United Kingdom
Roadmap for the Decarbonization of Domestic Passenger Ferries in the Republic of Korea
Feb 2025
Publication
This study examines the steps to lower air emissions in South Korea’s domestic shipping sector. It highlights the significant contributions of the sector to air pollution and greenhouse gas emissions emphasizing its impact on environmental sustainability and climate change mitigation. By looking at the current shipping energy use and emissions the research identifies ways to reduce the environmental impact of domestic shipping. Data was collected from domestic ferry routes and the fuel use was reviewed with respect to existing global technologies for reducing emissions. The results show that operational changes and current energy-efficient technologies can quickly cut emissions. Furthermore a long-term plan is suggested involving the development of new ship designs and the use of net-zero fuels like biofuels methanol hydrogen and ammonia. These efforts aim to meet climate goals targeting a 40% reduction in greenhouse emissions by 2030 and a 70% reduction by 2050 making South Korea’s shipping industry more sustainable and resilient.
Performance, Emissions, and Economic Analyses of Hydrogen Fuel Cell Vehicles
May 2024
Publication
The transport sector is considered to be a significant contributor to greenhouse gas emissions as this sector emits about one-fourth of global CO2 emissions. Transport emissions contribute toward climate change and have been linked to adverse health impacts. Therefore alternative and sustainable transport options are urgent for decarbonising the transport sector and mitigating those issues. Hydrogen fuel cell vehicles are a potential alternative to conventional vehicles which can play a significant role in decarbonising the future transport sector. This study critically analyses the recent works related to hydrogen fuel cell integration into vehicles modelling and experimental investigations of hydrogen fuel cell vehicles with various powertrains. This study also reviews and analyses the performance energy management strategies lifecycle cost and emissions of fuel cell vehicles. Previous literature suggested that the fuel consumption and well-to-wheel greenhouse gas emissions of hydrogen fuel cell-powered vehicles are significantly lower than that of conventional internal combustion vehicles. Hydrogen fuel cell vehicles consume about 29–66 % less energy and cause approximately 31–80 % less greenhouse gas emissions than conventional vehicles. Despite this the lifecycle cost of hydrogen fuel cell vehicles has been estimated to be 1.2–12.1 times higher than conventional vehicles. Even though there has been recent progress in energy management in hydrogen fuel cell electric vehicles there are a number of technical and economic challenges to the commercialisation of hydrogen fuel cell vehicles. This study presents current knowledge gaps and details future research directions in relation to the research advancement of hydrogen fuel cell vehicles.
Review on Ammonia as a Potential Fuel: From Synthesis to Economics
Feb 2021
Publication
Ammonia a molecule that is gaining more interest as a fueling vector has been considered as a candidate to power transport produce energy and support heating applications for decades. However the particular characteristics of the molecule always made it a chemical with low if any benefit once compared to conventional fossil fuels. Still the current need to decarbonize our economy makes the search of new methods crucial to use chemicals such as ammonia that can be produced and employed without incurring in the emission of carbon oxides. Therefore current efforts in this field are leading scientists industries and governments to seriously invest efforts in the development of holistic solutions capable of making ammonia a viable fuel for the transition toward a clean future. On that basis this review has approached the subject gathering inputs from scientists actively working on the topic. The review starts from the importance of ammonia as an energy vector moving through all of the steps in the production distribution utilization safety legal considerations and economic aspects of the use of such a molecule to support the future energy mix. Fundamentals of combustion and practical cases for the recovery of energy of ammonia are also addressed thus providing a complete view of what potentially could become a vector of crucial importance to the mitigation of carbon emissions. Different from other works this review seeks to provide a holistic perspective of ammonia as a chemical that presents benefits and constraints for storing energy from sustainable sources. State-of-the-art knowledge provided by academics actively engaged with the topic at various fronts also enables a clear vision of the progress in each of the branches of ammonia as an energy carrier. Further the fundamental boundaries of the use of the molecule are expanded to real technical issues for all potential technologies capable of using it for energy purposes legal barriers that will be faced to achieve its deployment safety and environmental considerations that impose a critical aspect for acceptance and wellbeing and economic implications for the use of ammonia across all aspects approached for the production and implementation of this chemical as a fueling source. Herein this work sets the principles research practicalities and future views of a transition toward a future where ammonia will be a major energy player.
