United Kingdom
Opportunities and Challenges of Hydrogen Ports: An Empirical Study in Australia and Japan
Jul 2024
Publication
This paper investigated the opportunities and challenges of integrating ports into hydrogen (H2 ) supply chains in the context of Australia and Japan because they are leading countries in the field and are potential leaders in the upcoming large-scale H2 trade. Qualitative interviews were conducted in the two countries to identify opportunities for H2 ports necessary infrastructure and facilities key factors for operations and challenges associated with the ports’ development followed by an online survey investigating the readiness levels of H2 export and import ports. The findings reveal that there are significant opportunities for both countries’ H2 ports and their respective regions which encompass business transition processes and decarbonisation. However the ports face challenges in areas including infrastructure training standards and social licence and the sufficiency and readiness levels of port infrastructure and other critical factors are low. Recommendations were proposed to address the challenges and barriers encountered by H2 ports. To optimise logistics operations within H2 ports and facilitate effective integration of H2 applications this paper developed a user-oriented working process framework to provide guidance to ports seeking to engage in the H2 economy. Its findings and recommendations contribute to filling the existing knowledge gap pertaining to H2 ports.
Emission Reduction and Cost-benefit Analysis of the Use of Ammonia and Green Hydrogen as Fuel for Marine Applications
Dec 2023
Publication
Increasingly stringent emission standards have led shippers and port operators to consider alternative energy sources which can reduce emissions while minimizing capital investment. It is essential to understand whether there is a certain economic investment gap for alternative energy. The present work mainly focuses on the simulation study of ships using ammonia and hydrogen fuels arriving at Guangzhou Port to investigate the emission advantages and cost-benefit analysis of ammonia and hydrogen as alternative fuels. By collecting actual data and fuel consumption emissions of ships arriving at Guangzhou Port the present study calculated the pollutant emissions and cost of ammonia and hydrogen fuels substitution. As expected it is shown that with the increase of NH3 in fuel mixed fuels will effectively reduce CO and CO2 emissions. Compared to conventional fuel the injection of NH3 increases the NOx emission. However the cost savings of ammonia fuel for CO2 SOx and PM10 reduction are higher than that for NOx. In terms of pollutants ammonia is less expensive than conventional fuels when applied to the Guangzhou Port. However the cost of fuel supply is still higher than conventional energy as ammonia has not yet formed a complete fuel supply and storage system for ships. On the other hand hydrogen is quite expensive to store and transport resulting in higher overall costs than ammonia and conventional fuels even if no pollutants are produced. At present conventional fuels still have advantage in terms of cost. With the promotion of ammonia fuel technology and application the cost of supply will be reduced. It is predicted that by 2035 ammonia will not only have emission reduction benefits but also will have a lower overall economic cost than conventional fuels. Hydrogen energy will need longer development and technological breakthroughs due to the limitation of storage conditions.
Resilience Assessment of Offshore Wind-to-Hydrogen Systems
Jul 2024
Publication
Low-cost green hydrogen production will be key in reaching net zero carbon emissions by 2050. Green hydrogen can be produced by electrolysis using renewable energy including wind energy. However the configuration of offshore wind-to-hydrogen systems is not yet standardised. For example electrolysis can take place onshore or offshore. This work presents a framework to assess and quantify which configuration is more resilient so that security of hydrogen supply is incorporated in strategic decisions with the following key findings. First resilience should be assessed according to hydrogen supply rather than hydrogen production. This allows the framework to be applicable for all identified system configurations. Second resilience can be quantified according to the quantity ratio and lost revenue of the unsupplied hydrogen.
