as a liquid (LH2) is being widely investigated as a solution for scaling up the supply infrastructure and addressing the growth of hydrogen demand worldwide. While there is a relatively wellestablished knowledge and understanding of hazards and associated risks for gaseous hydrogen at ambient temperature several knowledge gaps are yet open regarding the behaviour in incident scenarios of cryogenic hydrogen including LH2. This paper aims at presenting the models and tools that can be used to close relevant knowledge gaps for hydrogen safety engineering of LH2 systems and infrastructure. Analytical studies and computational fluid dynamics (CFD) modelling are used complementarily to assess relevant incident scenarios and compare the consequences and hazard distances for hydrogen systems at ambient and cryogenic temperature. The research encompasses the main phenomena characterising an incident scenario: release and dispersion ignition and combustion. Experimental tests on cryogenic hydrogen systems are used for the validation of correlations and numerical models. It is observed that engineering tools originally developed for hydrogen at ambient temperature are yet applicable to the cryogenic temperature field. For a same storage pressure and nozzle diameter the decrease of hydrogen temperature from ambient to cryogenic 80 K may lead to longer hazard distances associated to unignited and ignited hydrogen releases. The potential for ignition by spark discharge or spontaneous ignition mechanism is seen to decrease with the decrease of hydrogen temperature. CFD modelling is used to give insights into the pressure dynamics created by LH2 vessels rupture in a fire using experimental data from literature.
Thermodynamic Integration in Combined Fuel and Power Plants Producing Low Carbon Hydrogen and Power with CCUS
Dec 2024
Publication
Demand for low-carbon sources of hydrogen and power is expected to rise dramatically in the coming years. Individually steam methane reformers (SMRs) and combined cycle gas power plants (CCGTs) when combined with carbon capture utilisation and storage (CCUS) can produce large quantities of ondemand decarbonised hydrogen and power respectively. The ongoing trend towards the development of CCUS clusters means that both processes may operate in close proximity taking advantage of a common infrastructure for natural gas supply electricity grid connection and the CO2 transport and storage network. This work improves on a previously described novel integration process which utilizes flue gas sequential combustion to incorporate the SMR process into the CCGT cycle in a single “combined fuel and power” (CFP) plant by increasing the level of thermodynamic integration through the merger of the steam cycles and a redesign of the heat recovery system. This increases the 2nd law thermal efficiency by 2.6% points over un-integrated processes and 1.9% points the previous integration design. Using a conventional 35% wt. monoethanolamine (MEA) CO2 capture process designed to achieve two distinct and previously unexplored CO2 capture fractions; 95% gross and 100% fossil (CO2 generated is equal to the quantity of CO2 captured). The CFP configuration reduces the overall quantity of flue gas to be processed by 36%–37% and increases the average CO2 concentration of the flue gas to be treated from 9.9% to 14.4% (wet). This decreases the absorber packing volume requirements by 41%–56% and decreases the specific reboiler duty by 5.5% from 3.46–3.67 GJ/tCO2 to 3.27–3.46 GJ/tCO2 further increasing the 2nd law thermal efficiency gains to 3.8%–4.4% points over the un-integrated case. A first of a kind techno economic analysis concludes that the improvements present in a CO2 abated CFP plant results in a 15.1%–17.3% and 7.6%–8.0% decrease in capital and operational expenditure respectively for the CO2 capture cases. This translates to an increase in the internal rate of return over the base hurdle rate of 7.5%–7.8% highlighting the potential for substantial cost reductions presented by the CFP configuration.
A Comparative Analysis of the Efficiency Coordination of Renewable Energy and Electric Vehicles in a Deregulated Smart Power System
Mar 2025
Publication
Deregulation in the energy sector has transformed the power systems with significant use of competition innovation and sustainability. This paper outlines a comparative study of renewable energy sources with electric vehicles (RES-EV) integration in a deregulated smart power system to highlight the learning on system efficiency effectiveness viability and the environment. This study depicts the importance of solar and wind energy in reducing carbon emissions and the challenges of integrating RES into present energy grids. It touches on the aspects of advanced energy storage systems demand-side management (DSM) and smart charging technologies for optimizing energy flows and stabilizing grids because of fluctuating demands. Findings were presented to show that based on specific pricing thresholds hybrid renewable energy systems can achieve grid parity and market competitiveness. Novel contributions included an in-depth exploration of the economic and technical feasibility of integrating EVs at the distribution level improvements in power flow control mechanisms and strategies to overcome challenges in decentralized energy systems. These insights will help policymakers and market participants make headway in the adoption of microgrids and smart grids within deregulated energy systems which is a step toward fostering a sustainable and resilient power sector.
