India
Forward Osmosis Membrane Bioreactor for Sustainable Hydrogen Production from Waste Molasses
Oct 2025
Publication
The current study evaluates the feasibility of a forward osmosis membrane bioreactor (FO-MBR) for dark fermentation aiming at simultaneous biohydrogen production and wastewater treatment. Optimal microbial inoculation was achieved via heat-treated activated sludge enriching Clostridium sensu stricto 1 and yielding up to 2.21 mol H2.(mol hexose)− 1 in batch mode. In continuous operation a substrate concentration of 4.4 g L− 1 and a hydraulic retention time (HRT) of 12 h delivered the best results producing 1.51 mol H2.(mol hexosesupplied) − 1 . The FO-MBR configured with a 1.1 m2 hollow fiber side-stream membrane module and operated under dynamic HRT (2.5–12 h) dependent on membrane flux was integrated with intermittent CSTR (Continuous stirred tank reactor) operation to counter metabolite accumulation. This system outperformed a conventional CSTR achieving a hydrogen yield of 1.78 mol H2.(mol hexosesupplied) − 1 . Remarkable treatment efficiencies were observed with BOD5 COD and TOC removal rates of 95.32 % 99.02 % and 99.10 % respectively and an 83.8 % reduction in total waste volume. Additionally the FO-MBR demonstrated strong antifouling performance with 96.14 % water flux recovery achieved after a brief 5 min hydraulic rinse following 47.5 h of continuous highstrength broth exposure. These results highlight the FO-MBR system’s ability as a sustainable and highperformance alternative for integrated hydrogen production and effluent treatment. Further studies are recommended to address long-term fouling control and metabolite management for industrial scalability.
Biohydrogen Production from Industrial Wastewater: An Overview
Jun 2019
Publication
Biohydrogen production from industrial wastewater has been a focus of interest in recent years. The in depth knowledge in lab scale parameters and emerging strategies are needed to be investigated in order to implement the biohydrogen production process at large scale. The operating parameters have great influence on biohydrogen productivity. With the aim to gain major insight into biohydrogen production process this review summarizes recent updates on dark fermentation inoculum pretreatment methods operating parameters (hydraulic retention time organic loading rate pH temperature volatile fatty acids bioreactor configuration nutrient availability partial pressure etc.). The challenges and limitations associated with the biohydrogen production are lack of biohydrogen producers biomass washout and accumulation of metabolites are discussed in detail. The advancement strategies to overcome these limitations are also briefly discussed.
Advancements in Green Hydrogen Recovery from Industrial Wastewater: A Comprehensive Review
Dec 2024
Publication
Green hydrogen (GH2) a sustainable and clean energy carrier is increasingly regarded as a solution to energy challenges and environmental issues. Industrial wastewater possesses a significant potential for hydrogen generation using biological chemical and electrochemical methods. This review analysis evaluates progress in GH2 production from industrial wastewater highlighting its environmental and cost benefits. Process optimization technological improvements and enhancements in catalysts for chemical and electrochemical hydrogen generation are also provided. It also considers the integration of GH2 production methods with wastewater treatment procedures to achieve synergistic benefits including enhanced pollutant removal and energy recovery. Challenges associated with GH2 production include substrate variability economic viability reactor scalability and environmental sustainability are also discussed. Also this review provides a future outlook to promote sustainable energy solutions and tackle global environmental issues related to GH2 from industrial wastewater.
Global Trends in Innovation Across Hydrogen Production, Supply and Demand Chains
Aug 2025
Publication
The global shift away from fossil fuels necessitates swift and transformative action underscoring the need for timely and accurate insights into emerging low-carbon technologies. This review provides a comprehensive and systematic analysis of innovation trends within the hydrogen technology ecosystem. Drawing on global patent data as a key indicator of industrial innovation the study offers a forward-looking assessment of technological developments spanning the entire hydrogen value chain like production storage distribution transformation and end-use applications across various sectors. By evaluating patent activity over time and across regions the review highlights significant innovation trends identifies leading industrial contributors and maps the evolving global competitive landscape. Particular attention is given to regional dynamics and sector-specific breakthroughs offering a nuanced perspective for policymakers investors and stakeholders engaged in energy transition planning. As hydrogen becomes increasingly central to decarbonization strategies worldwide this study serves as a critical intelligence resource illuminating current trajectories and signalling potential technological inflection points in the ongoing energy transformation.