Hydrogen UK Supply Chain Strategic Assessment
Sep 2024
Publication
Hydrogen offers the UK a unique opportunity to deliver on our Net Zero ambitions enabling deep decarbonisation of the parts of the energy system that are challenging to electrify balancing the energy system by providing large scale long duration energy storage and reducing pressure on electricity infrastructure. The UK Government in recognition of the centrality of hydrogen to the future energy system has set a 10GW hydrogen production ambition to be achieved by 2030. This ambition and its supporting policies such as the Hydrogen Business Model the Low Carbon Hydrogen Standard and the Hydrogen Transport and Storage Business Models will unlock private sector investment and kick-start the UK’s hydrogen activity. Encouragingly the UK has a positive track record of deploying low carbon technologies. The combination of the UK’s world leading policies and incentive schemes alongside a vibrant Research Development and Innovation (RD&I) and engineering environment has enabled rapid deployment of technologies such as offshore wind and electric vehicles. Yet despite being world leaders in deployment early opportunities for regional supply chain growth and job creation were not fully realised and taken advantage of from inception. The hydrogen sector is therefore at a tipping point. To capitalise on the economic opportunity hydrogen offers the UK must learn from prior technology deployments and build a strong domestic hydrogen supply chain in parallel to championing deployment.
Hydrogen is unique amongst low carbon technologies. It represents a significant economic opportunity with future hydrogen markets estimated by the Hydrogen Innovation Initiative to be worth $8tn and hydrogen technology markets estimated to reach $1tn by 20501 but crucially it is also still a nascent market. Unlike many other low carbon technologies where supply chains are already well established hydrogen supply chains are embryonic meaning that the UK has an opportunity to anchor these supply chains here and establish itself as a global leader.
The UK is well placed to capitalise on this opportunity with favourable geography and geology that enables us to produce and store hydrogen cost effectively coupled with a strong pipeline of hydrogen projects a stable policy environment that is attractive to investors and a wealth of transferable skills and expertise from the oil and gas industry.
We must ensure that alongside our focus on deployment we are also investing in technology and supply chains. Not only will this deliver exponential economic benefits from the projects supported by Government but it will also enable us to tackle increasing global supply chain constraints. Hydrogen UK estimated in its Economic Impact Assessment that hydrogen could deliver 30000 jobs annually and £7bn of GVA by 2030
It is important to be targeted and strategic in our investment and activities and recognise that hydrogen represents a wide range of technologies and the UK should not expect to lead in every area. Hydrogen UK with the support of the Hydrogen Delivery Council has undertaken analysis of the hydrogen value chain building on UK strengths and identifying the high value items that can deliver significant impact and benefit to the UK. We have also conducted widespread engagement with project developers to identify the barriers to utilising UK technology in projects and with technology developers to identify the challenges and barriers to investing and siting development and manufacturing in the UK.
The report can be found on Hydrogen UK's website.
Hydrogen is unique amongst low carbon technologies. It represents a significant economic opportunity with future hydrogen markets estimated by the Hydrogen Innovation Initiative to be worth $8tn and hydrogen technology markets estimated to reach $1tn by 20501 but crucially it is also still a nascent market. Unlike many other low carbon technologies where supply chains are already well established hydrogen supply chains are embryonic meaning that the UK has an opportunity to anchor these supply chains here and establish itself as a global leader.
The UK is well placed to capitalise on this opportunity with favourable geography and geology that enables us to produce and store hydrogen cost effectively coupled with a strong pipeline of hydrogen projects a stable policy environment that is attractive to investors and a wealth of transferable skills and expertise from the oil and gas industry.
We must ensure that alongside our focus on deployment we are also investing in technology and supply chains. Not only will this deliver exponential economic benefits from the projects supported by Government but it will also enable us to tackle increasing global supply chain constraints. Hydrogen UK estimated in its Economic Impact Assessment that hydrogen could deliver 30000 jobs annually and £7bn of GVA by 2030
It is important to be targeted and strategic in our investment and activities and recognise that hydrogen represents a wide range of technologies and the UK should not expect to lead in every area. Hydrogen UK with the support of the Hydrogen Delivery Council has undertaken analysis of the hydrogen value chain building on UK strengths and identifying the high value items that can deliver significant impact and benefit to the UK. We have also conducted widespread engagement with project developers to identify the barriers to utilising UK technology in projects and with technology developers to identify the challenges and barriers to investing and siting development and manufacturing in the UK.