Inspection of Coated Hydrogen Transportation Pipelines
Sep 2023
Publication
The growing need for hydrogen indicates that there is likely to be a demand for transporting hydrogen. Hydrogen pipelines are an economical option but the issue of hydrogen damage to pipeline steels needs to be studied and investigated. So far limited research has been dedicated to determining how the choice of inspection method for pipeline integrity management changes depending on the presence of a coating. Thus this review aims to evaluate the effectiveness of inspection methods specifically for detecting the defects formed uniquely in coated hydrogen pipelines. The discussion will begin with a background of hydrogen pipelines and the common defects seen in these pipelines. This will also include topics such as blended hydrogen-natural gas pipelines. After which the focus will shift to pipeline integrity management methods and the effectiveness of current inspection methods in the context of standards such as ASME B31.12 and BS 7910. The discussion will conclude with a summary of newly available inspection methods and future research directions.
A Systematic Comparison of the Energy and Emissions Intensity of Hydrogen Production Pathways in the United Kingdom
Sep 2024
Publication
Meeting climate targets requires profound transformations in the energy system. Most energy uses should be electrified but where this is not feasible hydrogen can be part of the solution. However 98% of global hydrogen production involves greenhouse gas emissions with an average of 12 kg CO2e/kg H2. Therefore new hydrogen production pathways are needed in order to make hydrogen production compatible with climate targets. In this work we fill this gap by systematically comparing the energy and emissions intensity of 173 hydrogen production pathways suitable for the UK. Scenarios include onshore and offshore pathways and the use of repurposed infrastructure. Unlike fossil-fuel based pathways the results show that electrolytic hydrogen powered by fixed offshore wind could align with proposed emissions standards either onshore or offshore. However the embodied and fugitive emissions are important to consider for electrolytic pathways as they result in 10–50% of the total emissions intensity.
Hydrogen Refuelling Station Calibration with a Traceable Gravimetric Standard
Apr 2020
Publication
Of all the alternatives to hydrocarbon fuels hydrogen offers the greatest long-term potential to radically reduce the many problems inherent in fuel used for transportation. Hydrogen vehicles have zero tailpipe emissions and are very efficient. If the hydrogen is made from renewable sources such as nuclear power or fossil sources with carbon emissions captured and sequestered hydrogen use on a global scale would produce almost zero greenhouse gas emissions and greatly reduce air pollutant emissions. The aim of this work is to realise a traceability chain for hydrogen flow metering in the range typical for fuelling applications in a wide pressure range with pressures up to 875 bar (for Hydrogen Refuelling Station - HRS with Nominal Working Pressure of 700 bar) and temperature changes from −40 °C (pre-cooling) to 85 °C (maximum allowed vehicle tank temperature) in accordance with the worldwide accepted standard SAE J2601. Several HRS have been tested in Europe (France Netherlands and Germany) and the results show a good repeatability for all tests. This demonstrates that the testing equipment works well in real conditions. Depending on the installation configuration some systematic errors have been detected and explained. Errors observed for Configuration 1 stations can be explained by pressure differences at the beginning and end of fueling in the piping between the Coriolis Flow Meter (CFM) and the dispenser: the longer the distance the bigger the errors. For Configuration 2 where this distance is very short the error is negligible.
Prediction of Transient Hydrogen Flow of Proton Exchange Membrane Electrolyzer Using Artificial Neural Network
Aug 2023
Publication
A proton exchange membrane (PEM) electrolyzer is fed with water and powered by electric power to electrochemically produce hydrogen at low operating temperatures and emits oxygen as a by-product. Due to the complex nature of the performance of PEM electrolyzers the application of an artificial neural network (ANN) is capable of predicting its dynamic characteristics. A handful of studies have examined and explored ANN in the prediction of the transient characteristics of PEM electrolyzers. This research explores the estimation of the transient behavior of a PEM electrolyzer stack under various operational conditions. Input variables in this study include stack current oxygen pressure hydrogen pressure and stack temperature. ANN models using three differing learning algorithms and time delay structures estimated the hydrogen mass flow rate which had transient behavior from 0 to 1 kg/h and forecasted better with a higher count (>5) of hidden layer neurons. A coefficient of determination of 0.84 and a mean squared error of less than 0.005 were recorded. The best-fitting model to predict the dynamic behavior of the hydrogen mass flow rate was an ANN model using the Levenberg–Marquardt algorithm with 40 neurons that had a coefficient of determination of 0.90 and a mean squared error of 0.00337. In conclusion optimally fit models of hydrogen flow from PEM electrolyzers utilizing artificial neural networks were developed. Such models are useful in establishing an agile flow control system for the electrolyzer system to help decrease power consumption and increase efficiency in hydrogen generation.