Pipeline Regulation for Hydrogen: Choosing Between Paths and Networks
Oct 2025
Publication
The reliance on hydrogen as part of the transition towards a low-carbon economy will require developing dedicated pipeline infrastructure. This deployment will be shaped by regulatory frameworks governing investment and access conditions ultimately structuring how the commodity is traded. The paper assesses the market design for hydrogen infrastructure assuming the application of unbundling requirements. For this purpose it develops a general economic framework for regulating pipeline infrastructure focusing on asset specificity market power and access rules. The paper assesses the scope of application of infrastructure regulation which can be set to individual pipelines or to entire networks. When treated as entire networks the infrastructure can provide flexibility to enhance market liquidity. However this requires establishing network monopolies which rely on central planning and reduce the overall dynamic efficiency of the sector. The paper further compares the regulation applied to US and EU natural gas pipeline infrastructure. Based on the different challenges faced by the EU hydrogen sector including absence of wholesale concentration and large infrastructure needs the paper draws lessons for a regulatory framework establishing the main building blocks of a hydrogen target model. The paper recommends a review of the current EU regulatory framework in the Hydrogen and Decarbonised Gas Package to enable i) the application of regulation to individual pipelines rather than entire networks; ii) the use of negotiated third-party access light-touch regulation and possibly marketbased coordination mechanisms for the access to the infrastructure and iii) a more significant role for long-term capacity contracts to underpin infrastructure investments.
Nanomaterials for Hydrogen Storage Applications: A Review
Sep 2008
Publication
Nanomaterials have attracted great interest in recent years because of the unusual mechanical electrical electronic opticalmagnetic and surface properties. The high surface/volume ratio of these materials has significant implications with respectto energy storage. Both the high surface area and the opportunity for nanomaterial consolidation are key attributes of thisnew class of materials for hydrogen storage devices. Nanostructured systems including carbon nanotubes nano-magnesiumbased hydrides complex hydride/carbon nanocomposites boron nitride nanotubes TiS2/MoS2 nanotubes alanates polymernanocomposites and metal organic frameworks are considered to be potential candidates for storing large quantities of hydrogen.Recent investigations have shown that nanoscale materials may offer advantages if certain physical and chemical effects related tothe nanoscale can be used efficiently. The present review focuses the application of nanostructured materials for storing atomicor molecular hydrogen. The synergistic effects of nanocrystalinity and nanocatalyst doping on the metal or complex hydrides forimproving the thermodynamics and hydrogen reaction kinetics are discussed. In addition various carbonaceous nanomaterialsand novel sorbent systems (e.g. carbon nanotubes fullerenes nanofibers polyaniline nanospheres and metal organic frameworksetc.) and their hydrogen storage characteristics are outlined.
An Overview of Hydrogen Storage Technologies - Key Challenges and Opportunities
Jul 2024
Publication
Hydrogen energy has been proposed as a reliable and sustainable source of energy which could play an integral part in demand for foreseeable environmentally friendly energy. Biomass fossil fuels waste products and clean energy sources like solar and wind power can all be employed for producing hydrogen. This comprehensive review paper provides a thorough overview of various hydrogen storage technologies available today along with the benefits and drawbacks of each technology in context with storage capacity efficiency safety and cost. Since safety concerns are among the major barriers to the broad application of H2 as a fuel source special attention has been paid to the safety implications of various H2 storage techniques. In addition this paper highlights the key challenges and opportunities facing the development and commercialization of hydrogen storage technologies including the need for improved materials enhanced system integration increased awareness and acceptance. Finally recommendations for future research and development with a particular focus on advancing these technologies towards commercial viability.
