Greece
The UAE Net-Zero Strategy—Aspirations, Achievements and Lessons for the MENA Region
Aug 2025
Publication
The Middle East and North Africa region has not played a major role in climate action so far and several countries depend economically on fossil fuel exports. However this is a region with vast solar energy resources which can be exploited affordably for power generation and hydrogen production at scale to eventually reach carbon neutrality. In this paper we elaborate on the case of the United Arab Emirates and explore the aspirations and feasibility of its net-zero by 2050 target. While we affirm the concept per se we also highlight the technological complexity and economic dimensions that accompany such transformation. We expect the UAE’s electricity demand to triple between today and 2050 and the annual green hydrogen production is expected to reach 3.5 Mt accounting for over 40% of the electricity consumption. Green hydrogen will provide power-to-fuel solutions for aviation maritime transport and hard-to-abate industries. At the same time electrification will intensify—most importantly in road transport and low-temperature heat demands. The UAE can meet its future electricity demands primarily with solar power followed by natural gas power plants with carbon capture utilization and storage while the role of nuclear power in the long term is unclear at this stage.
Towards Sustainable Energy Independence: A Case Study of Green Hydrogen as Seasonal Storage Integration in a Small Island
Mar 2025
Publication
Tilos a Greek island in the Mediterranean Sea hosts a pioneering hybrid energy system combining an 800-kW wind turbine and a 160-kWp photovoltaic (PV) field. The predominance of wind power makes the energy production of the island almost constant during the year while the consumption peaks in summer in correspondence with the tourist season. If the island wants to achieve complete selfsufficiency seasonal storage becomes compulsory. This study makes use of measured production data over 1 year to understand the best combination of renewable energy generation and storage to match energy production with consumption. A stochastic optimization based on a differential evolution algorithm is carried out to showcase the configuration that minimizes the levelized cost of required energy (LCORE) in different scenarios. System performance is simulated by progressively increasing the size of the storage devices including a combination of Lithium-ion batteries and power-to-gas-topower (P2G2P) technologies and the PV field. An in-depth market review of current and forecasted prices for RES and ESS components supports the economic analysis including three time horizons (current and projections to 2030 and 2050) to account for the expected drop in component prices. Currently the hybrid storage system combining BESS and P2G2P is more cost-effective (264 €/MWh) than a BESS-only system (320 €/MWh). In the mid-term (2030) the expected price drop in batteries will shift the optimal solution towards this technology but the LCORE reached by the hybrid storage (174 €/MWh) will still be more economical than BESS-only (200 €/MWh). In the long term (2050) the expected price drop in hydrogen technologies will push again the economic convenience of P2G2P and further reduce the LCORE (132.4 €/MWh).
Public Acceptance of a Proposed Sub-Regional, Hydrogen–Electric, Aviation Service: Empirical Evidence from HEART in the United Kingdom
Apr 2025
Publication
This paper addresses public acceptance of a proposed sub-regional hydrogen– electric aviation service reporting initial empirical evidence from the UK HEART project. The objective was to assess public acceptance of a wide range of service features including hydrogen power electric motors and pilot assistance automation in the context of an ongoing realisable commercial plan. Both qualitative and quantitative data collection instruments were leveraged including focus groups and stakeholder interviews as well as the questionnaire-based Scottish National survey coupled with the advanced discretechoice modelling of the data. The results from each method are presented compared and contrasted focusing on the strength reliability and validity of the data to generate insights into public acceptance. The findings suggest that public concerns were tempered by an incomplete understanding of the technology but were interpretable in terms of key service elements. Respondents’ concerns and opinions centred around hydrogen as a fuel singlepilot automation safety and security disability and inclusion environmental impact and the perceived usefulness of novel service features such as terminal design automation and sustainability. The latter findings were interpreted under a joint framework of technology acceptance theory and the diffusion of innovation. From this we drew key insights which were presented alongside a discussion of the results.
