United Kingdom
Hydrogen UK Supply Chains Report Executive Summary 2023
Dec 2023
Publication
The strategic importance of hydrogen has gained significant recognition as nations across the world have committed to achieving net zero. Here in the UK there’s a widespread consensus that hydrogen is critical to achieving our net zero target. This commitment culminated in the launch of the UK’s first Hydrogen Strategy and has been reaffirmed by Chris Skidmore’s Independent Review of Net Zero. Both these documents highlight hydrogen’s importance not only to net zero but growing the UK industrial base1 . Analysis by Hydrogen UK estimates up to 20000 jobs could be created by 2030 contributing £26bn in cumulative GVA2. These economic benefits flow from all areas of the value chain ranging from production storage network development and off-taker markets. However with large scale projects still to take final investment decisions current volumes of low-carbon hydrogen produced and consumed fall well below the government’s 2030 ambitions. Encouragingly the UK has a positive track record of deploying low carbon technologies. The combination of the UK’s world leading policies and incentive schemes alongside our vibrant RD&I and engineering environment has enabled rapid deployment of technologies like offshore wind and electric vehicles. Yet despite being world leaders in deployment early opportunities for regional supply chain growth and job creation were not fully realised and taken advantage of from inception. The hydrogen sector is therefore at a tipping point. To capitalise on the economic opportunity hydrogen offers the UK must learn from prior technology deployments and build a strong domestic hydrogen supply chain in parallel to championing deployment. This report delivers on a recommendation from the Hydrogen Champion Report which encouraged industry to create an industry led supply chain strategy3 . With Hydrogen UK steering the work on behalf of the UK hydrogen industry this study focusses on identifying the actions needed to mature a local supply chain that can support the initial deployment of hydrogen technologies across the value chain. The report is segmented into two sections. The first section outlines a voluntary ambition for local content from industry alongside the potential intervention mechanisms needed to achieve the ambition. The second section exploresthe challenges companies across the hydrogen value chain face in maximising UK supply chain opportunities.
This report can be found on Hydrogen UK's website.
This report can be found on Hydrogen UK's website.
Hydrogen for a Net-Zero Carbon World
Mar 2024
Publication
The concept of the “hydrogen economy” was first coined by Prof. John Bockris during a talk he gave in 1970 at the General Motors Technical Center. Bockris’s talk introduced the vision of a world economy in which energy was carried in the form of hydrogen resulting in zero emissions at its point of use—be that as a chemical feedstock or as a fuel for industrial or domestic heating for power generation in a gas turbine or in a fuel cell “engine” for transport applications. Despite several waves of significant interest and investment however due to the relative costs and technological immaturity of hydrogen technologies the hydrogen economy was never delivered at scale nor was there sufficient motivation to create the technology needed to overcome these hurdles.<br/>But today as the world seeks to transition to a truly net-zero carbon economy hydrogen has returned to the fore as a key energy carrier—not as a hydrogen economy but as “hydrogen in the economy” synergistically working alongside low- to zero-carbon electricity to decarbonize those parts of the economy that are too expensive or too difficult to be directly decarbonized with electricity. These include:<br/>♦ Transport applications in which large amounts of energy are needed on the vehicle such as planes trains shipping long-distance trucks and heavy-duty vehicles;<br/>♦ Industrial applications such as steelmaking and cement manufacturing;<br/>♦ Long-term energy storage for days to weeks at a time;<br/>♦ The production of green chemicals such as green ammonia and green methanol;<br/>♦ Industrial (and potentially residential) heating.
Optimal Hydrogen Infrastructure Planning for Heat Decarbonisation
Feb 2024
Publication
Energy decarbonisation is essential to achieve Net-Zero emissions goal by 2050. Consequently investments in alternative low-carbon pathways and energy carriers for the heat sector are required. In this study we propose an optimisation framework for the transition of heat sector in Great Britain focusing on hydrogen infrastructure decisions. A spatially-explicit mixed-integer linear programming (MILP) evolution model is developed to minimise the total system’s cost considering investment and operational decisions. The optimisation framework incorporates both long-term planning horizon of 5-year steps from 2035 to 2050 and typical days with hourly resolution. Aiming to alleviate the computational effort of such multiscale model two hierarchical solution approaches are suggested that result in computational time reduction. From the optimisation results it is shown that the installation of gas reforming hydrogen production technologies with CCS and biomass gasification with CCS can provide a cost-effective strategy achieving decarbonisation goal. What-if analysis is conducted to demonstrate further insights for future hydrogen infrastructure investments. Results indicate that as cost is highly dependent on natural gas price Water Electrolysis capacity increases significantly when gas price rises. Moreover the introduction of carbon tax policy can lead to lower CO2 net emissions.