Explainable Prognostics-optimization of Hydrogen Carrier Biogas Engines in an Integrated Energy System using a Hybrid Game-theoretic Approach with XGBoost and Statistical Methods
Jul 2025
Publication
Biogas is a renewable fuel source that helps the circular economy by turning organic waste into energy. This study tackles existing research gaps by exploring the use of biogas as a hydrogen carrier in dual-fuel engine systems. It additionally employs explainable machine learning techniques for predictive modelling and interpretive analysis. The dual-fuel engine was powered with biogas as main fuel while biodiesel-diesel blend was used as pilot fuel. The engine was tested at different Compression Ratios (CR) and Brake Powers (BP). The generated data from testing was used to develop the mathematical models and parametric optimization of engine performance and emissions using Response Surface Methodology (RSM). Desirability-based optimization identified optimal results: a Peak Cylinder Pressure (Pmax) of 54.97 bar and a brake thermal efficiency (BTE) of 24.35 % achieved at a CR of 18.3 and a BP of 3.3 kW. The predictive machine learning approach Extreme Gradient Boosting (XGBoost) was employed to develop predictive models. XGBoost precisely forecasted engine performance and emissions with Coefficient of Determination (R2 ) values (up to 0.9960) and minimal Mean Absolute Percentage Error (MAPE) values (1.47–4.89 %) for all parameters. SHapley Additive exPlanations (SHAP) based analysis identified BP as the predominant feature with a normalized importance score reaching up to 0.9 surpassing that of CR. These findings underscore the potential of biogas as a viable sustainable fuel and highlight the role of explainable prediction–optimization frameworks can play in achieving optimal engine performance and emission control.
Smart Screening of Hydrogen Storage Capacities in MOFs Using a Tailored Machine Learning
Sep 2025
Publication
Metal-organic frameworks (MOFs) have emerged as promising candidates for solid-state hydrogen storage owing to their exceptional specific surface area high pore volume and chemically tunable structural properties. In this work a diverse set of experimentally synthesized MOFs were evaluated to model and predict hydrogen storage capacity (wt%) using 4 key descriptors which are Brunauer–Emmett–Teller (BET) surface area pore volume operating pressure and temperature. Correlation analysis revealed positive associations between BET surface area pressure and pore volume with storage capacity and a negative association with temperature consistent with physisorption mechanism. Six machine learning models were developed: support vector regression (SVR) artificial neural networks (ANN) random forest (RF) Gaussian process regression (GPR) gradient boosting (GB) and a Committee of Expert Systems (CES) integrating all base learners. While GB was the top-performing standalone model the CES delivered the highest predictive fidelity (R2 = 0.9958 MSE = 0.0094) as confirmed by parity plots and residual analysis. SHapley Additive exPlanations (SHAP) corroborated the statistical feature rankings consistently identifying BET surface area and pressure as the most influential positive contributors in alignment with adsorption thermodynamics. Paired t-tests on root-mean-square error (RMSE) values confirmed statistically significant CES improvements over all individual models. The CES framework thus offers a dataefficient accurate and interpretable approach for rapid MOF screening with straightforward adaptability to other porous materials and adsorption-based energy storage systems.
Sustainable Vehicles for Decarbonizing the Transport Sector: A Comparison of Biofuel, Electric, Fuel Cell and Solar-powered Vehicles
Mar 2024
Publication
Climate change necessitates urgent action to decarbonize the transport sector. Sustainable vehicles represent crucial alternatives to traditional combustion engines. This study comprehensively compares four prominent sustainable vehicle technologies: biofuel-powered vehicles (BPVs) fuel cell vehicles (FCVs) electric vehicles (EVs) and solar vehicles. We examine each technology’s history development classification key components and operational principles. Furthermore we assess their sustainability through technical factors environmental impacts cost considerations and policy dimensions. Moreover the discussion section addresses the challenges and opportunities associated with each technology and assesses their social impact including public perception and adoption. Each technology offers promise for sustainable transportation but faces unique challenges. Policymakers industry stakeholders and researchers must collaborate to address these challenges and accelerate the transition toward a decarbonized transport future. Potential future research areas are identified to guide advancements in sustainable vehicle technologies.
