United Kingdom
Prospects of Low and Zero-carbon Renewable Fuels in 1.5-degree Net Zero Emission Actualisation by 2050: A Critical Review
Sep 2022
Publication
The Paris Climate Agreement seeks to keep global temperature increases under 2° Celsius ideally 1.5° Celsius. This goal necessitates significant emission reductions. By 2030 emissions are expected to range between 52 and 58 GtCO2e from their 2016 level of approximately 52 GtCO2e. This review paper explores a number of low and zero-carbon renewable fuels such as hydrogen green ammonia green methanol biomethane natural gas and synthetic methane (with natural gas and synthetic methane subject to CCUS both at processing and at final use) as alternative solutions for providing a way to rebalance transition paths in order to achieve the goals of the Paris Agreement while also reaping the benefits of other sustainability targets. The results show renewables will need to account for approximately 90% of total electricity generation by 2050 and approximately 25% of non-electric energy usage in buildings and industry. However low and zero-carbon renewable fuels currently only contributes about 15% to the global energy shares and it will take about 10% more capacity to reach the 2050 goal. The transportation industry will need to take important steps toward energy efficiency and fuel switching in order to achieve the 20% emission reduction. Therefore significant new commitments to efficient low-carbon alternatives will be necessary to make this enormous change. According to this paper investing in energy efficiency and lowcarbon alternative energy must rise by a factor of about five by 2050 in comparison to 2015 levels if the 1.5 °C target is to be realised.
Green Hydrogen Production in Photoelectrochemical Artificial-leaf Systems with Different Tandem Solar Cells: An Environmental and Economic Assessment of Industrial-scale Production in China
Aug 2025
Publication
Different photoelectrochemical (PEC) artificial-leaf systems have been proposed for green hydrogen production. However their sustainability is not well understood in comparison to conventional hydrogen technologies. To fill this gap this study estimates cradle-to-grave life cycle environmental impacts and costs of PEC hydrogen production in different provinces in China using diverse tandem solar cells: Ge/GaAs/GaInP (Ge-PEC) GaAs/ GaInAs/GaInP (GaAs-PEC) and perovskite/silicon (P-PEC). These systems are benchmarked against conventional hydrogen production technologies − coal gasification (CG) and steam methane reforming (SMR) − across 18 environmental categories life cycle costs and levelised cost of hydrogen (LCOH). P-PEC emerges as the best options with 36–95 % lower impacts than Ge-PEC and GaAs-PEC across the categories including the climate change impact (0.38–0.52 t CO2 eq./t H2) which is 77–79 % lower. Economically P-PEC shows 81–84 % lower LCOH (2.51–3.81 k$/t). Compared to SMR and CG P-PEC reduces the impacts by 23–98 % saving 3.67–38.5 Mt of CO2 eq./yr. While its LCOH is 5 % higher than that of conventional hydrogen it could be economically competitive with both SMR and CG at 10 % higher solar-to-hydrogen efficiency and 25 % lower operating costs. In contrast Ge-PEC and GaAs-PEC while achieving much lower (81–91 %) climate change and some other impacts than the conventional technologies face significant economic challenges. Their LCOH (21.51–32.82 k$/t for Ge-PEC and 16.96–25.89 k$/t for GaAs-PEC) is 7–9 times higher than that of the conventional hydrogen due to the high solar cell costs. Therefore despite their environmental benefits these technologies require substantial cost reductions to become economically viable.
Medium Speed Lean Hydrogen Engine Modelling and Validation
Sep 2025
Publication
Hydrogen spark-ignition direct-injection engines result in no carbon emissions at use but NOX remains a challenge. This study demonstrates that with lean combustion (ϕ < 0.38) in-cylinder NOX can be reduced to a quarter of the current maritime regulatory limit. An original contribution of this work is the use of speciesresolved emissions formation across multiple engine load conditions. A novel chemically detailed combustion modelling framework was developed in CHEMKIN-Pro incorporating the evolution of the CRECK C1–C3 NOX mechanism for improved high-pressure accuracy. The framework was extensively validated using crank-angleresolved data across 9–18 bar loads. The model accurately reproduced pressure traces heat release angles and NOX. Mechanistic analysis revealed a shift from thermal Zeldovich NOX to intermediate-species (notably N2Odriven) as equivalence ratio and pressure varied. The findings highlighted the use of a high-fidelity chemical kinetic modelling framework not only to match experimental results but to gain physically grounded insight into actionable near-zero emission strategies.
