Italy
Economic Assessment of Hydrogen Production in a Renewable Energy Community in Italy
Feb 2023
Publication
Renewable Energy Community (REC) is a new paradigm in European Union to produce transform share and sell renewables at a local consumer level also via e-fuel (i.e. hydrogen). This work investigates the economic feasibility of a hydrogen Power-to-Gas (PtG) system realized inside a REC using only excess renewable electricity not consumed by REC itself. A single centralized photovoltaic (PV) plant is directly connected to an electrolyser; a hydrogen compressor and two hydrogen storages at low and high pressure complete the PtG system. A scenario of a REC composed by 450 residential electric users (around 1000 people) has been analysed coupled with described PtG considering eight different sizes of PV plant. In the study Italian subsidies to REC shared energy are evaluated as incentives to hydrogen production. An optimal size of PtG components for each PV size is investigated at the limit of economical sustainability evaluating net present value (NPV) positive and near zero. Results show that for the considered REC it is possible to produce and sell up to around 3 tons per year of green hydrogen at most to the same lowest selling price declared currently in the Italian market (5 €/kg).
Highly Efficient Solar Hydrogen Production through the Use of Bifacial Photovoltaics and Membrane Electrolysis
Jul 2020
Publication
T The large-scale implementation of solar hydrogen production requires an optimal combination of photovoltaic systems with suitably-designed electrochemical cells possibly avoiding power electronics for DC-DC conversion to decrease costs. Here a stable solar-driven water splitting system is presented obtained through the direct connection of a state-of-the-art proton exchange membrane (PEM) electrolyzer to a bifacial silicon hetero junction (SHJ) solar module of three cells in series with total area of 730 cm2 . The bifaciality of the solar module has been optimized through modeling in terms of the number of cells module height and inclination. During outdoor operation in the standard monofacial configuration the system is able to produce 3.7 gr of H2 h 1 m 2 with an irradiation of 1000 W m 2 and a solar-to-hydrogen efficiency (STH) of 11.55%. The same system operating in bifacial mode gives rise to a higher H2 flux and STH efficiency reaching values of 4.2 gr of H2 h 1 m 2 and STH of 13.5%. Such a noticeable difference is achieved through the collection of albedo radiation from the ground by the bifacial PV system. The system has been tested outdoors for more than 55 h exhibiting very good endurance with no appreciable change in production and eff
High-Performance Hydrogen-Fueled Internal Combustion Engines: Feasibility Study and Optimization via 1D-CFD Modeling
Mar 2024
Publication
Hydrogen-powered mobility is believed to be crucial in the future as hydrogen constitutes a promising solution to make up for the non-programmable character of the renewable energy sources. In this context the hydrogen-fueled internal combustion engine represents one of the suitable technical solutions for the future of sustainable mobility. As a matter of fact hydrogen engines suffer from limitations in volumetric efficiency due to the very low density of the fuel. Consequently hydrogen-fueled ICEs can reach sufficient torque and power density only if suitable supercharging solutions are developed. Moreover gaseous-engine performance can be improved to a great extent if direct injection is applied. In this perspective a remarkable know-how has been developed in the last two decades on NG engines which can be successfully exploited in this context. The objective of this paper is twofold. In the first part a feasibility study has been carried out with reference to a typical 2000cc SI engine by means of 1D simulations. This study was aimed at characterizing the performance on the full load curve with respect to a baseline PFI engine fueled by NG. In this phase the turbocharging/supercharging device has not been included in the model in order to quantify the attainable benefits in the absence of any limitation coming from the turbocharger. In the second part of this paper the conversion of a prototype 1400cc direct injection NG engine running with stoichiometric mixture to run on a lean hydrogen combustion mode has been investigated via 1D simulations. The matching between engine and turbocharger has been included in the model and the effects of two different turbomatching choices have been presented and discussed.
On-site Hydrogen Refuelling Station Techno-economic Model for a Fleet of Fuel Cell Buses
May 2024
Publication
Fuel cell electric buses (FCBs) have proven to be a technically viable solution for transportation owing to various advantages such as reliability simplicity better energy efficiency and quietness of operation. However largescale adoption of FCBs is hindered by the lack of extensive and structured infrastructure and the high cost of clean hydrogen. Many studies agree that one of the significant contributors to the lack of competitiveness of green hydrogen is the cost of electricity for its production followed by transportation costs. On the one hand to reduce the investment cost of the electrolyzer high operating hours should be achieved; on the other as the number of operating hours decreases the impact of the electricity costs declines. This paper presents an innovative algorithm for a scalable hydrogen refuelling station (HRS) capable of successfully matching and identifying the most cost-efficient levelized cost of hydrogen (LCOH) produced via electrolysis and connected to the grid based on the HRS components’ cost curves and the hourly average electricity price profile. The objective is to identify the least-cost range of LCOH by considering both the electric energy and the investment costs associated with a hydrogen demand given by different FCB sizes and electrolyzer rated powers. In addition sensitivity analyses have been conducted to quantify the technology cost margins and a cost comparison between the refuelling of an FCB fleet and the recharging infrastructure required for an equivalent fleet of Battery Electric Buse (BEB) has been performed. An LCOH of around 10.5 €/kg varying from 12 €/kg (2 FCB) to 10.2 €/kg (30 FCB) has been found for the best-optimized configurations. The final major conclusion of this paper is that FCB technology is currently not economically competitive. Still a cost contraction of the electric energy price and the electrolyzer capital investment would lead to a 50% decrease in the LCOH. Furthermore increasing renewable energies into the grid may shift the electricity cost curve resulting in higher prices when the BEB recharging demand is more significant. This impact in addition to the peak power load and longer recharging times might contribute to bridging the gap with FCBs.