Thermodynamic and Transport Properties of Hydrogen Containing Streams
Jul 2020
Publication
he use of hydrogen (H2) as a substitute for fossil fuel which accounts for the majority of the world’s energy is environmentally the most benign option for the reduction of CO2 emissions. his will require gigawatt-scale storage systems and as such H2 storage in porous rocks in the subsurface will be required. ccurate estimation of the thermodynamic and transport properties of H2 mixed with other gases found within the storage system is therefore essential for the efcient design for the processes involved in this system chain. In this study we used the established and regarded GERG-2008 Equation of State (EoS) and SuperRPP model to predict the thermo-physical properties of H2 mixed with CH4 N2 CO2 and a typical natural gas from the North-Sea. he data covers a wide range of mole fraction of H2 (10–90 Mole%) pressures (0.01–100MPa) and temperatures (200–500K) with high accuracy and precision. Moreover to increase ease of access to the data a user-friendly software (H2Themobank) is developed and made publicly available.
Conceptual Design-optimisation of a Subsonic Hydrogen-powered Long-range Blended-wing-body Aircraft
Nov 2024
Publication
The adoption of liquid hydrogen (LH2) holds promise for decarbonising long-range aviation. LH2 aircraft could weigh less than Jet-A aircraft thereby reducing the thrust requirement. However the lower volumetric energy density of LH2 can adversely impact the aerodynamic performance and energy consumption of tube-wing aircraft. In a first this work conducts an energy performance modelling of a futuristic (2030+) LH2 blendedwing-body (BWB) aircraft (301 passengers and 13890 km) using conceptual aircraft design-optimisation approach employing weight-sizing methods while considering the realistic gravimetric and volumetric energy density effects of LH2 on aircraft design and the resulting reduction in aircraft thrust requirement. This study shows that at the design point the futuristic LH2 BWB aircraft reduces the specific energy consumption (SEC MJ/ tonne-km) by 51.7–53.5% and 7.3–10.8% compared to (Jet-A) Boeing 777-200LR and Jet-A BWB respectively. At the off-design points this study shows that by increasing the load factor for a given range and/or increasing range for all load factor cases the SEC (or energy efficiency) of this LH2 BWB concept improves. The results of this work will inform future studies on use-phase emissions and contrails modelling LH2 aircraft operations for contrail reduction estimation of operating costs and lifecycle climate impacts.
Hydrogen Strategy Update to the Market: December 2024
Dec 2024
Publication
Low carbon hydrogen is essential to achieve the Government’s Clean Energy Superpower and Growth Missions. It will be a crucial enabler of a low carbon and renewables-based energy system and will help to deliver new clean energy industries which can support good jobs in our industrial heartlands and coastal communities. Hydrogen presents significant growth and economic opportunities across the UK by enhancing our energy security providing flexible cleaner energy for our power system and helping to decarbonise vital UK industries. Hydrogen has a critical role in helping to achieve our Clean Energy Superpower Mission. It can provide flexible low carbon power generation meaning we can use hydrogen to produce electricity during extended periods of low renewable output. Hydrogen can also provide interseasonal energy storage through conversion of electricity into hydrogen and then back into electricity at times of need using a combination of hydrogen production storage and hydrogen to power. To advance our Clean Energy and Growth Missions hydrogen also has a unique role in transitioning crucial UK industries away from oil and gas and towards a clean homegrown source of fuel. Hydrogen can decarbonise hard-to-abate sectors like chemicals and heavy transport complementing our wider electrification efforts and accelerating our progress to net zero. Using our strong domestic expertise and favourable geology geography and infrastructure backing UK hydrogen can unlock significant economic opportunities and new low carbon jobs of the future. Government has an ambitious range of policies in place to incentivise and support industry to invest in low carbon hydrogen. The recent Hydrogen Skills Workforce Assessment an industry-led study undertaken by the Hydrogen Skills Alliance estimated that the UK hydrogen economy could support 29000 direct jobs and 64500 indirect jobs by 2030. Since establishing in Summer 2024 this Government has already made significant progress in delivering the UK hydrogen economy. This includes confirming support for the 11 successful Hydrogen Allocation Round 1 projects announcing up to £21.7 billion of available funding to launch the UK’s new carbon capture utilisation and storage industry and publishing our hydrogen to power consultation response with an aim to establish a new hydrogen to power business model. We have also launched three new bodies – the National Energy System Operator Great British Energy and the National Wealth Fund – which will help to deliver a world-class energy system including for low carbon hydrogen. This December 2024 Hydrogen Strategy Update to the Market sets out the key milestones achieved by the Department for Energy Security and Net Zero in 2024 to deliver the hydrogen economy and an ambitious forward look at our next steps and upcoming opportunities. To achieve net zero and create a thriving and resilient energy landscape we are already working at considerable pace to deliver a world-leading UK hydrogen sector.