Quantifying Key Economic Uncertainties in the Cost of Trading Green Hydrogen
Mar 2025
Publication
In a fully decarbonized global energy system hydrogen is likely to be one of few energy vectors that can facilitate long-distance export of renewable energy. However because of divergent literature findings consensus is yet to be reached on the total supply chain costs of shipping hydrogen either as a cryogenic liquid or ammonia. To this end this article presents a detailed process systems-based economic analysis of a typical hydrogen value chain in 2050 employing the method of elementary effects to quantify the effect of uncertainties. With expected landed costs for liquid hydrogen of $4.60 kg1 (H2) and ammonia of $3.30 kg1 (H2) the importance of uncertainty quantification is demonstrated given that specific parametric combinations can yield landed costs below $2.50 kg1 (H2). Given our delivered hydrogen cost of $4.70 kg1 (H2) these results demonstrate the stark difference between the aspirations of decarbonization policy (with some countries aiming for prices below $1 kg1 by 2050) and the present techno-economic reality.
Public Acceptance of a Proposed Sub-Regional, Hydrogen–Electric, Aviation Service: Empirical Evidence from HEART in the United Kingdom
Apr 2025
Publication
This paper addresses public acceptance of a proposed sub-regional hydrogen– electric aviation service reporting initial empirical evidence from the UK HEART project. The objective was to assess public acceptance of a wide range of service features including hydrogen power electric motors and pilot assistance automation in the context of an ongoing realisable commercial plan. Both qualitative and quantitative data collection instruments were leveraged including focus groups and stakeholder interviews as well as the questionnaire-based Scottish National survey coupled with the advanced discretechoice modelling of the data. The results from each method are presented compared and contrasted focusing on the strength reliability and validity of the data to generate insights into public acceptance. The findings suggest that public concerns were tempered by an incomplete understanding of the technology but were interpretable in terms of key service elements. Respondents’ concerns and opinions centred around hydrogen as a fuel singlepilot automation safety and security disability and inclusion environmental impact and the perceived usefulness of novel service features such as terminal design automation and sustainability. The latter findings were interpreted under a joint framework of technology acceptance theory and the diffusion of innovation. From this we drew key insights which were presented alongside a discussion of the results.
An Overview of the Green Hydrogen Value Chain Technologies and Their Challenges for a Net-Zero Future
Apr 2025
Publication
As hydrogen emerges as a pivotal energy carrier in the global transition towards net-zero emissions addressing its technological and regulatory challenges is essential for large-scale deployment. The widespread adoption of hydrogen technologies requires extensive research technical advancements validation testing and certification to ensure their efficiency reliability and safety across various applications including industrial processes power generation and transportation. This study provides an overview of key enabling technologies for green hydrogen production and distribution highlighting the critical challenges that must be overcome to facilitate their widespread adoption. It examines key hydrogen use cases across multiple sectors analysing their associated technical and infrastructural challenges. The technological advancements required to improve hydrogen production storage transportation and end-use applications are discussed. The development of state-of-the-art testing and validation facilities is also assessed as these are vital for ensuring safety performance and regulatory compliance. This work also reviews some of the ongoing academic and industrial initiatives in the UK aimed at promoting technological innovation advancing hydrogen expertise and developing world-class testing infrastructures. This study emphasises the need for stronger more integrated collaboration between universities industries and certifying bodies for building a strong network that promotes knowledge sharing standardisation and innovation for expanding hydrogen solutions and creating a sustainable hydrogen economy.
Reconfiguring Industry in the United Kingdom. Global Lessons for Ambition Versus Policy on the Path Towards Net-zero
Aug 2025
Publication
High-emitting industrial processes are often concentrated in clusters that share infrastructure to maximise efficiency and reduce costs. These clusters prevalent in many industrialised economies pose significant challenges for decarbonisation due to their dependence on energy-intensive systems and legacy assets. Carbon capture and storage (CCS) is frequently promoted as a key solution for reducing emissions in these hard-to-abate sectors. Drawing on an adapted ‘Multi-Level Perspective’ framework (Geels and Turnheim 2022) this paper examines how industrial practices are being reconfigured in response to decarbonisation imperatives. While our study focuses on the UK the findings have broader relevance to other industrialised nations pursuing a similar strategy. We observe a dominant reliance on fuel switching and CCS characterising the innovation style as ‘modular substitution’; incremental changes that replace individual components without fundamentally transforming the overall system. This pattern suggests a gap between ambitious climate commitments and the depth of systemic change being pursued. Without more comprehensive strategies there is a growing risk of delayed emissions reductions and increased residual emissions both contributing to the overshooting of carbon budgets which will be compounded if replicated across industrial sectors worldwide.
No more items...