The report can be found on Hydrogen UK's website.
Economic Impact Assessment for the Hydrogen Sector to 2030
Apr 2024
Publication
Hydrogen is one of the key solutions to decarbonising the UK economy along with other carbon abatement solutions such as electrification CCUS biofuels and energy efficiency. It provides a low carbon alternative to fossil fuels that has many of the same desirable features such as burning with a high temperature flame without producing carbon emissions during combustion. Hydrogen will be particularly valuable in hard-to-decarbonise sectors that have few cost-effective alternatives including elements of industry heavy transport and dispatchable power generation. However it’s use could be much more widespread depending on how costs preferences and policy for different low carbon solutions develop. The Government’s Hydrogen Strategy estimates that based on analysis from the Climate Change Committee (CCC) in 2050 between 20% and 35% of the UK’s final energy demand could be met with low carbon hydrogen1 . While hydrogen provides a promising solution to reducing emissions current deployment of low carbon hydrogen is low with almost all hydrogen in the UK produced from unabated fossil fuels resulting in high emissions. In the UK hydrogen production must meet the Low Carbon Hydrogen Standard (LCHS) to access government support. This is currently set at 20g CO2 e/MJ(LHV) and will ensure that future deployment will deliver significant emissions reductions when switching from fossil fuels2. The period to 2030 will be a critical time for the UK to seize the economic opportunity presented by low carbon hydrogen sector. Internationally increasing attention has been placed on hydrogen as a solution to global emissions. In the USA the Inflation Reduction Act (IRA) has provided fixed rate tax credits of up to $3/kg (£2.4/kgII) for clean hydrogen production3. Closer to home the EU is targeting 10 million tonnes of domestic electrolytic production and an additional 10 million tonnes of electrolytic hydrogen imports by 20304. This will be achieved through a variety of policy levers including an auction for fixed price subsidy support for electrolytic production with a ceiling of €4.5/kg5 (£3.84/kgIII). In the UK Government have set an ambitious target of up to 10 GW of low carbon hydrogen production by 2030 with at least half of this from electrolytic sources6. This will be supported by the Hydrogen Production Business Model (HPBM) a two-way variable CfD which could potentially provide hydrogen for a price as low as the natural gas price7 . As global supply chains investment and skills are in international competition the UK must continue its ambitious hydrogen aspirations to ensure the decarbonisation and economic opportunity presented by low carbon hydrogen is captured. This study estimates the economic impact of the low carbon hydrogen sector in the UK by 2030. The impact is assessed by estimating the costs of hydrogen deployment and applying employment and GVA multipliers to these costs based on historic economic activity. These estimates are broken down by different forms of low carbon hydrogen production and end use as well as the enabling infrastructure required to connect production and demand namely hydrogen networks and storage. Both the employment and GVA are estimated for each of these value chain elements for every year between 2024 and 2030. Employment and economic growth from the hydrogen sector will be created across the UK with many benefits arising in regions that have faced historic underinvestment such as the industrial clusters and Scotland. Beyond the high-level economic benefits estimated in this study the hydrogen sector creates an opportunity for the hundreds of thousands oil and gas sector jobs in the UK to transition to a low carbon alternative.
This report can be found on Hydrogen UK's website.
This report can be found on Hydrogen UK's website.
CFD Analysis of Delayed Ignition Hydrogen Releases from a Train Inside a Tunnel
Sep 2023
Publication
In the present work we present the results of numerical simulations involving the dispersion and combustion of a hydrogen cloud released in an empty tunnel. The simulations were conducted with the use of ADREA-HF CFD code and the results are compared with measurements from experiments conducted by HSE in a tunnel with the exact same geometry. The length of the tunnel is equal to 70 m and the maximum height from the floor is equal to 3.25 m. Hydrogen release is considered to occur from a train containing pressurized hydrogen stored at 580 bars. The release diameter is equal to 4.7 mm and the release direction is upwards. Initially dispersion simulation was performed in order to define the initial conditions for the deflagration simulations. The effect of the initial wind speed and the effect of the ignition delay time were investigated. An extensive grid sensitivity study was conducted in order to achieve grid independent results. The CFD model takes into account the flame instabilities that are developed as the flame propagates inside the tunnel and turbulence that exists in front of the flame front. Pressure predictions are compared against experimental measurements revealing a very good performance of the CFD model.