Modelling of Hydrogen Blending into the UK Natural Gas Network Driven by a Solid Oxide Fuel Cell for Electricity and District Heating System
Aug 2023
Publication
A thorough investigation of the thermodynamics and economic performance of a cogeneration system based on solid oxide fuel cells that provides heat and power to homes has been carried out in this study. Additionally different percentages of green hydrogen have been blended with natural gas to examine the techno-economic performance of the suggested cogeneration system. The energy and exergy efficiency of the system rises steadily as the hydrogen blending percentage rises from 0% to 20% then slightly drops at 50% H2 blending and then rises steadily again until 100% H2 supply. The system’s minimal levelised cost of energy was calculated to be 4.64 £/kWh for 100% H2. Artificial Neural Network (ANN) model was also used to further train a sizable quantity of data that was received from the simulation model. Heat power and levelised cost of energy estimates using the ANN model were found to be extremely accurate with coefficients of determination of 0.99918 0.99999 and 0.99888 respectively.
The Bio Steel Cycle: 7 Steps to Net-Zero CO2 Emissions Steel Production
Nov 2022
Publication
CO2 emissions have been identified as the main driver for climate change with devastating consequences for the global natural environment. The steel industry is responsible for ~7–11% of global CO2 emissions due to high fossil-fuel and energy consumption. The onus is therefore on industry to remedy the environmental damage caused and to decarbonise production. This desk research report explores the Bio Steel Cycle (BiSC) and proposes a seven-step-strategy to overcome the emission challenges within the iron and steel industry. The true levels of combined CO2 emissions from the blast-furnace and basic-oxygen-furnace operation at 4.61 t of CO2 emissions/t of steel produced are calculated in detail. The BiSC includes CO2 capture implementing renewable energy sources (solar wind green H2 ) and plantation for CO2 absorption and provision of biomass. The 7-step-implementation-strategy starts with replacing energy sources develops over process improvement and installation of flue gas carbon capture and concludes with utilising biogas-derived hydrogen as a product from anaerobic digestion of the grown agrifood in the cycle. In the past CO2 emissions have been seemingly underreported and underestimated in the heavy industries and implementing the BiSC using the provided seven-steps-strategy will potentially result in achieving net-zero CO2 emissions in steel manufacturing by 2030.
Advancements in Hydrogen Production, Storage, Distribution and Refuelling for a Sustainable Transport Sector: Hydrogen Fuel Cell Vehicles
Jul 2023
Publication
Hydrogen is considered as a promising fuel in the 21st century due to zero tailpipe CO2 emissions from hydrogen-powered vehicles. The use of hydrogen as fuel in vehicles can play an important role in decarbonising the transport sector and achieving net-zero emissions targets. However there exist several issues related to hydrogen production efficient hydrogen storage system and transport and refuelling infrastructure where the current research is focussing on. This study critically reviews and analyses the recent technological advancements of hydrogen production storage and distribution technologies along with their cost and associated greenhouse gas emissions. This paper also comprehensively discusses the hydrogen refuelling methods identifies issues associated with fast refuelling and explores the control strategies. Additionally it explains various standard protocols in relation to safe and efficient refuelling analyses economic aspects and presents the recent technological advancements related to refuelling infrastructure. This study suggests that the production cost of hydrogen significantly varies from one technology to others. The current hydrogen production cost from fossil sources using the most established technologies were estimated at about $0.8–$3.5/kg H2 depending on the country of production. The underground storage technology exhibited the lowest storage cost followed by compressed hydrogen and liquid hydrogen storage. The levelised cost of the refuelling station was reported to be about $1.5–$8/kg H2 depending on the station's capacity and country. Using portable refuelling stations were identified as a promising option in many countries for small fleet size low-to-medium duty vehicles. Following the current research progresses this paper in the end identifies knowledge gaps and thereby presents future research directions.