Adaptive Hydrogen Fuel Cell Vehicle Scheduling Strategy Based on Traffic State Assessment in Power-Transportation Coupled Networks
Aug 2025
Publication
As the global demand for energy increases and the transition to renewable and clean sources accelerates microgrid (MG) has emerged as a promising solution. Hydrogen fuel cell vehicles (HFCVs) offer significant advantages over gasoline vehicles in terms of reducing carbon dioxide emissions. However the development of HFCVs is hindered by the substantial up-front costs of hydrogen refueling stations (HRSs) coupled with the high cost of hydrogen transportation and the limitations of the hydrogen supply chain. This research proposes a multimicrogrid (MMG) system that integrates hydrogen energy and utilizes it as the HRS for fuel vehicle refueling. An adaptive hydrogen energy management method is employed for fuel cell vehicles to optimize the coupling between the transportation network and the power system. An integrated transportation state assessment model is developed and a smart MMG system is deployed to receive information from the transportation network. Building on this foundation an adaptive hydrogen scheduling model is developed. HFCVs are influenced by the hydrogen price adjustments leading them to travel to different MGs for refueling which in turn regulates the unit output of the MMG system. The MMG system is then integrated with the IEEE 33 bus distribution system to analyze the daily load balance. This integrated approach results in reduced traffic congestion lower MG costs and optimized power distribution network load balance.
Performance Analysis of Silica Fluidized Bed Membrane Reactor for Hydrogen Production as a Green Process Using CFD Modelling
Aug 2025
Publication
The main aim of this study deals with the potential evaluation of a fluidized bed membrane reactor (FBMR) for hydrogen production as a clean fuel carrier via methanol steam reforming reaction comparing its performance with other reactors including packed bed membrane reactors (PBMR) fluidized bed reactors (FBR) and packed bed reactors (PBR). For this purpose a two-dimensional axisymmetric numerical model was developed using computational fluid dynamics (CFD) to simulate the reactor performances. Model accuracy was validated by comparing the simulation results for PBMR and PB with experimental data showing an accurate agreement within them. The model was then employed to examine the effects of key operating parameters including reaction temperature pressure steam-to-methanol molar ratio and gas volumetric space velocity on reactor performance in terms of methanol conversion hydrogen yield hydrogen recovery and selectivity. At 573 K 1 bar a feed molar ratio of 3/1 and a space velocity of 9000 h−1 the PBMR reached the best results in terms of methanol conversion hydrogen yield hydrogen recovery and hydrogen selectivity such as 67.6% 69.5% 14.9% and 97.1% respectively. On the other hand the FBMR demonstrated superior performance with respect to the latter reaching a methanol conversion of 98.3% hydrogen yield of 95.8% hydrogen recovery of 74.5% and hydrogen selectivity of 97.4%. These findings indicate that the FBMR offers significantly better performance than the other reactor types studied in this work making it a highly efficient method for hydrogen production through methanol steam reforming and a promising pathway for clean energy generation.
Techno-Economic Environmental Risk Analysis (TERA) in Hydrogen Farms
Sep 2025
Publication
This study presents a techno-economic environmental risk analysis (TERA) of large-scale green hydrogen production using Alkaline Water Electrolysis (AWE) and Proton Exchange Membrane (PEM) systems. The analysis integrates commercial data market insights and academic forecasts to capture variability in capital expenditure (CAPEX) efficiency electricity cost and capacity factor. Using Libya as a case study 81 scenarios were modelled for each technology to assess financial and operational trade-offs. For AWE CAPEX is projected between $311 billion and $905.6 billion for 519 GW (gigawatts) of installed capacity equivalent to 600–1745 $/kW. PEM systems show a wider range of $612 billion to $1020 billion for 510 GW translating to 1200–2000 $/kW. Results indicate that AWE while requiring greater land use provides significant cost advantages due to lower capital intensity and scalability. In contrast PEM systems offer compact design and operational flexibility but at substantially higher costs. The five most economical scenarios for both technologies consistently feature low CAPEX and high efficiency while sensitivity analyses confirm these two parameters as the dominant cost drivers. The findings emphasise that technology choice should reflect context-specific priorities such as land availability budget and performance needs. This study provides actionable guidance for policymakers and investors developing cost-effective hydrogen infrastructure in emerging green energy markets.