OIES Podcast - Aviation Fuels and the Potential of Hydrogen
Feb 2024
Publication
In the latest OIES podcast from the Hydrogen Programme James Henderson talks to Abdurahman Alsulaiman about his latest paper entitled “Navigating Turbulence: Hydrogen’s Role in the Decarbonisation of the Aviation Sector.” In the podcast we discuss the current balance of fuels in the aviation sector the importance of increasing efficiency of aero-engines and the impact of increasing passenger miles travelled. The podcast then considers different decarbonisation options for the sector focussing on a change of engine technology to allow the use of alternative fuels such as hydrogen or electricity but also looking at the potential for hydrogen to play an important role in the development of Sustainable Aviation Fuels (SAFs) for use with current engine technology. We also look at Low Carbon Aviation Fuels which are essentially existing fuels derived from a significantly decarbonised supply chain and assess whether they have an important role to play as the aviation sector targets a net zero outcome.
The podcast can be found on their website.
The podcast can be found on their website.
Techno-economic Assessment of Pressure Swing Adsorption Tail Gas Decarbonisation for Blue Hydrogen Production
Jun 2025
Publication
Steam methane reforming (SMR) is a leading technology for hydrogen production. However this technology is still carbon-intensive since in current SMR units the PSA tail gas containing H2 CO and CH4 is burned at the reformer with air and exits the stack at a CO2 purity of less than 5% which is not feasible to capture. In this paper we aim to either harness the energy content of this gas to generate power in a solid oxide fuel cell (SOFC) or burn it via chemical looping combustion (CLC) or oxy-combustion process to produce off-gas with high CO2 purity ready to storage. Therefore an industrial-scale PSA with 72000 Nm3/h feed capacity was modelled to obtain the tail gas flow rate and composition. Then CLC SOFC and oxy-combustion were modelled to use tail gas. Finally a techno-economic analysis was conducted to calculate each technology's levelised cost of hydrogen (LCOH). It was observed that CO2 purity for CLC meets the criteria for storage (>95%) without further purification. On the other hand from the economic point of view all three technologies show a promising performance with an LCOH of 1.9 €/kg.
Roadmap to Reach Global Net Zero Emissions for Developing Regions by 2085
Jan 2025
Publication
As climate change intensifies determining a developing region’s role in achieving net-zero emissions worldwide is crucial. However regional efforts considering historical emissions remain underexplored. Here we assess energy system changes technology adoption and investments needed for developing regions including five major- and minor-emitting nations. Our analysis using an integrated assessment model shows a large gap in regional efforts toward global net-zero emissions stemming from the necessary shift of energy systems to low-carbon resources. The use of new technologies like electric vehicles hydrogen and carbon capture varies by region with the highest adoption required between 2020 and 2030. Financing this shift needs an average gross domestic product (GDP) investment rise of 0.464% in minor-emitting regions and up to 2.1% in major-emitting regions by 2085. Our results could guide policies and support setting quantifiable targets for developing nations. The findings are key to facilitating strategic technology use and finance mobilization to achieve a carbon-neutral future.
Decision Support System for Sustainable Hydrogen Production: Case Study of Saudi Arabia
Nov 2024
Publication
The global energy sector is undergoing a transition towards sustainable sources with hydrogen emerging as a promising alternative due to its high energy content and clean-burning properties. The integration of hydrogen into the energy landscape represents a significant advancement towards a cleaner greener future. This paper introduces an innovative decision support system (DSS) that combines multi-criteria decision-making (MCDM) and decision tree methodologies to optimize hydrogen production decisions in emerging economies using Saudi Arabia as a case study. The proposed DSS developed using MATLAB Web App Designer tools evaluates various scenarios related to demand and supply cost and profit margins policy implications and environmental impacts with the goal of balancing economic viability and ecological responsibility. The study's findings highlight the potential of this DSS to guide policymakers and industry stakeholders in making informed scalable and flexible hydrogen production decisions that align with sustainable development goals. The novel DSS framework integrates two key influencing factors technical and logistical by considering components such as data management modeling analysis and decision-making. The analysis component employs statistical and economic methods to model and assess the costs and benefits of eleven strategic scenarios while the decision-making component uses these results to determine the most effective strategies for implementing hydrogen production to minimize risks and uncertainties.