The Regulatory Framework of Geological Storage of Hydrogen in Salt Caverns
Sep 2023
Publication
A growing share of renewable energy production in the energy supply systems is key to reaching the European political goal of zero CO2 emission in 2050 highlighted in the green deal. Linked to the irregular production of solar and wind energies which have the highest potential for development in Europe massive energy storage solutions are needed as energy buffers. The European project HyPSTER [1] (Hydrogen Pilot STorage for large Ecosystem Replication) granted by the Clean Hydrogen Partnership addresses this topic by demonstrating a cyclic test in an experimental salt cavern filled with hydrogen up to 3 tons using hydrogen that is produced onsite by a 1 MW electrolyser. One specific objective of the project is the assessment of the risks and environmental impacts of cyclic hydrogen storage in salt caverns and providing guidelines for safety regulations and standards. This paper highlights the first outcome of the task WP5.5 of the HyPSTER project addressing the regulatory and normative frameworks for the safety of hydrogen storage in salt caverns from some selected European Countries which is dedicated to defining recommendations for promoting the safe development of this industry within Europe.
Outlook and Challenges for Hydrogen Storage in Nanoporous Materials
Feb 2016
Publication
Darren P. Broom,
Colin Webb,
Katherine Hurst,
P. A. Parilla,
Thomas Gennett,
C. M. Brown,
Renju Zacharia,
E. Tylianakis,
E. Klontzas,
George E. Froudakis,
Th. A. Steriotis,
Pantelis N. Trikalitis,
Donald L. Anton,
B. Hardy,
David A. Tamburello,
Claudio Corgnale,
B. A. van Hassel,
D. Cossement,
Richard Chahine and
Michael Hirscher
Considerable progress has been made recently in the use of nanoporous materials for hydrogen storage. In this article the current status of the field and future challenges are discussed ranging from important open fundamental questions such as the density and volume of the adsorbed phase and its relationship to overall storage capacity to the development of new functional materials and complete storage system design. With regard to fundamentals the use of neutron scattering to study adsorbed H2 suitable adsorption isotherm equations and the accurate computational modelling and simulation of H2 adsorption are discussed. The new materials covered include flexible metal–organic frameworks core–shell materials and porous organic cage compounds. The article concludes with a discussion of the experimental investigation of real adsorptive hydrogen storage tanks the improvement in the thermal conductivity of storage beds and new storage system concepts and designs.
Oxygen-rich Microporous Carbons with Exceptional Hydrogen Storage Capacity
Oct 2021
Publication
Porous carbons have been extensively investigated for hydrogen storage but to date appear to have an upper limit to their storage capacity. Here in an effort to circumvent this upper limit we explore the potential of oxygen-rich activated carbons. We describe cellulose acetate-derived carbons that combine high surface area (3800 m2 g−1 ) and pore volume (1.8 cm3 g−1 ) that arise almost entirely (>90%) from micropores with an oxygen-rich nature. The carbons exhibit enhanced gravimetric hydrogen uptake (8.1 wt% total and 7.0 wt% excess) at −196 °C and 20 bar rising to a total uptake of 8.9 wt% at 30 bar and exceptional volumetric uptake of 44 g l −1 at 20 bar and 48 g l −1 at 30 bar. At room temperature they store up to 0.8 wt% (excess) and 1.2 wt% (total) hydrogen at only 30 bar and their isosteric heat of hydrogen adsorption is above 10 kJ mol−1 .