Investigation on Implementing Hydrogen Technology in Residential Sector
Jul 2024
Publication
Rapid urbanization and globalization are causing a rise in the energy demand within the residential sector. Currently majority of the energy demand for the residential sector being supplied from fossil fuels these sources account for greenhouse gas emissions responsible for anthropogenic-driven climate change. About 85 % of the world’s energy demands are being met by non-renewable sources of energy. An immediate need to shift towards renewable energy sources to generate electricity is the need of the hour. These long-standing renewable energy sources including solar hydropower and wind energy have been crucial pillars of sustainable energy for years. However as their implementation has matured we are increasingly recognizing their limitations. Issues such as the scarcity of suitable locations and the significant carbon footprint associated with constructing renewable energy infrastructure are becoming more apparent. Hydrogen has been found to play a vital role as an energy carrier in framing the energy picture in the 21st century. Currently about 1 % of the global energy demands are being met by hydrogen energy harnessed through renewable methods. Its low carbon emissions when compared to other methods lower comparative production costs and high energy efficiency of 40–60 % make it a suitable choice. Integrating hydrogen production systems with other renewable source of energy such as solar and wind energy have been discussed in this review in detail. With the concepts of green buildings or net zero energy buildings gaining attraction integration of hydrogen-based systems within residential and office sectors through the use of devices such as micro–Combined Heat and Power devices (mCHP) have proven to be effective and efficient. These devices have been found to save the consumed energy by 22 % along with an effective reduction in carbon emissions of 18 % when used in residential sectors. Using the rejected energy from other processes these mCHP devices can prove to be vital in meeting the energy demands of the residential sector. Through the support of government schemes mCHP devices have been widely used in countries such as Japan and Finland and have benefitted from the same. Hydrogen storage is critical for efficient operation of the integrated renewable systems as improper storage of the hydrogen produced could lead to human and environmental disasters. Using boron hydrides or ammonia (121 kg H2/m3 ) or through organic carriers hydrogen can be stored safely and easily regenerated without loss of material. A thorough comparison of all the renewable sources of energy that are used extensively is required to evaluate the merits of using hydrogen as an energy carrier which has been addressed in this review paper. The need to address the research gap in application of mCHP devices in the residential sector and the benefits they provide has been addressed in this review. With about 2500 GW of energy ready to be harnessed through the mCHP devices globally the potential of mCHP systems globally are discussed in detail in this paper. This review discusses challenges and solutions to hydrogen production storage and ways to implement hydrogen technology in the residential sector. This review allows researchers to build a renewable alternative with hydrogen as a clean energy vector for generating electricity in residential systems.
Fuel Cell-based Hybrid Electric Vehicles: An Integrated Review of Current Status, Key Challenges, Recommended Policies, and Future Prospects
Aug 2023
Publication
Battery electric vehicles (BEVs) and fuel cell electric vehicles (FCEVs) whose exhaust pipes emit nothing are examples of zero-emission automobiles. FCEVs should be considered an additional technology that will help battery-powered vehicles to reach the aspirational goal of zero-emissions electric mobility particularly in situations where the customers demand for longer driving ranges and where using batteries would be insufficient due to bulky battery trays and time-consuming recharging. This study stipulates a current evaluation of the status of development and challenges related to (i) research gap to promote fuel-cell based HEVs (ii) key barriers of fuel-cell based HEVs (iii) advancement of electric mobility and their power drive (iv) electrochemistry of fuel cell technology for FCEVs (v) power transformation topologies communication protocols and advanced charging methods (vi) recommendations and future prospects of fuel-cell HEVs and (vii) current research trends of EVs and FCEVs. This article discusses key challenges with fuel cell electric mobility such as low fuel cell performance cold starts problems with hydrogen storage cost-reduction safety concerns and traction systems. The operating characteristics and applications of several fuel-cell technologies are investigated for FCEVs and FCHEVs. An overview of the fuel cell is provided which serves as the primary source of energy for FCHEVs along with comparisons and its electrochemistry. The study of power transformation topologies communication protocols and enhanced charging techniques for FCHEVs has been studied analytically. Recent technology advancements and the prospects for FCHEVs are discussed in order to influence the future vehicle market and to attain the aim of zero emissions.