Review on Onshore and Offshore Large-scale Seasonal Hydrogen Storage for Electricity Generation: Focusing on Improving Compression, Storage, and Roundtrip Efficiency
Jun 2024
Publication
This article presents a comprehensive review of the current landscape and prospects of large-scale hydrogen storage technologies with a focus on both onshore and offshore applications and flexibility. Highlighting the evolving technological advancements it explores storage and compression techniques identifying potential research directions and avenues for innovation. Underwater hydrogen storage and hybrid metal hydride com pressed gas tanks have been identified for offshore buffer storage as well as exploration of using metal hydride slurries to transport hydrogen to/from offshore wind farms coupled with low pressure high flexibility elec trolyser banks. Additionally it explores the role of metal hydride hydrogen compressors and the integration of oxyfuel processes to enhance roundtrip efficiency. With insights into cost-effectiveness environmental and technology considerations and geographical factors this review offers insights for policymakers researchers and industry stakeholders aiming to advance the deployment of large-scale hydrogen storage systems in the transition towards sustainable energy.
A Comparative Total Cost of Ownership Analysis of Heavy Duty On-road and Off-road Vehicles Powered by Hydrogen, Electricity, and Diesel
Dec 2022
Publication
This study investigated the cost competitiveness using total cost of ownership (TCO) analysis of hydrogen fuel cell electric vehicles (FCEVs) in heavy duty on and off-road fleet applications as a key enabler in the decarbonisation of the transport sector and compares results to battery electric vehicles (BEVs) and diesel internal combustion engine vehicles (ICEVs). Assessments were carried out for a present day (2021) scenario and a sensitivity analysis assesses the impact of changing input parameters on FCEV TCO. This identified conditions under which FCEVs become competitive. A future outlook is also carried out examining the impact of time-sensitive parameters on TCO when net zero targets are to be reached in the UK and EU. Several FCEVs are cost competitive with ICEVs in 2021 but not BEVs under base case conditions. However FCEVs do have potential to become competitive with BEVs under specific conditions favouring hydrogen including the application of purchase grants and a reduced hydrogen price. By 2050 a number of FCEVs running on several hydrogen scenarios show a TCO lower than ICEVs and BEVs using rapid chargers but for the majority of vehicles considered BEVs remain the lowest in cost unless specific FCEV incentives are implemented. This paper has identified key factors hindering the deployment of hydrogen and conducted comprehensive TCO analysis in heavy duty on and off-road fleet applications. The output has direct contribution to the decarbonisation of the transport sector.
Decarbonising International Shipping - A Life Cycle Perspective on Alternative Fuel Options
Nov 2023
Publication
This study aimed to compare hydrogen ammonia methanol and waste-derived biofuels as shipping fuels using life cycle assessment to establish what potential they have to contribute to the shipping industry’s 100% greenhouse gas emission reduction target. A novel approach was taken where the greenhouse gas emissions associated with one year of global shipping fleet operations was used as a common unit for comparison therefore allowing the potential life cycle greenhouse gas emission reduction from each fuel option to be compared relative to Paris Agreement compliant targets for international shipping. The analysis uses life cycle assessment from resource extraction to use within ships with all GHGs evaluated for a 100-year time horizon (GWP100). Green hydrogen waste-derived biodiesel and bio-methanol are found to have the best decarbonisation po tential with potential emission reductions of 74–81% 87% and 85–94% compared to heavy fuel oil; however some barriers to shipping’s decarbonisation progress are identified. None of the alternative fuels considered are currently produced at a large enough scale to meet shipping’s current energy demand and uptake of alternative fuel vessels is too slow considering the scale of the challenge at hand. The decarbonisation potential from alternative fuels alone is also found to be insufficient as no fuel option can offer the 100% emission reduction required by the sector by 2050. The study also uncovers several sensitives within the life cycles of the fuel options analysed that have received limited attention in previous life cycle investigations into alternative shipping fuels. First the choice of allocation method can potentially double the life cycle greenhouse gas emissions of e-methanol due to the carbon ac counting challenges of using waste carbon dioxide streams during fuel production. This leads to concerns related to the true impact of using carbon dioxide captured from fossil-fuelled processes to produce a combustible product due to the resultant high downstream emissions. Second nitrous oxide emissions from ammonia combustion are found to be highly sensitive due to high greenhouse gas potency potentially offsetting any greenhouse reduction potential compared to heavy fuel oil. Further uncertainties are highlighted due to limited available data on the rate of nitrous oxide production from ammonia engines. The study therefore highlights an urgent need for the shipping sector to consider these factors when investing in new ammonia and methanol engines; failing to do so risks jeopardizing the sector’s progress towards decarbonisation. Finally whilst alternative fuels can offer good decarbonisation potential (particularly waste derived biomethanol and bio-diesel and green hydrogen) this cannot be achieved without accelerated investment in new and retrofit vessels and new fuel supply chains: the research concludes that existing pipeline of vessel orders and fuel production facilities is insufficient. Furthermore there is a need to integrate alternative fuel uptake with other decarbonisation strategies such as slow steaming and wind propulsion.