Review of Common Hydrogen Storage Tanks and Current Manufacturing Methods for Aluminium Tank Liners
Aug 2023
Publication
With the growing concern about climate issues and the urgent need to reduce carbon emissions hydrogen has attracted increasing attention as a clean and renewable vehicle energy source. However the storage of flammable hydrogen gas is a major challenge and it restricts the commercialisation of fuel cell electric vehicles (FCEVs). This paper provides a comprehensive review of common on-board hydrogen storage tanks possible failure mechanisms and typical manufacturing methods as well as their future development trends. There are generally five types of hydrogen tanks according to different materials used with only Type III (metallic liner wrapped with composite) and Type IV (polymeric liner wrapped with composite) tanks being used for vehicles. The metallic liner of Type III tank is generally made from aluminium alloys and the associated common manufacturing methods such as roll forming deep drawing and ironing and backward extrusion are reviewed and compared. In particular backward extrusion is a method that can produce near net-shape cylindrical liners without the requirement of welding and its tool designs and the microstructural evolution of aluminium alloys during the process are analysed. With the improvement and innovation on extrusion tool designs the extrusion force which is one of the most demanding issues in the process can be reduced significantly. As a result larger liners can be produced using currently available equipment at a lower cost.
Geomechanics of Hydrogen Storage in a Depleted Gas Field
Feb 2024
Publication
We perform a simulation study of hydrogen injection in a depleted gas reservoir to assess the geomechanical impact of hydrogen storage relative to other commonly injected gases (methane CO2). A key finding is that the differences in hydrogen density compressibility viscosity and thermal properties compared to the other gases result in significantly less thermal perturbation at reservoir level. The risks of fault reactivation and wellbore fractures due to thermally-induced stress changes are significantly lower when storing hydrogen compared to results observed in CO2 scenarios. This implies that hydrogen injection and production has a much smaller geomechanical footprint with benefits for operational safety. We also find that use of nitrogen cushion gas ensures efficient deliverability and phase separation in the reservoir. However in this study a large fraction of cushion gas was back-produced in each cycle demonstrating the need for further studies of the surface processing requirements and economic implications.
Investigation of the Suitability of Viper: Blast CFD Software for Hydrogen and Vapor Cloud Explosions
Sep 2023
Publication
Many simplified methods for estimating blast loads from a hydrogen or vapor cloud explosion are unable to take into account the accurate geometry of confining spaces obstacles or landscape that may significantly interact with the blast wave and influence the strength of blast loads. Computation fluid dynamics (CFD) software Viper::Blast which was originally developed for the simulation of the detonation of high explosives is able to quickly and easily model geometry for blast analyses however its use for vapor cloud explosions and deflagrations is not well established. This paper describes the results of an investigation into the suitability of Viper::Blast for use in modeling hydrogen deflagration and detonation events from various experiments in literature. Detonation events have been captured with a high degree of detail and relatively little uncertainty in inputs while deflagration events are significantly more complex. An approach is proposed that may allow for a reasonable bounding of uncertainty potentially leading to an approach to CFD-based Monte Carlo analyses that are able to address a problem’s true geometry while remaining reasonably pragmatic in terms of run-time and computational investment. This will allow further exploration of practical CFD application to inform hydrogen safety in the engineering design assessment and management of energy mobility and transport systems infrastructure and operations.
Modelling Flexibility Requirements in Deep Decarbonisation Scenarios: The Role of Conventional Flexibility and Sector Coupling Options in the European 2050 Energy System
Feb 2024
Publication
Russia’s invasion of Ukraine has reaffirmed the importance of scaling up renewable energy to decarbonise Europe’s economy while rapidly reducing its exposure to foreign fossil fuel suppliers. Therefore the question of sources of flexibility to support a fully decarbonised European energy system is becoming even more critical in light of a renewable-dominated energy system. We developed and used a Pan-European energy system model to systematically assess and quantify sources of flexibility to meet deep decarbonisation targets. The electricity supply sector and electricity-based end-use technologies are crucial in achieving deep decarbonisation. Other low-carbon energy sources like biomethane hydrogen synthetic e-fuels and bioenergy with carbon capture and storage will also play a role. To support a fully decarbonised European energy system by 2050 both temporal and spatial flexibility will be needed. Spatial flexibility achieved through investments in national electricity networks and cross-border interconnections is crucial to support the aggressive roll-out of variable renewable energy sources. Cross-border trade in electricity is expected to increase and in deep decarbonisation scenarios the electricity transmission capacity will be larger than that of natural gas. Hydrogen storage and green hydrogen production will play a key role in providing traditional inter-seasonal flexibility and intraday flexibility will be provided by a combination of electrical energy storage hydrogen-based storage solutions (e.g. liquid H2 and pressurised storage) and hybrid heat pumps. Hydrogen networks and storage will become more critical as we move towards the highest decarbonisation scenario. Still the need for natural gas networks and storage will decrease substantially.