Green Hydrogen Revolution: Advancing Electrolysis, Market Integration, and Sustainable Energy Transitions Towards a Net Zero Future
Apr 2025
Publication
Green hydrogen is emerging as a key driver in global decarbonization efforts particularly in hard-to-abate sectors such as steel manufacturing ammonia production and long-distance transportation. This study evaluates the techno-economic and environmental aspects of green hydrogen production storage and integration with renewable energy systems. Electrolysis remains the dominant production method with efficiency rates ranging from 70–80% for Alkaline Electrolyzers (AEL) 75–85% for Proton Exchange Membrane Electrolyzers (PEMEL) and up to 90% for Solid Oxide Electrolyzers (SOEL). Capital costs are steadily decreasing with AEL costs falling from $1200/kW in 2018 to $800/kW in 2024 while PEMEL costs are projected to decline to $600/kW by 2030. Green hydrogen significantly reduces carbon emissions with a footprint of 0.5–1 kg CO₂ per kg of H₂ compared to 10–12 kg for gray hydrogen and 1–3 kg for blue hydrogen. Its potential to cut global CO₂ emissions by 6 gigatons annually by 2050 underscores its role in climate action. However its high water demand—approximately 9 liters per kilogram of hydrogen—necessitates efficient management strategies such as desalination and recycling. Economically green hydrogen is becoming more competitive with its levelized cost decreasing from $6/kg in 2018 to $3–4/kg in 2024 and projections indicating a further drop to $1.50/kg by 2030. Global investments exceeding $500 billion in 2024 along with major projects like Saudi Arabia's NEOM Green Hydrogen Project and Australia's Asian Renewable Energy Hub are accelerating adoption. Policy frameworks such as the EU Hydrogen Strategy and the U.S. Inflation Reduction Act further support deployment. Despite progress challenges remain in infrastructure storage and regulatory frameworks necessitating continued innovation and international collaboration. Green hydrogen aligns with key Sustainable Development Goals (SDGs) including SDG 7 (Affordable and Clean Energy) SDG 9 (Industry Innovation and Infrastructure) and SDG 13 (Climate Action). As the world transitions to a low-carbon economy green hydrogen presents a transformative opportunity contingent on sustained technological advancements investment and policy support.
2D MXene: From Synthesis to Storage - Exploring their Potential as Sparking Materials for Hydrogen Storage
Jul 2025
Publication
In the advancing landscape of sustainable energy the development of efficient and reversible hydrogen storage materials operable under ambient conditions remains a critical challenge for material scientists and the broader research community. Hydrogen owing to its exceptionally high energy density is regarded as a leading candidate for facilitating the transition from conventional fossil fuels to cleaner renewable energy systems. However alongside its production the safe and efficient storage of hydrogen presents a significant bottleneck due to its low volumetric density and associated safety concerns.<br/>Conventional storage techniques such as high-pressure compression and cryogenic liquefaction though widely used demand complex infrastructure and carry substantial safety risks. These limitations have steered growing interest toward solid-state hydrogen storage systems that rely on physisorption or chemisorption mechanisms preferably operating near ambient conditions. Consequently the pursuit of materials with favourable thermodynamics and kinetics for reversible hydrogen uptake and release has become imperative. Among the emerging candidates MXenes a class of two-dimensional (2D) materials comprising transition metal carbides nitrides or carbonitrides have garnered significant attention due to their high surface area tuneable surface chemistry and excellent conductivity.<br/>Despite the growing body of literature on hydrogen storage using MXenes a comprehensive evaluation that bridges the gap between theoretical predictions and experimental realities remains limited. This review addresses that gap by critically examining current strategies for solid-state hydrogen storage with a particular emphasis on MXene-based materials. It highlights the influence of synthesis techniques on structural properties discusses the mechanisms of hydrogen interaction with MXene surfaces and evaluates their practical implications in real-world applications. While the potential of MXenes in hydrogen storage is considerable it is not yet fully realized. This article provides an in-depth assessment of the current advancements challenges and future directions for MXene-based materials in the context of hydrogen storage offering valuable insights for both fundamental research and applied energy systems.