Exploring European Hydrogen Demand Variations under Tactical Uncertainty with Season Hydrogen Storage
Aug 2025
Publication
Achieving a net-zero energy system in Europe by 2050 will likely require large-scale deployment of hydrogen and seasonal energy storage to manage variability in renewable supply and demand. This study addresses two key objectives: (1) to develop a modeling framework that integrates seasonal storage into a stochastic multihorizon capacity expansion model explicitly capturing tactical uncertainty across timescales; and (2) to assess the impact of seasonal hydrogen storage on long-term investment decisions in European power and hydrogen infrastructure under three hydrogen demand scenarios. To this end the multi-horizon stochastic programming model EMPIRE is extended with tactical stages within each investment period enabling operational decisions to be modeled as a multi-stage stochastic program. This approach captures short-term uncertainty while preserving long-term investment foresight. Results show that seasonal hydrogen storage considerably enhances system flexibility displacing the need for up to 600 TWh/yr of dispatchable generation in Europe after 2040 and sizing down cross-border hydrogen transmission capacities by up to 12%. Storage investments increase by factors of 5–14 which increases the investments in variable renewables and improve utilization particularly solar. Scenarios with seasonal storage also show up to 6% lower total system costs and more balanced infrastructure deployment across regions. These findings underline the importance of modeling temporal uncertainty and seasonal dynamics in long-term energy system planning.
Hydrogen from Wastewater by Photocatalytic and Photoelectrochemical Treatment
Dec 2020
Publication
In recent years the intensification of human activities has led to an increase in waste production and energy demand. The treatment of pollutants contained in wastewater coupled to energy recovery is an attractive solution to simultaneously reduce environmental pollution and provide alternative energy sources. Hydrogen represents a clean energy carrier for the transition to a decarbonized society. Hydrogen can be generated by photosynthetic water splitting where oxygen and hydrogen are produced and the process is driven by the light energy absorbed by the photocatalyst. Alternatively hydrogen may be generated from hydrogenated pollutants in water through photocatalysis and the overall reaction is thermodynamically more favourable than water splitting for hydrogen. This review is focused on recent developments in research surrounding photocatalytic and photoelectrochemical hydrogen production from pollutants that may be found in wastewater. The fundamentals of photocatalysis and photoelectrochemical cells are discussed along with materials and efficiency determination. Then the review focuses on hydrogen production linked to the oxidation of compounds found in wastewater. Some research has investigated hydrogen production from wastewater mixtures such as olive mill wastewater juice production wastewater and waste activated sludge. This is an exciting area for research in photocatalysis and semiconductor photoelectrochemistry with real potential for scale up in niche applications.
Physics-Informed Co-Optimization of Fuel-Cell Flying Vehicle Propulsion and Control Systems with Onboard Catalysis
Oct 2025
Publication
Fuel-cell flying vehicles suffer from limited endurance while ammonia decomposed onboard to supply hydrogen offers a carbon-free high-density solution to extend flight missions. However the system’s performance is governed by a multi-scale coupling between propulsion and control systems. To this end this paper introduces a novel optimization paradigm termed physics-informed gradient-enhanced multi-objective optimization (PIGEMO) to simultaneously optimize the ammonia decomposition unit (ADU) catalyst composition powertrain sizing and flight control parameters. The PI-GEMO framework leverages a physics-informed neural network (PINN) as a differentiable surrogate model which is trained not only on sparse simulation data but also on the governing differential equations of the system. This enables the use of analytical gradient information extracted from the trained PINN via automatic differentiation to intelligently guide the evolutionary search process. A comprehensive case study on a flying vehicle demonstrates that the PIGEMO framework not only discovers a superior set of Pareto-optimal solutions compared to traditional methods but also critically ensures the physical plausibility of the results.