UK Hydrogen Roadmap: Financial and Strategic Insights into Oil and Gas Industry’s Transition
Dec 2024
Publication
Inspired by the announcement of the new Hydrogen Strategy for the UK in 2021 this study aimed to determine how the oil and gas industry responds and adapts to the changes. This paper analyses qualitative and quantitative data from the companies’ annual and energy reports. Four oil and gas companies involved in hydrogen projects in the UK were selected as case studies. The responses from the companies were collected using the content analysis research strategy in 2019–2021. A steady increase was observed based on the code frequency reflecting the increasing discussions and actions the companies took regarding this hydrogen pathway. Although only one company appears to be at the forefront of this transition progress with a score of almost 90% based on the strategy management analysis other companies continue to demonstrate their commitment to supporting the national target.
Enabling Large-scale Enhanced Hydrogen Production in Deep Underground Coal Gasification in the Context of a Hydrogen Economy
Dec 2024
Publication
Underground coal gasification (UCG) is an emerging clean energy technology with significant potential for enhanced hydrogen production especially when coupled with water injection. Previous lab-scale studies have explored this potential but the mechanisms driving water-assisted hydrogen enhancement in large-scale deep UCG settings remain unclear. This study addresses this gap using numerical simulations of a large-scale deep coal model designed for hydrogen-oriented UCG. We investigated single-point and multipoint water injection stra tegies to optimize hydrogen production. Additionally we developed a retractable water injection technique to ensure sustained hydrogen output and effective cavity control. Our results indicate that the water–gas shift re action is crucial for increasing hydrogen production. Multipoint injection has been proven to be more effective than single-point injection increasing hydrogen production by 11% with an equal amount of steam. The introduction of retractable injection allows for continuous and efficient hydrogen generation with daily hydrogen production rates of approximately five times that of a conventional injection scheme and an increase in cumulative hydrogen production of approximately 105% over the same time period. Importantly the mul tipoint injection method also helped limit vertical cavity growth mitigating the risk of aquifer contamination. These findings support the potential of UCG as a low-carbon energy source in the transition to a hydrogen economy
Novel Model Reference-based Hybrid Decoupling Control of Multiport-isolated DC-DC Converter for Hydrogen Energy Storage System Integration
Dec 2024
Publication
Hydrogen energy storage systems (HESS) are increasingly recognised for their role in sustainable energy ap plications though their performance depends on efficient power electronic converter (PEC) interfaces. In this paper a multiport-isolated DC-DC converter characterised by enhanced power density reduced component count and minimal conversion stages is implemented for HESS applications. However the high-frequency multiwinding transformer in this converter introduces cross-coupling effects complicating control and result ing in large power deviations from nominal values due to step changes on other ports which adversely impact system performance. To address this issue a novel model reference-based decoupling control technique is pro posed to minimise the error between the actual plant output and an ideal decoupling reference model which represents the cross-coupling term. This model reference-based decoupling control is further extended into a hybrid decoupling control technique by integrating a decoupling matrix achieving more robust decoupling across a wider operating region. The hybrid decoupling technique mathematically ensures an improved control performance with the cross-coupling term minimised through a proportional-derivative controller. The proposed hybrid decoupling controller achieves a maximum power deviation.
Hydrogen Supply Chain for Future Hydrogen-fuelled Railway in the UK: Transport Sector Focused
Aug 2024
Publication
Though being attractive on railway decarbonisation for regional lines excessive cost caused by immature hydrogen supply chain is one of the significant hurdles for promoting hydrogen traction to rolling stocks. Therefore we conduct bespoke research on the UK’s hydrogen supply chain for railway concentrating on hydrogen transportation. Firstly a map for the planned hydrogen production plants and potential hydrogen lines is developed with the location capacity and usage. A spatially explicit model for the hydrogen supply chain is then introduced which optimises the existing grid-based methodology on accuracy and applicability. Compressed hydrogen at three pressures and liquid hydrogen are considered as the mediums incorporating by road and rail transport. Furthermore three scenarios for hydrogen rail penetration are simulated respectively to discuss the levelised cost and the most suitable national transport network. The results show that the developed model with mix-integer linear programming (MILP) can well design the UK’s hydrogen distribution for railway traction. Moreover the hydrogen transport medium and vehicle should adjust to suit for different era where the penetration of hydrogen traction varies. The levelised cost of hydrogen (LCOH) decreases from 6.13 £/kg to 5.13 £/kg on average from the conservative scenario to the radical scenario. Applying different transport combinations according to the specific situation can satisfy the demand while reducing cost for multi-supplier and multitargeting hydrogen transport.