A Review on Biohydrogen Sources, Production Routes, and Its Application as a Fuel Cell
Aug 2023
Publication
More than 80% of the energy from fossil fuels is utilized in homes and industries. Increased use of fossil fuels not only depletes them but also contributes to global warming. By 2050 the usage of fossil fuels will be approximately lower than 80% than it is today. There is no yearly variation in the amount of CO2 in the atmosphere due to soil and land plants. Therefore an alternative source of energy is required to overcome these problems. Biohydrogen is considered to be a renewable source of energy which is useful for electricity generation rather than relying on harmful fossil fuels. Hydrogen can be produced from a variety of sources and technologies and has numerous applications including electricity generation being a clean energy carrier and as an alternative fuel. In this review a detailed elaboration about different kinds of sources involved in biohydrogen production various biohydrogen production routes and their applications in electricity generation is provided.
Challenges and Opportunities in Green Hydrogen Adoption for Decarbonizing Hard-to-Abate Industries: A Comprehensive Review
Feb 2024
Publication
The decarbonization of hard-to-abate industries is crucial for keeping global warming to below 2◦C. Green or renewable hydrogen synthesized through water electrolysis has emerged as a sustainable alternative for fossil fuels in energy-intensive sectors such as aluminum cement chemicals steel and transportation. However the scalability of green hydrogen production faces challenges including infrastructure gaps energy losses excessive power consumption and high costs throughout the value chain. Therefore this study analyzes the challenges within the green hydrogen value chain focusing on the development of nascent technologies. Presenting a comprehensive synthesis of contemporary knowledge this study assesses the potential impacts of green hydrogen on hard-to-abate sectors emphasizing the expansion of clean energy infrastructure. Through an exploration of emerging renewable hydrogen technologies the study investigates aspects such as economic feasibility sustainability assessments and the achievement of carbon neutrality. Additionally considerations extend to the potential for large-scale renewable electricity storage and the realization of net-zero goals. The findings of this study suggest that emerging technologies have the potential to significantly increase green hydrogen production offering affordable solutions for decarbonization. The study affirms that global-scale green hydrogen production could satisfy up to 24% of global energy needs by 2050 resulting in the abatement of 60 gigatons of greenhouse gas (GHG) emissions - equivalent to 6% of total cumulative CO2 emission reductions. To comprehensively evaluate the impact of the hydrogen economy on ecosystem decarbonization this article analyzes the feasibility of three business models that emphasize choices for green hydrogen production and delivery. Finally the study proposes potential directions for future research on hydrogen valleys aiming to foster interconnected hydrogen ecosystems.
Elevating Sustainability with a Multi-Renewable Hydrogen Generation System Empowered by Machine Learning and Multi-objective Optimisation
Apr 2024
Publication
The global energy landscape is rapidly shifting toward cleaner lower-carbon electricity generation necessitating a transition to alternate energy sources. Hydrogen particularly green hydrogen looks to be a significant solution for facilitating this transformation as it is produced by water electrolysis with renewable energy sources such as solar irradiations wind speed and biomass residuals. Traditional energy systems are costly and produce energy slowly due to unpredictability in resource supply. To address this challenge this work provides a novel technique that integrates a multi-renewable energy system using multi objective optimization algorithm to meets the machine learning-based forecasted load model. Several forecasting models including Autoregressive Integrated Moving Average(ARIMA) Random Forest and Long Short-Term Memory Recurrent Neural Network (LSTMRNN) are assessed for develop the statistical metrics values such as RMSE MAE and MAPE. The selected Non-Sorting Moth Flame Optimization (NSMFO) algorithm demonstrates technological prowess in efficiently achieving global optimization particularly when handling multiple objective functions. This integrated method shows enormous promise in technological economic and environmental terms emphasizing its ability to promote energy sustainability targets.