Coordinated Operation of Multi-energy Microgrids Considering Green Hydrogen and Congestion Management via a Safe Policy Learning Approach
Aug 2025
Publication
Multi-energy microgrids (MEMGs) with green hydrogen have attracted significant research attention for their benefits such as energy efficiency improvement carbon emission reduction as well as line congestion alleviation. However the complexities of multi-energy networks coupled with diverse uncertainties may threaten MEMG’s operation. In this paper a data-driven methodology is proposed to achieve effective MEMG operation considering the green hydrogen technique and congestion management. First a detailed MEMG modelling approach is developed coupling with electricity green hydrogen natural gas and thermal flows. Different from conventional MEMG models hydrogen-enriched compressed natural gas (HCNG) models and weatherdependent power flow are thoroughly considered in the modelling. Meanwhile the power flow congestion problem is also formulated in the MEMG operation which could be mitigated through HCNG integration. Based on the proposed MEMG model a reinforcement learning-based method is designed to obtain the optimal solution of MEMG operation. To ensure the solution’s safety a soft actor-critic (SAC) algorithm is applied and modified by leveraging the Lagrangian relaxation and safety layer scheme. In the end case studies are conducted and presented to validate the effectiveness of the proposed method.
Optimization of Green Ammonia Distribution Systems for Intercontinental Energy Transport
Aug 2021
Publication
Green ammonia is a promising hydrogen derivative which enables intercontinental transport of dispatchable renewable energy. This research describes the development of a model which optimizes a global green ammonia network considering the costs of production storage and transport. In generating the model we show economies of scale for green ammonia production are small beyond 1 million tonnes per annum (MMTPA) although benefits accrue up to a production rate of 10 MMTPA if a production facility is serviced by a new port or requires a long pipeline. The model demonstrates that optimal sites for ammonia production require not only an excellent renewable resource but also ample land from which energy can be harvested. Land limitations constrain project size in otherwise optimal locations and force production to more expensive sites. Comparison of current crude oil markets to future ammonia markets reveals a trend away from global supply hubs and toward demand centers serviced by regional production.
Reconfiguring Industry in the United Kingdom. Global Lessons for Ambition Versus Policy on the Path Towards Net-zero
Aug 2025
Publication
High-emitting industrial processes are often concentrated in clusters that share infrastructure to maximise efficiency and reduce costs. These clusters prevalent in many industrialised economies pose significant challenges for decarbonisation due to their dependence on energy-intensive systems and legacy assets. Carbon capture and storage (CCS) is frequently promoted as a key solution for reducing emissions in these hard-to-abate sectors. Drawing on an adapted ‘Multi-Level Perspective’ framework (Geels and Turnheim 2022) this paper examines how industrial practices are being reconfigured in response to decarbonisation imperatives. While our study focuses on the UK the findings have broader relevance to other industrialised nations pursuing a similar strategy. We observe a dominant reliance on fuel switching and CCS characterising the innovation style as ‘modular substitution’; incremental changes that replace individual components without fundamentally transforming the overall system. This pattern suggests a gap between ambitious climate commitments and the depth of systemic change being pursued. Without more comprehensive strategies there is a growing risk of delayed emissions reductions and increased residual emissions both contributing to the overshooting of carbon budgets which will be compounded if replicated across industrial sectors worldwide.
Optimizing Regional Energy Networks: A Hierarchical Multi-energy System Approach for Enhanced Efficiency and Privacy
Sep 2025
Publication
This research presents a hierarchically synchronized Multi-Energy System (MES) designed for regional communities incorporating a network of small-scale Integrated Energy Microgrids (IEMs) to augment efficiency and collective advantages. The MES framework innovatively integrates energy complementarity pairing algorithms with efficient iterative optimization processes significantly curtailing operational expenditures for constituent microgrids and bolstering both community-wide benefits and individual microgrid autonomy. The MES encompasses electricity hydrogen and heat resources while leveraging controllable assets such as battery storage systems fuel cell combined heat and power units and electric vehicles. A comparative study of six IEMs demonstrates an operational cost reduction of up to 26.72% and a computation time decrease of approximately 97.13% compared to traditional methods like ADMM and IDAM. Moreover the system preserves data privacy by limiting data exchange to aggregated energy information thus minimizing direct communication between IEMs and the MES. This synergy of multi-energy complementarity iterative optimization and privacy-aware coordination underscores the potential of the proposed approach for scalable community-centered energy systems.