An Assessment of Decarbonisation Pathways for Intercontinental Deep-sea Shipping Using Power-to-X Fuels
Aug 2024
Publication
Shipping corridors act as the arteries of the global economy. The maritime shipping sector is also a major source of greenhouse gas emissions accounting for 2.9% of the global total. The international nature of the shipping sector combined with issues surrounding the use of battery technology means that these emissions are considered difficult to eliminate. This work explores the transition to renewable fuels by examining the use of electrofuels (in the form of liquid hydrogen methane methanol ammonia and Fischer-Tropsch fuel) to decarbonise large container ships from a technical economic and environmental perspective. For an equivalent range to current fossil fuel vessels the cargo capacity of vessels powered by electrofuels decreases by between 3% and 16% depending on the fuel of choice due to the lower energy density compared with conventional marine fuels. If vessel operators are willing to sacrifice range cargo space can be preserved by downsizing onboard energy storage which necessitates more frequent refuelling. For a realistic green hydrogen cost of €3.5/kg (10.5 €c/kWh) in 2030 the use of electrofuels in the shipping sector results in an increase in the total cost of ownership of between 124% and 731% with liquid hydrogen in an internal combustion engine being the most expensive and methanol in an internal combustion engine resulting in the lowest cost increase. Despite this we find that the increased transportation costs of some consumer goods to be relatively small adding for example less than €3.27 to the cost of a laptop. In general fuels which do not require cryogenic storage and can be used in internal combustion engines result in the lowest cost increases. For policymakers reducing the environmental impact of the shipping sector is a key priority. The use of liquid hydrogen which results in the largest cost increase offers a 70% reduction in GHG emissions for an electricity carbon intensity of 80 gCO2e/ kWh which is the greatest reduction of all fuels assessed in this work. A minimum carbon price of €400/tCO2 is required to allow these fuels to reach parity with conventional shipping operations. To meet European Union emissions reductions targets electricity with an emissions intensity below 40 gCO2e/kWh is required which suggests that for electrofuels to be truly sustainable direct connection with a source of renewable electricity is required.
Techno-economic Assessment of Liquid Carrier Methods for Intercontinental Shipping of Hydrogen: A Case Study
Nov 2024
Publication
As global economies seek to transition to low-carbon energy systems to achieve net zero targets hydrogen has potential to play a key role to decarbonise sectors that are unsuited to electrification or where long-term energy storage is required. Hydrogen can also assist in enabling decentralized renewable power generation to satisfy higher electricity demand to match the scale-up of electrified technologies. In this context suitable transport storage and distribution networks will be essential to connect hydrogen generation and utilisation sites. This paper presents a techno-economic impact evaluation of international marine hydrogen transportation between Canada and the Netherlands comparing liquid hydrogen ammonia and a dibenzyl toluene liquid organic hydrogen carrier (LOHC) as potential transport vectors. Economic costs energy consumption and losses in each phase of the transportation system were analysed for each vector. Based on the devised scenarios our model suggests levelised costs of hydrogen of 6.35–9.49 $2022/kgH2 and pathway efficiencies of 55.6–71.9%. While liquid hydrogen was identified as the most cost-competitive carrier sensitivity analysis revealed a merit order for system optimisation strategies based upon which LOHC could outperform both liquid hydrogen and ammonia in the future.
Which Offers Greater Techno-Economic Potential: Oil or Hydrogen Production from Light Oil Reservoirs?