Wastewater as a Resource: Evaluating Light Dependent and Light Independent Methods, Challenges, and Future Directions for Sustainable Hydrogen Generation
Aug 2025
Publication
The increasing need for environmentally friendly energy sources has contributed to the development of innovative technologies that also resolve environmental issues. Hydrogen can be produced in a number of ways including using fossil fuels biomass and renewable energy sources like wind and sun. Using renewable energy for water-based production is the most sustainable method of producing hydrogen. However since fresh water is scarce the main way to address this issue is to use wastewater. Although wastewater is frequently seen as an issue it could additionally be seen as a valuable source of energy as it has the potential to produce bio-hydrogen. The current review emphasizes the key conclusion of studies examining the viability of the generation of hydrogen from wastewater by applying a variety of technologies in order to investigate each method’s potential which effectively removes pollutants from wastewater addressing both environmental challenges of wastewater treatment as well as clean energy production. Hydrogen production from wastewater using sustainable lowenergy methods enhances energy recovery in treatment plants and promotes a circular economy. This lowcarbon hydrogen supports global decarbonization and simultaneously achieving pollutant degradation with advanced systems offers dual benefits over traditional wastewater treatment methods. The essential details of 7 emerging technologies their working mechanisms affecting parameters work advances advantages and disadvantages and their future prospects are taken into consideration in 2 distinct classes- light-independent and light-dependent technologies.
Design and Analysis of Hydrogen Storage Tank with Different Materials by Ansys
Dec 2019
Publication
Pressure vessels are used for large commercial and industrial applications such as softening filtration and storage. It is expected that high-pressure hydrogen storage vessels will be widely used in hydrogen-fuelled vehicles. Progressive failure properties the burst pressure and fatigue life should be taken into account in the design of composite pressure vessels. In this work the model and analysis of hydrogen storage vessels along with complete structural and thermal analysis. Liquid hydrogen is seen as an outstanding candidate for the fuel of high altitude long-endurance unmanned aircraft. The design of lightweight and super-insulated storage tanks for cryogenic liquid hydrogen is since long identified as crucial to enable the adoption of the liquid hydrogen. The basic structural design of the airborne cryogenic liquid hydrogen tank was completed in this paper. The problem of excessive heat leakage of the traditional support structure was solved by designing and using a new insulating support structure. The thermal performance of the designed tank was evaluated. The structure of the tank was analyzed by the combination of the film container theory and finite element numerical simulation method. The structure of the adiabatic support was analyzed by using the Hertz contact theory and numerical simulation method. A simple and effective structure analysis method for a similar container structure and point-contact support structure was provided. Bases for further structural optimization design of hydrogen tank will be provided also. The analysis will be carried out with different materials like titanium nickel alloy and some coated powders like alumina Titania and zirconium oxide. The results will be compared with that.
The Role of Industrial Catalysts in Accelerating the Renewable Energy Transition
Aug 2025
Publication
Industrial catalysts are accelerating the global transition toward renewable energy serving as enablers for innovative technologies that enhance efficiency lower costs and improve environmental sustainability. This review explores the pivotal roles of industrial catalysts in hydrogen production biofuel generation and biomass conversion highlighting their transformative impact on renewable energy systems. Precious-metal-based electrocatalysts such as ruthenium (Ru) iridium (Ir) and platinum (Pt) demonstrate high efficiency but face challenges due to their cost and stability. Alternatives like nickel-cobalt oxide (NiCo2O4) and Ti3C2 MXene materials show promise in addressing these limitations enabling costeffective and scalable hydrogen production. Additionally nickel-based catalysts supported on alumina optimize SMR reducing coke formation and improving efficiency. In biofuel production heterogeneous catalysts play a crucial role in converting biomass into valuable fuels. Co-based bimetallic catalysts enhance hydrodeoxygenation (HDO) processes improving the yield of biofuels like dimethylfuran (DMF) and γ-valerolactone (GVL). Innovative materials such as biochar red mud and metal–organic frameworks (MOFs) facilitate sustainable waste-to-fuel conversion and biodiesel production offering environmental and economic benefits. Power-to-X technologies which convert renewable electricity into chemical energy carriers like hydrogen and synthetic fuels rely on advanced catalysts to improve reaction rates selectivity and energy efficiency. Innovations in non-precious metal catalysts nanostructured materials and defect-engineered catalysts provide solutions for sustainable energy systems. These advancements promise to enhance efficiency reduce environmental footprints and ensure the viability of renewable energy technologies.
No more items...