The Physical Exergy in Hydrogen - Maximising the Utility of Hydrogen as an Aviation Fuel
Sep 2025
Publication
Hydrogen is a promising fuel to decarbonise aviation. Storage in liquid form is favoured for long-haul aircraft; storage as a high-pressure gas is preferred otherwise. The exergy expended during the compression or liquefaction process is stored as physical exergy in the fuel. Most discussions around hydrogen-fuelled aviation ignore this very significant exergy content. When combusted in an engine the chemical energy of hydrogen can produce around 60 MJ of work per kg. The work that can be extracted from the physical exergy depends strongly on the method used. This paper presents an exergy analysis considering a range of storage conditions operating conditions and work-extraction methods. For reasonable gas-turbine operating conditions upwards of 16 MJ/kg might be extracted from compressed hydrogen (at 700 bar) and 30 MJ/kg from LH2. This additional work representing 25–50 % of the shaft work produced by combustion has been by and large neglected.
Optimization of Interfacial Bonding between Graphene-enhanced Polyethylene Liners and CFRP Composites using Plasma Treatment for Hydrogen Storage Applications
Oct 2025
Publication
As the need for sustainable hydrogen storage solutions increases enhancing the bonding interface between polymer liners and carbon fiber-reinforced polymer (CFRP) in Type IV hydrogen tanks is essential to ensure tank integrity and safety. This study investigates the effect of plasma treatment on polyethylene (PE) and PE/graphene nanoplatelets (GNP) composites to optimize bonding with CFRP simulating the liner-CFRP interface in hydrogen tanks. Initially plasma treatment effects on PE surfaces were assessed focusing on plasma energy and exposure time with key surface modifications characterized and bonding performance being evaluated. Plasma treatment on PE/GNP composites with increasing GNP content was then examined comparing the bonding effectiveness of untreated and plasma-treated samples. Wedge peel tests revealed that plasma treatment significantly enhanced PE-CFRP bonding with optimal conditions at 510 W and 180 s resulting in 212 % and 165 % increases in the wedge peel strength and fracture energy respectively. Plasma-treated PE/GNP composites with 0.75 wt.% GNP achieved a notable bonding enhancement with CFRP showing 528 % and 269 % improvements in strength and fracture energy over untreated neat PE-CFRP samples. These findings offer practical implications for improving the mechanical performance of hydrogen storage tanks contributing to safer and more efficient hydrogen storage systems for a sustainable energy future.
Solar-powered Electric Vehicles - Batter EV & Fuel Cell EV: A Review
Sep 2025
Publication
The transport sector is a major contributor to greenhouse gas emissions largely due to its dependence on fossil fuels. Electrifying transport through Battery Electric Vehicles (BEVs) and Hydrogen Fuel Cell Electric Vehicles (FCEVs) is widely recognized as a key pathway to reducing emissions. While both BEVs and FCEVs are zero-emission during operation they still require electricity to function. Sourcing this electricity from solar energy presents a promising opportunity for sustainable operation. The novelty of this work lies in exploring how solar energy can be effectively integrated into both BEV and FCEV systems. The paper examines the potential scope and infrastructure requirements of these vehicle types as well as innovative charging and refuelling strategies. For BEVs charging options include fixed charging stations battery swapping stations and wireless charging. In the context of solar integration photovoltaic (PV) systems can be mounted directly on the vehicle body or used to power charging stations. While current PV efficiency and reliability are insufficient to meet the full energy demand of BEVs they can provide valuable auxiliary power. For FCEVs solar energy can be utilized for hydrogen production enabling the concept of solar-powered FCEVs. Refuelling options include onsite and offsite hydrogen production facilities as well as mobile refuelling units. In both cases land requirements for PV installations are significant. Alternatives to ground-mounted PV such as floating PV or agrivoltaics (agriPV) should be considered to optimize land use. While solar-powered charging or refuelling stations are technically feasible complete reliance on solar power alone is not yet practical. A hybrid approach with grid connections energy storage or backup generation remains necessary to ensure consistent energy availability. For BEVs the cost of charging particularly for long-distance travel where rapid charging is required remains a barrier. For FCEVs challenges include the high cost of hydrogen production and the limited availability of refuelling infrastructure despite their advantage of fast refuelling times. Government policies and incentives are playing a critical role in overcoming these barriers fostering investment in infrastructure and accelerating the transition toward a cleaner transport sector. In summary integrating solar energy into BEV and FCEV infrastructure can advance sustainable mobility by reducing lifecycle emissions. While current PV efficiency storage and hydrogen production limitations require hybrid energy solutions ongoing technological improvements and supportive policies can enable broader adoption. A balanced renewable energy mix with solar as a key component will be essential for realizing truly sustainable zero-emission transport.