Recent Advances in Combustion Science Related to Hydrogen Safety
Dec 2024
Publication
Hydrogen is a key pillar in the global Net Zero strategy. Rapid scaling up of hydrogen production transport distribution and utilization is expected. This entails that hydrogen which is traditionally an industrial gas will come into proximity of populated urban areas and in some situations handled by the untrained public. To realize all their benefits hydrogen and its technologies must be safely developed and deployed. The specific properties of hydrogen involving wide flammability range low ignition energy and fast flame speed implies that any accidental release of hydrogen can be easily ignited. Comparing with conventional fuels combustion systems fueled by hydrogen are also more prone to flame instability and abnormal combustion. This paper aims to provide a comprehensive review about combustion research related to hydrogen safety. It starts with a brief introduction which includes some overview about risk analysis codes and standards. The core content covers ignition fire explosions and deflagration to detonation transition (DDT). Considering that DDT leads to detonation and that detonation may also be induced directly under special circumstances the subject of detonation is also included for completeness. The review covers laboratory medium and large-scale experiments as well as theoretical analysis and numerical simulation results. While highlights are provided at the end of each section the paper closes with some concluding remarks highlighting the achievements and key knowledge gaps.
Techno-economic Assessments of Electrolyzers for Hydrogen Production
Jul 2025
Publication
This review provides a comprehensive techno-economic assessment of four leading electrolyzer technologies such as the Alkaline Water Electrolyzers (AWE) Proton Exchange Membrane (PEM) electrolyzers Solid Oxide Electrolyzer Cells (SOEC) and Anion Exchange Membrane (AEM) systems for green hydrogen production. Drawing on more than 40 peer-reviewed studies and real-world deployment scenarios the analysis compares performance indicators such as levelised cost of hydrogen (LCOH) capital expenditure (CAPEX) operating expenditure (OPEX) efficiency stack durability and water treatment requirements. AWE is identified as the most cost-effective option for baseload power contexts while PEM offers superior dynamic response and gas purity at a higher cost. SOECs despite their high theoretical efficiency remain limited by thermal cycling and material degradation. AEMs though less mature hold promise for low-cost decentralized hydrogen production. Cost of electricity is more than 64 % of LCOH in all technologies so it is important to match electrolyzers with stable or hybrid renewable energy resources such as geothermal wind-solar or Concentrated Solar Power (CSP). Optimisation methods such as genetic algorithms and GIS-based siting also enhance system performance and economic value. The report also considers regional and policy dimensions of deployment underlining the need for site-specific solutions in the context of local energy portfolios water supply and infrastructure readiness. Recommendations are provided for advancing membrane longevity integrating smart control systems and optimizing techno-economic assessment models. This study is a policy decision-making tool for policymakers investors and researchers who are interested in accelerating the global scale-up of green hydrogen using contextrelevant and economically viable electrolyzer technologies.
Underground Hydrogen Storage: A UK Perspective
Oct 2023
Publication
Hydrogen is anticipated to play a key role in global decarbonization and within the UK’s pathway to achieving net zero targets. However as the production of hydrogen expands in line with government strategies a key concern is where this hydrogen will be stored for later use. This study assesses the different large-scale storage options in geological structures available to the UK and addresses the surrounding uncertainties moving towards establishing a hydrogen economy. Currently salt caverns look to be the most favourable option considering their proven experience in the storage of hydrogen especially high purity hydrogen natural sealing properties low cushion gas requirement and high charge and discharge rates. However their geographical availability within the UK can act as a major constraint. Additionally a substantial increase in the number of new caverns will be necessary to meet the UK’s storage demand. Salt caverns have greater applicability as a good short-term storage solution however storage in porous media such as depleted hydrocarbon reservoirs and saline aquifers can be seen as a long-term and strategic solution to meet energy demand and achieve energy security. Porous media storage solutions are estimated to have capacities which far exceed projected storage demand. Depleted fields have generally been well explored prior to hydrocarbon extraction. Although many saline aquifers are available offshore UK geological characterizations are still required to identify the right candidates for hydrogen storage. Currently the advantages of depleted gas reservoirs over saline aquifers make them the favoured option after salt caverns.
No more items...