Hydrogen Barrier Coatings: Application and Assessment
Sep 2025
Publication
Hydrogen embrittlement (HE) threatens the structural integrity of industrial components exposed to hydrogenrich environments. This review critically explores hydrogen barrier coatings (HBCs) polymeric metallic ceramic and composite their application and assessment focusing on measured effectiveness in limiting hydrogen permeation and hydrogen embrittlement. Also coating application methods and permeation assessment techniques are evaluated. Recent advances in nanostructured and hybrid coatings are emphasized highlighting the pressing need for durable scalable and environmentally sustainable hydrogen barrier coatings to ensure the reliability of emerging hydrogen-based energy solutions. This comprehensive critical review further distinguishes itself by linking coating deposition methods to defect-driven transport behaviour critically assessing permeation test approaches. It also highlights the emerging role of polymeric and hybrid multilayer coatings with direct implications for advanced and reliable hydrogen production storage and transport infrastructure.
Hydrogen Production Intensification by Energy Demand Management in High-Temperature Electrolysis
Aug 2025
Publication
Solid oxide electrolysers (SOEs) can decarbonise H2 supply when powered by renewable electricity but remain constrained by high electrical demand and integration penalties. Our objective is to minimise the electrical (Pel) and thermal (Qth) energy demand per mole of H2 by jointly tuning cell temperature steam fraction steam utilisation pressure and current density. Compared with prior single-variable or thermo-neutral-constrained studies we develop and validate a steady-state process-level optimisation framework that couples an Aspen Plus SOE model with electrochemical post-processing and heat caused by ohmic resistance recovery. A Box–Behnken design explores five key operating parameters to capture synergies and trade-offs between Qth and Pel energy inputs. Single-objective optimisation yields Pel = 170.1 kJ mol⁻¹ H2 a 41.4% reduction versus literature baselines. Multi-objective optimisation using an equal-weighted composite desirability function aggregating thermal and electrical demands further reduces Pel by 21.2% while balancing thermal input 4–8% lower than single-objective baselines at moderate temperature (~781 °C) and pressure (~17.5 bar). Findings demonstrate a clear process intensification advantage over previous studies by simultaneously leveraging operating parameter synergies and heat-integration. However results are bounded by steady-state perfectly mixed isothermal assumptions. The identified operating windows are mechanistically grounded targets that warrant stack-scale and plantlevel validation.
Solar-powered Electric Vehicles - Batter EV & Fuel Cell EV: A Review
Sep 2025
Publication
The transport sector is a major contributor to greenhouse gas emissions largely due to its dependence on fossil fuels. Electrifying transport through Battery Electric Vehicles (BEVs) and Hydrogen Fuel Cell Electric Vehicles (FCEVs) is widely recognized as a key pathway to reducing emissions. While both BEVs and FCEVs are zero-emission during operation they still require electricity to function. Sourcing this electricity from solar energy presents a promising opportunity for sustainable operation. The novelty of this work lies in exploring how solar energy can be effectively integrated into both BEV and FCEV systems. The paper examines the potential scope and infrastructure requirements of these vehicle types as well as innovative charging and refuelling strategies. For BEVs charging options include fixed charging stations battery swapping stations and wireless charging. In the context of solar integration photovoltaic (PV) systems can be mounted directly on the vehicle body or used to power charging stations. While current PV efficiency and reliability are insufficient to meet the full energy demand of BEVs they can provide valuable auxiliary power. For FCEVs solar energy can be utilized for hydrogen production enabling the concept of solar-powered FCEVs. Refuelling options include onsite and offsite hydrogen production facilities as well as mobile refuelling units. In both cases land requirements for PV installations are significant. Alternatives to ground-mounted PV such as floating PV or agrivoltaics (agriPV) should be considered to optimize land use. While solar-powered charging or refuelling stations are technically feasible complete reliance on solar power alone is not yet practical. A hybrid approach with grid connections energy storage or backup generation remains necessary to ensure consistent energy availability. For BEVs the cost of charging particularly for long-distance travel where rapid charging is required remains a barrier. For FCEVs challenges include the high cost of hydrogen production and the limited availability of refuelling infrastructure despite their advantage of fast refuelling times. Government policies and incentives are playing a critical role in overcoming these barriers fostering investment in infrastructure and accelerating the transition toward a cleaner transport sector. In summary integrating solar energy into BEV and FCEV infrastructure can advance sustainable mobility by reducing lifecycle emissions. While current PV efficiency storage and hydrogen production limitations require hybrid energy solutions ongoing technological improvements and supportive policies can enable broader adoption. A balanced renewable energy mix with solar as a key component will be essential for realizing truly sustainable zero-emission transport.