High-Efficiency, Lightweight, and Reliable Integrated Structures—The Future of Fuel Cells and Electrolyzers
Oct 2025
Publication
The high efficiency light weight and reliability of hydrogen energy electrochemical equipment are among the future development directions. Membrane electrode assemblies (MEAs) and electrolyzers as key components have structures and strengths that determine the efficiency of their power generation and the hydrogen production efficiency of electrolyzers. This article summarizes the evolution of membrane electrode and electrolyzer structures and their power and efficiency in recent years highlighting the significant role of integrated structures in promoting proton transport and enhancing performance. Finally it proposes the development direction of integrating electrolyte and electrode manufacturing using phase-change methods.
Advanced Online Fuel Cell Stack Water Management Strategies for Fuel Cell Stacks in Vehicle Powertrain Control
Sep 2025
Publication
Effective water management is crucial for the optimal performance and durability of proton exchange membrane fuel cells (PEMFCs) in automotive applications. Conventional techniques like electrochemical impedance spectroscopy (EIS) face challenges in accurately measuring high-frequency resistance (HFR) impedance during dynamic vehicle operations. This study proposes a novel stack water management stability control and vehicle energy control method to address these limitations. Simulation and experimental results demonstrate improved system and powertrain efficiency extended stack lifespan and optimized hydrogen consumption. These findings contribute to advancing robust water management strategies supporting the transition toward sustainable zero-emission fuel cell vehicles.
Recent Progress in Bio-hydrogen Production for Sustainable Energy and Chemical Production
Sep 2025
Publication
To combat global warming the decarbonisation of energy systems is essential. Hydrogen (H2) is an established chemical feedstock in many industries (fertiliser production steel manufacturing etc.) and has emerged as a promising clean energy carrier due to its high energy density and carbon-free usage. However most H2 is currently produced from fossil fuels undermining its sustainability. Biomass offers a renewable carbon-neutral feedstock for H2 production potentially reducing its environmental impact. This review examines thermochemical biological and electrochemical methods of bio-H2 generation. Thermochemical processes - including gasification fast pyrolysis and steam reforming - are the most technologically advanced offering high H2 yields. However challenges such as catalyst deactivation tar formation and pre- and post-processing limit efficiency. Advanced strategies like chemical looping sorption enhancement and membrane reactors are being developed to address these issues. Biological methods including dark and photo fermentation operate under mild conditions and can process diverse waste feedstocks. Despite their potential low H2 yields and difficulties in microbial inhibitors hinder scalability. Ensuring that microbial populations remain stable through the use of additives and optimising the bioreactors hydraulic retention rate also remain a challenge Combined fermentation systems and valorising byproducts could enhance performance and commercial viability. Electrochemical reforming of biomass-derived compounds is an emerging method that may enhance water electrolysis by co-producing value-added by-products. However current studies focus on biomass-derived compounds rather than complex biomass feedstocks limiting commercial relevance. Future research should focus on feedstock complexity electrocatalyst development and system scaling. A technology readiness comparison shows that thermochemical methods are the most commercially mature followed by biological and electrochemical approaches. Each method holds promise within specific niches warranting continued innovation and interdisciplinary development.
The Link Between Microstructural Heterogeneity and Hydrogen Redistribution
Jul 2025
Publication
Green hydrogen is likely to play a major role in decarbonising the aviation industry. It is crucial to understand the effects of microstructure on hydrogen redistribution which may be implicated in the embrittlement of candidate fuel system metals. We have developed a multiscale finite element modelling framework that integrates micromechanical and hydrogen transport models such that the dominant microstructural effects can be efficiently accounted for at millimetre length scales. Our results show that microstructure has a significant effect on hydrogen localisation in elastically anisotropic materials which exhibit an interesting interplay between microstructure and millimetre-scale hydrogen redistribution at various loading rates. Considering 316L stainless steel and nickel a direct comparison of model predictions against experimental hydrogen embrittlement data reveals that the reported sensitivity to loading rate may be strongly linked with rate-dependent grain scale diffusion. These findings highlight the need to incorporate microstructural characteristics in hydrogen embrittlement models.