Jun 2025
Publication
The global emphasis on clean energy has increased interest in producing hydrogen from petroleum reservoirs through in situ combustion-based processes. While field practices have demonstrated the feasibility of co-producing hydrogen and oil the question of which offers greater economic potential oil or hydrogen remains central to ongoing discussions especially as researchers explore ways to produce hydrogen exclusively from petroleum reservoirs. This study presents the first integrated techno-economic model comparing oil and hydrogen production under varying injection strategies using CMG STARS for reservoir simulations and GoldSim for economic modeling. Key technical factors including injection compositions well configurations reservoir heterogeneity and formation damage (issues not addressed in previous studies) were analyzed for their impact on hydrogen yield and profitability. The results indicate that CO2-enriched injection strategies enhance hydrogen production but are economically constrained by the high costs of CO2 procurement and recycling. In contrast air injection although less efficient in hydrogen yield provides a more cost-effective alternative. Despite the technological promise of hydrogen oil revenue remains the dominant economic driver with hydrogen co-production facing significant economic challenges unless supported by policy incentives or advancements in gas lifting separation and storage technologies. This study highlights the economic trade-offs and strategic considerations crucial for integrating hydrogen production into conventional petroleum extraction offering valuable insights for optimizing hydrogen co-production in the context of a sustainable energy transition. Additionally while the present work focuses on oil reservoirs future research should extend the approach to natural gas and gas condensate reservoirs which may offer more favorable conditions for hydrogen generation.
Numerical Investigation of Premixed Hydrogen Combustion in Dual-fuel Marine Engines at High Load
Jun 2025
Publication
Zero-emission fuels are expected to drive the maritime sector decarbonisation with hydrogen emerging as a long-term solution. This study aims to investigate by using CFD modelling a hydrogen fuelled marine dual-fuel engine to identify operating settings ranges for different hydrogen energy fractions (HEF) as well as parametrically optimise the diesel fuel injection timing and temperature at inlet valve closing (IVC). A large marine four-stroke engine with nominal power of 10.5 MW at 500 rev/m is considered assuming operation at 90 % load and hydrogen injection in the cylinders intake ports. CFD models are developed for several operating scenarios in both diesel and dual-fuel modes. The models are validated against measured data for the engine diesel mode and literature data for a hydrogen-fuelled light-duty engine. A convergence study is conducted to select the grid compromising between computational effort and accuracy. Parametric runs for 20 % 40 % and 60 % HEF with different IVC temperature and diesel start of injection are modelled to quantify the engine performance emissions and combustion characteristics. A single parameter optimisation is conducted to determine the most effective pilot diesel injection timings. The results reveal the IVC temperature range for stable hydrogen combustion to avoid incomplete combustion at low IVC temperature and knocking above 360 K. The proposed settings lead to higher peak heat release rate and in-cylinder pressure compared to the diesel mode without exceeding the permissible in-cylinder pressure rise limits for 60 % HEF. However NOx emissions increase to 12.9 g/kWh in the dual-fuel mode. The optimal start of injection (SOI) for the diesel fuel in the case of 60 % HEF is found 8 ◦CA BTDC resulting in an indicated thermal efficiency of 43.2 % and stable combustion. Advancing SOI beyond the optimal value results in incomplete combustion. This is the first study on hydrogen use in large marine four-stroke engines providing insights for the engine design and operation and as such it contributes to the maritime industry decarbonisation efforts.