Hydrogen Propulsion Technologies for Aviation: A Review of Fuel Cell and Direct Combustion Systems Towards Decarbonising Medium-Haul Aircraft
Oct 2025
Publication
Hydrogen propulsion technologies are emerging as a key enabler for decarbonizing the aviation sector especially for regional commercial aircraft. The evolution of aircraft propulsion technologies in recent years raises the question of the feasibility of a hydrogen propulsion system for beyond regional aircraft. This paper presents a comprehensive review of hydrogen propulsion technologies highlighting key advancements in component-level performance metrics. It further explores the technological transitions necessary to enable hydrogen-powered aircraft beyond the regional category. The feasibility assessment is based on key performance parameters including power density efficiency emissions and integration challenges aligned with the targets set for 2035 and 2050. The adoption of hydrogen-electric powertrains for the efficient transition from KW to MW powertrains depends on transitions in fuel cell type thermal management systems (TMS) lightweight electric machines and power electronics and integrated cryogenic cooling architectures. While hydrogen combustion can leverage existing gas turbine architectures with relatively fewer integration challenges it presents its technical hurdles especially related to combustion dynamics NOx emissions and contrail formation. Advanced combustor designs such as micromix staged and lean premixed systems are being explored to mitigate these challenges. Finally the integration of waste heat recovery technologies in the hydrogen propulsion system is discussed demonstrating the potential to improve specific fuel consumption by up to 13%.
Techno-Economic Assessment of Carbon-Neutral Ammonia Fuel for Ships from Renewable Wind Energy
Oct 2025
Publication
Climate change is fuelled by the continued growth of global carbon emissions with the widespread use of fossil fuels being the main driver. To achieve a decarbonisation transition of the energy mix the development of clean and renewable fuels has become crucial. Ammonia is seen as an important option for decarbonisation in the transport and energy sectors due to its zero-carbon emission potential and renewable energy compatibility. However the high energy consumption and carbon emissions of the conventional Haber– Bosch method limit its sustainability. A green ammonia synthesis system was designed using ECLIPSE and Excel simulations in the study. Results show that at a recirculation ratio of 70% the system’s annual total energy consumption is 426.22 GWh with annual ammonia production reaching 8342.78 t. The optimal system configuration comprises seven 12 MW offshore wind turbines integrated with a 460 MWh lithium battery and 240 t of hydrogen storage capacity. At this configuration the LCOE is approximately £5956.58/t. It shows that incorporating renewable energy can significantly reduce greenhouse gas emissions but further optimisation of energy storage configurations and reaction conditions is needed to lower costs. This research provides a reference for the industrial application of green ammonia in the transportation sector.
Hydrogen UK - Supply Chain Strategic Assessment: Phase I
Mar 2025
Publication
The UK Hydrogen Supply Chain Strategic Assessment – Phase II report is developed as an appendix to the UK Hydrogen Supply Chain Strategic Assessment – Phase I report published in September 2024. Whereas the Phase I report prioritised the supply side elements of the hydrogen supply chain i.e. power industry storage electrolytic production CCUS enabled production and networks the Phase II focuses on demand side elements in the hydrogen supply chain i.e. fuel cell systems (including cars vans heavy goods vehicles & non road mobile machinery rail marine) and hydrogen refuelling systems. The Phase II adopts the same approach as carried out in Phase I by utilising analysis based on feedback from survey questionnaires interviews with key industrial stakeholders and internal research.
The paper can be found on their website.
The paper can be found on their website.
Examining Dynamics of Hydrogen Supply Chains
Mar 2025
Publication
Hydrogen is poised to play a pivotal role in achieving net-zero targets and advancing green economies. However a range of complex operational challenges hinders its planning production delivery and adoption. At the same time numerous drivers within the hydrogen value chain present significant opportunities. This paper investigates the intricate relationships between these drivers and barriers associated with hydrogen supply chain (HSC). Utilising expert judgment in combination Grey-DEMATEL technique we propose a framework to assess the interplay of HSC drivers and barriers. Gaining insight into these relationships not only improves access to hydrogen but also foster innovation in its development as a low-carbon resource. The use of prominence scores and net influence rankings for each driver and barrier in the framework provides a comprehensive understanding of their relative significance and impact. Our findings demonstrate that by identifying and accurately mapping these attributes clear cause-and-effect relationships can be established contributing to a more nuanced understanding of the HSC. These insights have broad implications across operational policy scholarly and social domains. For instance this framework can aid stakeholders in recognizing the range of opportunities available by addressing key barriers to hydrogen adoption.
No more items...