Socio-Economic Impact Assessment of Hydrogen Injection in the Natural Gas Network
Feb 2025
Publication
This study explores the feasibility parameters of a potential investment plan for injecting “green” hydrogen into the existing natural gas supply network in Greece. To this end a preliminary profitability optimization analysis was conducted through key performance indicators such as the cost of hydrogen and the socio-environmental benefit of carbon savings followed by break-even and sensitivity analyses. The identification of the major impact drivers of the assessment was based on the examination of a set of operational scenarios of varying hydrogen and natural gas flow rates. The results show that high natural gas capacities with a 5% hydrogen content by volume are the optimal case in terms of socio-economic viability but the overall profitability is too sensitive to hydrogen pricing rendering it unfeasible without additional motives measures and pricing strategies. The results feed into the main challenge of implementing commercial “green” hydrogen infrastructures in the market in a sustainable and feasible manner.
The Extractive Industry’s Decarbonization Potential Using Electrification and Hydrogen Technologies
Mar 2025
Publication
The challenge of achieving net-zero CO2 emissions will require a significant scaling up of the production of several raw materials that are critical for decarbonizing the global economy. In contrast metal extraction processes utilize carbon as a reducing agent which is oxidized to CO2 resulting in considerable emissions and having a negative impact on climate change. In order to abate their emissions extractive industries will have to go through a profound transformation including switching to alternative climateneutral energy and feedstock sources. This paper presents the authors’ perspectives for consideration in relation to the H2 potential for direct reduction of oxide and sulfide ores. For each case scenario the reduction of CO2 emissions is analyzed and a breakthrough route for H2S decomposition is presented which is a by-product of the direct reduction of sulfide ores with H2. Electrified indirect-fired metallurgical kiln advantages are also presented a solution that can substitute fossil fuel-based heating technologies which is one of the main backbones of industrial processes currently applied to the extractive industries.
Sustainable Fuel Supply for Very Small Island Transportation: The Potential of Hybrid Renewable Energy and Green Hydrogen
Mar 2025
Publication
The transition to a low-carbon future necessitates innovative approaches to renewable energy deployment particularly in the marine environment where abundant resources remain underutilized. This paper explores the potential of hybrid renewable energy systems and green hydrogen production to address the energy challenges faced by Very Small Islands (VSIs). These islands heavily rely on imported fossil fuels making them vulnerable to global price fluctuations and contributing to economic instability and environmental degradation. Offshore floating platforms present a transformative opportunity by harnessing marine renewable resources integrating wind solar and wave energy to maximize energy production while minimizing land use conflicts. Green hydrogen produced through the electrolysis of seawater powered by these renewable sources offers a sustainable alternative for decarbonizing transportation particularly in the maritime sector. The study aims to assess the feasibility of converting small conventional passenger vessels to hydrogen propulsion and evaluate the technical economic and environmental impacts of deploying offshore platforms for hydrogen production. By examining these aspects this research contributes to the broader discourse on sustainable energy solutions for island communities and provides actionable insights into implementing renewable hydrogen-based maritime transport.
Comparison of Hydro-pumped and Green Hydrogen as Energy Storage Process: A Case Study on Kefalonia Island, Greece
Sep 2025
Publication
The present research work investigates the performance of two large-scale energy storage technologies: hydro-pumped storage (HPS) and green hydrogen production within a hybrid renewable energy system (HRES) developed for Kefalonia Island Greece. Given the island’s seasonal water and electricity shortages driven by summer demand and limited infrastructure the goal is to identify which storage option better supports local autonomy. Two scenarios differing only in storage method were simulated using identical wind input and desalination setup. Performance was evaluated based on climate and demand data focusing on water and electricity needs. Both scenarios achieved 99.9 % potable water coverage. The HPS system exhibited notably higher energy efficiency (67 %) compared to hydrogen (33 %) and produced slightly more desalinated water reaching 18157791 m3 versus 17986544 m3 respectively. Electricity demand coverage reached 77.8 % with HPS and 76.0 % with hydrogen while irrigation demand was met by 80.2 % and 79.4 % respectively. Seasonal storage analysis revealed pronounced summer depletion in both cases due to high demand and low wind availability with HPS recovering faster and maintaining higher storage levels owing to lower energy losses. The comparison underscores the need for storage strategies adapted to island-specific water and energy dynamics. HPS is more efficient for short-to-medium-term needs while green hydrogen offers potential for long-duration storage and deeper decarbonization.