Hydrogen for Long-haul Road Freight: A Realist Retroductive Assessment
Jun 2025
Publication
This study focuses on arguably the most contentious choice of energy supply option available for decarbonizing general-purpose long-haul road freight: hydrogen. For operators infrastructure providers energy providers and vehicle manufacturers to make the investments necessary to enable this transition it is essential to evaluate the feasibility of individual energy supply choices. A literature review is conducted identifying ten requirements for an energy supply choice to be feasible which are then translated into “what would need to be true” conditions for hydrogen to meet these requirements. Considering these evidence from literature is used to assess the likelihood of each condition becoming true within the lifespan of a vehicle bought today. It is concluded that it is unlikely that hydrogen will become feasible in this time frame meaning it can be disregarded as a current vehicle purchase consideration as it will not undermine the competitiveness or resale value of a vehicle using a different energy source bought today. There are two principal innovations in the study approach: the consideration of socio-technical and political as well as techno-economic factors; and the application of realist retroductive option assessment. While not necessary to address the research question regarding hydrogen a realist retroductive assessment is also presented for other prominent low carbon energy source options: battery electric electric road systems (ERS) and biofuels; and the conditions under which these options could be feasible are considered.
Carbon Dioxide Removal Potential from Decentralised Bioenergy with Carbon Capture and Storage (BECCS) and the Relevance of Operation Choices
Mar 2022
Publication
Bioenergy with carbon capture and storage (BECCS) technology is expected to support net-zero targets by supplying low carbon energy while providing carbon dioxide removal (CDR). BECCS is estimated to deliver 20 to 70 MtCO2 annual negative emissions by 2050 in the UK despite there are currently no BECCS operating facility. This research is modelling and demonstrating the flexibility scalability and attainable immediate application of BECCS. The CDR potential for two out of three BECCS pathways considered by the Intergovernmental Panel on Climate Change (IPCC) scenarios were quantified (i) modular-scale CHP process with post-combustion CCS utilising wheat straw and (ii) hydrogen production in a small-scale gasifier with pre-combustion CCS utilising locally sourced waste wood. Process modelling and lifecycle assessment were used including a whole supply chain analysis. The investigated BECCS pathways could annually remove between − 0.8 and − 1.4 tCO2e tbiomass− 1 depending on operational decisions. Using all the available wheat straw and waste wood in the UK a joint CDR capacity for both systems could reach about 23% of the UK’s CDR minimum target set for BECCS. Policy frameworks prioritising carbon efficiencies can shape those operational decisions and strongly impact on the overall energy and CDR performance of a BECCS system but not necessarily maximising the trade-offs between biomass use energy performance and CDR. A combination of different BECCS pathways will be necessary to reach net-zero targets. Decentralised BECCS deployment could support flexible approaches allowing to maximise positive system trade-offs enable regional biomass utilisation and provide local energy supply to remote areas.
Operational Implications of Transporting Hydrogen via a High Pressure Gas Network
Feb 2025
Publication
Transporting hydrogen gas has long been identified as one of the key issues to scaling up the hydrogen economy. Among various means of transportation many countries are considering using the existing natural gas pipeline networks for hydrogen transmission. This paper examines the implications of transporting hydrogen on the operational metrics of the high-pressure natural gas networks. A model of the GB high-pressure gas network was developed which has a high granularity with 294 nodes 356 pipes and 24 compressor stations. The model was developed using Synergi Gas a hydraulic pipeline network simulation software. By performing unsteady-state analysis pressure levels linepack levels and compressor energy consumption were simulated with 10-minute time steps. Additionally component tracing analysis was utilised to examine the variations in gas composition when hydrogen is injected into the gas network. Five scenarios were developed: one benchmark scenario representing the network transporting natural gas in 2018; one scenario where demand and supply levels are projected for 2035 but no hydrogen was transported by the network; two hydrogen injection scenarios in 2035 considering different geographical locations for hydrogen injection into the gas network; and lastly one pure hydrogen transmission scenario for 2050. The studies found that the GB’s high-pressure gas network could accept 20% volumetric hydrogen injection without significantly impacting network operation. Pressure levels and compressor energy consumption remain within the operational range. The geographical distribution of hydrogen injection points would highly affect the percentage of hydrogen across the network. Pure hydrogen transportation will cause significant variations in network linepack and increase compressor energy consumption significantly compared to other case studies. The findings signal that operating a network with pure hydrogen is possible only when it is prepared for these changes.
No more items...