Sustainable Hydrogen Production from Waste Plastics via Staged Chemical Looping Gasification with Iron-based Oxygen Carrier
Aug 2025
Publication
Thermo-chemical conversion of waste plastics offers a sustainable strategy for integrated waste management and clean energy generation. To address the challenges of low gas yield and rapid catalyst deactivation due to coking in conventional gasification processes an innovative three-stage chemical looping gasification (CLG) system specifically designed for enhanced hydrogen-rich syngas production was proposed in this work. A comparative analysis between conventional gasification and the staged CLG system were firstly conducted coupled with online gas analysis for mechanistic elucidation. The influence of Fe/Al molar ratios in oxygen carriers and their cyclic stability were systematically examined through multicycle experiments. Results showed that the three-stage CLG in the presence of Fe1Al2 demonstrated exceptional performance achieving 95.23 mmol/gplastic of H2 and 129.89 mmol/gplastic of syngas respectively representing 1.32-fold enhancement over conventional method. And the increased H2/CO ratio (2.68-2.75) reflected better syngas quality via water-gas shift. Remarkably the oxygen carrier maintained nearly 100% of its initial activity after 7 redox cycles attributed to the incorporation of Al2O3 effectively mitigating sintering and phase segregation through metal-support interactions. These findings establish a three-stage CLG configuration with Fe-Al oxygen carriers as an efficient platform for efficient hydrogen production from waste plastics contributing to sustainable waste valorisation and carbon-neutral energy systems.
The Impact of Temporal Hydrogen Regulation on Hydrogen Exporters and their Domestic Energy Transition
Aug 2025
Publication
As global demand for green hydrogen rises potential hydrogen exporters move into the spotlight. While exports can bring countries revenue large-scale on-grid hydrogen electrolysis for export can profoundly impact domestic energy prices and energy-related emissions. Our investigation explores the interplay of hydrogen exports domestic energy transition and temporal hydrogen regulation employing a sector-coupled energy model in Morocco. We find substantial co-benefits of domestic carbon dioxide mitigation and hydrogen exports whereby exports can reduce market-based costs for domestic electricity consumers while mitigation reduces costs for hydrogen exporters. However increasing hydrogen exports in a fossil-dominated system can substantially raise market-based costs for domestic electricity consumers but surprisingly temporal matching of hydrogen production can lower these costs by up to 31% with minimal impact on exporters. Here we show that this policy instrument can steer the welfare (re-)distribution between hydrogen exporting firms hydrogen importers and domestic electricity consumers and hereby increases acceptance among actors.
Solar Enabled Pathway to Large-scale Green Hydrogen Production and Storage: A Framework for Oman's Advancing Renewable Energy Goals
Aug 2025
Publication
The utilisation of renewable energy sources for hydrogen production is increasingly vital for ensuring the long-term sustainability of global energy systems. Currently the Sultanate of Oman is actively integrating renewable energy particularly through the deployment of solar photovoltaic (PV) systems as part of its ambitious targets for the forthcoming decades. Also Oman has target to achieve 1 million tonnes of green-H2 production annually. Leveraging Oman's abundant solar resources to produce green hydrogen and promote the clean transportation industry could significantly boost the country's sustainable energy sector. This paper outlines a standalone bifacial solar-powered system designed for large-scale green hydrogen (H2) production and storage to operate both a hydrogen refuelling station and an electric vehicle charging station in Sohar Oman. Using HOMER software three scenarios: PV/Hydrogen/Battery PV/Hydrogen PV/Battery systems were compared from a techno-economic perspective. Also the night-time operation (Battery/Hydrogen) was investigated. Varying cost of electricity were obtained depending on the system from $3.91/kWh to $0.0000565kWh while the bifacial PV/Hydrogen/Battery system emerged as the most efficient option boasting a unit cost of electricity (COE) of $3.91/kWh and a levelized cost of hydrogen (LCOH) value of $6.63/kg with net present cost 199M. This system aligns well with Oman's 2030 objectives with the capacity to generate 1 million tonnes of green-H2 annually. Additionally the findings show that the surplus electricity from the system could potentially cover over 30% of Oman's total energy consumption with zero harmful emissions. The implementation of this system promises to enhance Oman's economic and transportation industries by promoting the adoption of electric and fuel cell vehicles while reducing reliance on traditional energy sources.
No more items...