Multi-Physics Digital Model of an Aluminum 2219 Liquid Hydrogen Aircraft Tank
Feb 2024
Publication
Future liquid hydrogen-powered aircraft requires the design and optimization of a large number of systems and subsystems with cryogenic tanks being one of the largest and most critical. Considering previous space applications these tanks are usually stiffened by internal members such as stringers frames and stiffeners resulting in a complex geometry that leads to an eventual reduction in weight. Cryogenic tanks experience a variety of mechanical and thermal loading conditions and are usually constructed out of several different materials. The complexity of the geometry and the loads highlights the necessity for a computational tool in order to conduct analysis. In this direction the present work describes the development of a multi-physics finite element digital simulation conducting heat transfer and structural analysis in a fully parametric manner in order to be able to support the investigation of different design concepts materials geometries etc. The capabilities of the developed model are demonstrated by the design process of an independent-type aluminum 2219 cryogenic tank for commuter aircraft applications. The designed tank indicates a potential maximum take-off weight reduction of about 8% for the commuter category and demonstrates that aluminum alloys are serious candidate materials for future aircraft.
A Comprehensive Overview of Technologies Applied in Hydrogen Valleys
Dec 2024
Publication
Hydrogen valleys are encompassed within a defined geographical region with various technologies across the entire hydrogen value chain. The scope of this study is to analyze and assess the different hydrogen technologies for their application within the hydrogen valley context. Emphasizing on the coupling of renewable energy sources with electrolyzers to produce green hydrogen this study is focused on the most prominent electrolysis technologies including alkaline proton exchange membrane and solid oxide electrolysis. Moreover challenges related to hydrogen storage are explored alongside discussions on physical and chemical storage methods such as gaseous or liquid storage methanol ammonia and liquid organic hydrogen carriers. This article also addresses the distribution of hydrogen within valley operations especially regarding the current status on pipeline and truck transportation methods. Furthermore the diverse applications of hydrogen in the mobility industrial and energy sectors are presented showcasing its potential to integrate renewable energy into hard-to-abate sectors.
Post-mortem Analysis as a Method to Identify Degradation of PEM Fuel Cells Affecting their Durability in Maritime Applications
Sep 2025
Publication
Proton exchange membrane fuel cells (PEMFCs) present great potential for the decarbonization of the maritime sector but their durability in harsh marine environments remains a critical challenge. This review focuses on post-mortem analysis techniques as a tool to understand the degradation mechanisms of PEMFCs under stressors relevant to marine applications. In further detail the application of various imaging (SEM TEM) structural (XRD) electrochemical (CV) and elemental analysis (EDS) methods to characterize the effects of key stressors such as salt spray mechanical vibration and operational cycling was examined. By analyzing degraded PEMFC components post-mortem analysis reveals critical insights into catalyst layer degradation membrane damage and the impact of impurities enabling the identification of failure modes and the development of effective mitigation strategies for the establishment of PEMFCs in the maritime sector.
RES-electrolyser Coupling witin TRIERES Hydrogen Valley - A Flexible Technoeconomic Assessment Tool
Jan 2025
Publication
The escalating urgency to address climate change has sparked unprecedented interest in green hydrogen as a clean energy carrier. The intermittent nature of Renewable Energy Sources (RES) like wind and solar can introduce unpredictability into the energy supply potentially causing mismatches in the power grid. To this end green hydrogen production can provide a solution by enhancing system flexibility thereby accommodating the fluctuations and stochastic characteristics of RES. Furthermore green hydrogen could play a pivotal role in decarbonizing hard-to-abate sectors and promoting sector coupling. This research article endeavors to delve into this subject by developing a dynamic techno-economic analysis tool capable of flexibly assessing the optimal setup of Alkaline (AEL) electrolysis coupled with RES in a specific region or hub. The focus lies on achieving costeffectiveness efficiency and sustainable production of green hydrogen. The tool leverages a comprehensive dataset covering a full year of hourly data on both renewable electricity production from intermittent RES and wholesale electricity market prices alongside customizable inputs from users. It can be applied across various scenarios including direct coupling with dedicated RES plants and hybrid configurations utilizing the electricity grid as a backup source. The model optimizes RES electrolyser and hydrogen storage capacities to minimize the Levelized Cost of Hydrogen (LCOH) and/or the operational Carbon Intensity (CI) of hydrogen produced. The tool is applied within a real-world application study in the framework of the TRIERES Hydrogen Valley Project which is taking shape in Peloponnese Greece. For the various configurations analysed the LCOH ranges from 7.75 to 12.68 €/kgH2. The cost-optimal system configuration featuring a hybrid RES power supply of 12 MW solar and 19 MW wind energy alongside with 3.5 tonnes of hydrogen storage leads to a minimum LCOH of 7.75 €/kgH2. Subsidies on electrolyser stack and balance of plant CAPEX can reduce LCOH by up to 0.6 €/kgH2.
Methanol, a Plugin Marine Fuel for Green House Gas Reduction—A Review
Jan 2024
Publication
The escalating global demand for goods transport via shipping has heightened energy consumption impacting worldwide health and the environment. To mitigate this international organizations aim to achieve complete fuel desulphurization and decarbonization by 50% by 2050. Investigating eco-friendly fuels is crucial particularly those with a reduced carbon and zero sulfur content. Methanol derived mainly from renewable sources and produced by carbon dioxide’s hydrogenation method stands out as an effective solution for GHG reduction. Leveraging its favorable properties global scalability and compatibility with the existing infrastructure especially LNGs methanol proves to be a cost-efficient and minimally disruptive alternative. This review explores methanol’s role as a hybrid maritime fuel emphasizing its ecological production methods advantages and challenges in the shipping industry’s green transition. It discusses the environmental impacts of methanol use and analyzes economic factors positioning methanol not only as an ecofriendly option but also as a financially prudent choice for global shipping. Methanol is efficient and cost-effective and excels over MGO especially in new ships. It is economically advantageous with decreasing investment costs compared to LNG while providing flexibility without specialized pressure tanks. Global marine fuel trends prioritize fuel traits accessibility and environmental considerations incorporating factors like policies emissions bunkering and engine adaptability during transitions.
Environmental Assessment of Replacing Fossil Fuels with Hydrogen for Motorised Equipment in the Mining Sector
Nov 2023
Publication
To achieve the European milestone of climate neutrality by 2050 the decarbonisation of energy-intensive industries is essential. In 2022 global energy-related CO2 emissions increased by 0.9% or 321 Mt reaching a peak of over 36.8 Gt. A large amount of these emissions is the result of fossil fuel usage in the motorised equipment used in mining. Heavy diesel vehicles like excavators wheel loaders and dozers are responsible for an estimated annual CO2 emissions of 400 Mt of CO2 accounting for approximately 1.1% of global CO2 emissions. In addition exhaust gases of CO2 and NOx endanger the personnel’s health in all mining operations especially in underground environments. To tackle these environmental concerns and enhance environmental health extractive industries are focusing on replacing fossil fuels with alternative fuels of low or zero CO2 emissions. In mining the International Council on Mining and Metals has committed to achieving net zero emissions by 2050 or earlier. Of the various alternative fuels hydrogen (H2 ) has seen a considerable rise in popularity in recent years as H2 combustion accounts for zero CO2 emissions due to the lack of carbon in the burning process. When combusted with pure oxygen it also accounts for zero NOx formation and near-zero emissions overall. To this end this study aims to examine the overall environmental performance of H2 -powered motorised equipment compared to conventional fossil fuel-powered equipment through Life Cycle Assessment. The assessment was conducted using the commercial software Sphera LCA for Experts following the conventionally used framework established by ISO 14040:2006 and 14044:2006/A1:2018 and the International Life Cycle Data Handbook consisting of (1) the goal and scope definition (2) the Life Cycle Inventory (LCI) preparation (3) the Life Cycle Impact Assessment (LCIA) and (4) the interpretation of the results. The results will offer an overview to support decision-makers in the sector.
A New Path towards Sustainable Energy Transition: Techno-Economic Feasibility of a Complete Hybrid Small Modular Reactor/Hydrogen (SMR/H2) Energy System
Oct 2023
Publication
Small modular reactors (SMRs) are nuclear reactors with a smaller capacity than traditional large-scale nuclear reactors offering advantages such as increased safety flexibility and cost-effectiveness. By producing zero carbon emissions SMRs represent an interesting alternative for the decarbonization of power grids. Additionally they present a promising solution for the production of hydrogen by providing large amounts of energy for the electrolysis of water (pink hydrogen). The above hint at the attractiveness of coupling SMRs with hydrogen production and consumption centers in order to form clusters of applications which use hydrogen as a fuel. This work showcases the techno-economic feasibility of the potential installation of an SMR system coupled with hydrogen production the case study being the island of Crete. The overall aim of this approach is the determination of the optimal technical characteristics of such a system as well as the estimation of the potential environmental benefits in terms of reduction of CO2 emissions. The aforementioned system which is also connected to the grid is designed to serve a portion of the electric load of the island while producing enough hydrogen to satisfy the needs of the nearby industries and hotels. The results of this work could provide an alternative sustainable approach on how a hydrogen economy which would interconnect and decarbonize several industrial sectors could be established on the island of Crete. The proposed systems achieve an LCOE between EUR 0.046/kWh and EUR 0.052/kWh while reducing carbon emissions by more than 5 million tons per year in certain cases.
Hydrogen Revolution in Europe: Bibliometric Review of Industrial Hydrogen Applications for a Sustainable Future
Jul 2024
Publication
Industrial applications of hydrogen are key to the transition towards a sustainable lowcarbon economy. Hydrogen has the potential to decarbonize industrial sectors that currently rely heavily on fossil fuels. Hydrogen with its unique and versatile properties has several in-industrial applications that are fundamental for sustainability and energy efficiency such as the following: (i) chemical industry; (ii) metallurgical sector; (iii) transport; (iv) energy sector; and (v) agrifood sector. The development of a bibliometric analysis of industrial hydrogen applications in Europe is crucial to understand and guide developments in this emerging field. Such an analysis can identify research trends collaborations between institutions and countries and the areas of greatest impact and growth. By examining the scientific literature and comparing it with final hydrogen consumption in different regions of Europe the main actors and technologies that are driving innovation in industrial hydrogen use on the continent can be identified. The results obtained allow for an assessment of the knowledge gaps and technological challenges that need to be addressed to accelerate the uptake of hydrogen in various industrial sectors. This is essential to guide future investments and public policies towards strategic areas that maximize the economic and environmental impact of industrial hydrogen applications in Europe.
Techno-Economic Feasibility of Fuel Cell Vehicle-to-Grid Fast Frequency Control in Non-Interconnected Islands
Dec 2024
Publication
This paper presents an innovative approach to fast frequency control in electric grids by leveraging parked fuel cell electric vehicles (FCEVs) especially heavy-duty vehicles such as trucks. Equipped with hydrogen storage tanks and fuel cells these vehicles can be repurposed as dynamic grid-support assets while parked in designated areas. Using an external cable and inverter system FCEVs inject power into the grid by converting DC from fuel cells into AC to be compatible with grid requirements. This functionality addresses sudden power imbalances providing a rapid and efficient solution for frequency stabilization. The system’s external inverter serves as a central control hub monitoring real-time grid frequency and directing FCEVs to supply virtual inertia and primary reserves through droop control as required. Simulation results validate that FCEVs could effectively complement thermal generators preventing unacceptable frequency drops load shedding and network blackouts. A techno-economic analysis demonstrates the economic feasibility of the concept concluding that each FCEV consumes approximately 0.3 kg of hydrogen per day incurring a daily cost of around EUR 1.5. For an island grid with a nominal power of 100 MW maintaining frequency stability requires a fleet of 100 FCEVs resulting in a total daily cost of EUR 150. Compared to a grid-scale battery system offering equivalent frequency response services the proposed solution is up to three times more cost-effective highlighting its economic and technical potential for grid stabilization in renewable-rich non-interconnected power systems.
Cost Projection of Global Green Hydrogen Production Scenarios
Nov 2023
Publication
A sustainable future hydrogen economy hinges on the development of green hydrogen and the shift away from grey hydrogen but this is highly reliant on reducing production costs which are currently too high for green hydrogen to be competitive. This study predicts the cost trajectory of alkaline and proton exchange membrane (PEM) electrolyzers based on ongoing research and development (R&D) scale effects and experiential learning consequently influencing the levelized cost of hydrogen (LCOH) projections. Electrolyzer capital costs are estimated to drop to 88 USD/kW for alkaline and 60 USD/kW for PEM under an optimistic scenario by 2050 or 388 USD/kW and 286 USD/kW respectively under a pessimistic scenario with PEM potentially dominating the market. Through a combination of declining electrolyzer costs and a levelized cost of electricity (LCOE) the global LCOH of green hydrogen is projected to fall below 5 USD/kgH2 for solar onshore and offshore wind energy sources under both scenarios by 2030. To facilitate a quicker transition the implementation of financial strategies such as additional revenue streams a hydrogen/carbon credit system and an oxygen one (a minimum retail price of 2 USD/kgO2 ) and regulations such as a carbon tax (minimum 100 USD/tonCO2 for 40 USD/MWh electricity) and a contract-for-difference scheme could be pivotal. These initiatives would act as financial catalysts accelerating the transition to a greener hydrogen economy.
CFD Analysis of Delayed Ignition Hydrogen Releases from a Train Inside a Tunnel
Sep 2023
Publication
In the present work we present the results of numerical simulations involving the dispersion and combustion of a hydrogen cloud released in an empty tunnel. The simulations were conducted with the use of ADREA-HF CFD code and the results are compared with measurements from experiments conducted by HSE in a tunnel with the exact same geometry. The length of the tunnel is equal to 70 m and the maximum height from the floor is equal to 3.25 m. Hydrogen release is considered to occur from a train containing pressurized hydrogen stored at 580 bars. The release diameter is equal to 4.7 mm and the release direction is upwards. Initially dispersion simulation was performed in order to define the initial conditions for the deflagration simulations. The effect of the initial wind speed and the effect of the ignition delay time were investigated. An extensive grid sensitivity study was conducted in order to achieve grid independent results. The CFD model takes into account the flame instabilities that are developed as the flame propagates inside the tunnel and turbulence that exists in front of the flame front. Pressure predictions are compared against experimental measurements revealing a very good performance of the CFD model.
CFD Modelling of Large Scale Liquid Hydrogen Experiments Indoors and Outdoors
Sep 2023
Publication
The use of liquid hydrogen in maritime applications is expected to grow in the coming years in order to meet the decarbonisation goals that EU countries and countries worldwide have set for 2050. In this context The Norwegian Public Roads Administration commissioned large-scale LH2 dispersion and explosion experiments both indoors and outdoors which were conducted by DNG GL in 2019 to better understand safety aspects of LH2 in the maritime sector. In this work the DNV unignited outdoor and indoor tests have been simulated and compared with the experiments with the aim to validate the ADREA-HF Computational Fluid Dynamics (CFD) code in maritime applications. Three tests two outdoors and one indoors were chosen for the validation. The outdoor tests (test 5 and 6) involved liquid hydrogen release vertically downwards and horizontal to simulate an accidental leakage during bunkering. The indoor test (test 9) involved liquid hydrogen release inside a closed room to simulate an accident inside a tank connection space (TCS) connected to a ventilation mast.
Numerical Investigation of Hydrogen Jet Dispersion Below and Around a Car in a Tunnel
Sep 2023
Publication
Accidental release from a hydrogen car tank in a confined space like a tunnel poses safety concerns. This Computational Fluid Dynamics (CFD) study focuses on the first seconds of such a release which are the most critical. Hydrogen leaks through a Thermal Pressure Relief Device (TPRD) forms a high-speed jet that impinges on the street spreads horizontally recirculates under the chassis and fills the area below it in about one second. The “fresh-air entrainment effect” at the back of the car changes the concentrations under the chassis and results in the creation of two “tongues” of hydrogen at the rear corners of the car. Two other tongues are formed near the front sides of the vehicle. In general after a few seconds hydrogen starts moving upwards around the car mainly in the form of buoyant blister-like structures. The average hydrogen volume concentrations below the car have a maximum of 71% which occurs at 2 s. The largest “equivalent stoichiometric flammable gas cloud size Q9” is 20.2 m3 at 2.7 s. Smaller TPRDs result in smaller hydrogen flow rates and smaller buoyant structures that are closer to the car. The investigation of the hydrogen dispersion during the initial stages of the leak and the identification of the physical phenomena that occur can be useful for the design of experiments for the determination of the TPRD characteristics for potential safety measures and for understanding the further distribution of the hydrogen cloud in the tunnel.
No more items...