Techno-Economic Evaluation of Deploying CCS in SMR Based Merchant H2 Production with NG as Feedstock and Fuel
Aug 2017
Publication
Hydrogen is a crucial raw materials to other industries. Globally nearly 90% of the hydrogen or HyCO gas produced is consumed by the ammonia methanol and oil refining industries. In the future hydrogen could play an important role in the decarbonisation of transport fuel (i.e. use of fuel cell vehicles) and space heating (i.e. industrial commercial building and residential heating). This paper summarizes the results of the feasibility study carried out by Amec Foster Wheeler for the IEA Greenhouse Gas R&D Programme (IEA GHG) with the purpose of evaluating the performance and costs of a modern steam methane reforming without and with CCS producing 100000 Nm3 /h H2 and operating as a merchant plant. This study focuses on the economic evaluation of five different alternatives to capture CO2 from SMR. This paper provides an up-to-date assessment of the performance and cost of producing hydrogen without and with CCS based on technologies that could be erected today. This study demonstrates that CO2 could be captured from an SMR plant with an overall capture rate ranging between 53 to 90%. The integration of CO2 capture plant could increase the NG consumption by -0.03 to 1.41 GJ per Nm3 /h of H2. The amount of electricity exported to the grid by the SMR plant is reduced. The levelised cost of H2 production could increase by 2.1 to 5.1 € cent per Nm3 H2 (depending on capture rate and technology selected). This translates to a CO2 avoidance cost of 47 to 70 €/t.
Economic Evaluation of Renewable Hydrogen Integration into Steelworks for the Production of Methanol and Methane
Jun 2022
Publication
This work investigates the cost-efficient integration of renewable hydrogen into steelworks for the production of methane and methanol as an efficient way to decarbonize the steel industry. Three case studies that utilize a mixture of steelworks off-gases (blast furnace gas coke oven gas and basic oxygen furnace gas) which differ on the amount of used off-gases as well as on the end product (methane and/or methanol) are analyzed and evaluated in terms of their economic performance. The most influential cost factors are identified and sensitivity analyses are conducted for different operating and economic parameters. Renewable hydrogen produced by PEM electrolysis is the most expensive component in this scheme and responsible for over 80% of the total costs. Progress in the hydrogen economy (lower electrolyzer capital costs improved electrolyzer efficiency and lower electricity prices) is necessary to establish this technology in the future.
Performance Estimation of a Downsized SI Engine Running with Hydrogen
Jun 2022
Publication
Hydrogen is a carbon-free fuel that can be produced in many ways starting from different sources. Its use as a fuel in internal combustion engines could be a method of significantly reducing their environmental impact. In spark-ignition (SI) engines lean hydrogen–air mixtures can be burnt. When a gaseous fuel like hydrogen is port-injected in an SI engine working with lean mixtures supercharging becomes very useful in order not to excessively penalize the engine performance. In this work the performance of a turbocharged PFI spark-ignition engine fueled by hydrogen has been investigated by means of 1-D numerical simulations. The analysis focused on the engine behavior both at full and partial load considering low and medium engine speeds (1500 and 3000 rpm). Equivalence ratios higher than 0.35 have been considered in order to ensure acceptable cycle-to-cycle variations. The constraints that ensure the safety of engine components have also been respected. The results of the analysis provide a guideline able to set up the load control strategy of a SI hydrogen engine based on the variation of the air to fuel ratio boost pressure and throttle opening. Furthermore performance and efficiency of the hydrogen engine have been compared to those of the base gasoline engine. At 1500 and 3000 rpm except for very low loads the hydrogen engine load can be regulated by properly combining the equivalence ratio and the boost pressure. At 3000 rpm the gasoline engine maximum power is not reached but for each engine load lean burning allows the hydrogen engine achieving much higher efficiencies than those of the gasoline engine. At full load the maximum power output decreases from 120 kW to about 97 kW but the engine efficiency of the hydrogen engine is higher than that of the gasoline one for each full load operating point.
Combustion of Hydrogen Enriched Methane and Biogases Containing Hydrogen in a Controlled Auto-Ignition Engine
Dec 2018
Publication
The paper describes a numerical study of the combustion of hydrogen enriched methane and biogases containing hydrogen in a Controlled Auto Ignition engine (CAI). A single cylinder CAI engine is modelled with Chemkin to predict engine performance comparing the fuels in terms of indicated mean effective pressure engine efficiency and pollutant emissions. The effects of hydrogen and carbon dioxide on the combustion process are evaluated using the GRI-Mech 3.0 detailed radical chain reactions mechanism. A parametric study performed by varying the temperature at the start of compression and the equivalence ratio allows evaluating the temperature requirements for all fuels; moreover the effect of hydrogen enrichment on the auto-ignition process is investigated. The results show that at constant initial temperature hydrogen promotes the ignition which then occurs earlier as a consequence of higher chemical reactivity. At a fixed indicated mean effective pressure hydrogen presence shifts the operating range towards lower initial gas temperature and lower equivalence ratio and reduces NOx emissions. Such reduction somewhat counter-intuitive if compared with similar studies on spark-ignition engines is the result of operating the engine at lower initial gas temperatures.
Goal and Scope in Life Cycle Sustainability Analysis: The Case of Hydrogen Production from Biomass
Aug 2014
Publication
The framework for life cycle sustainability analysis (LCSA) developed within the project CALCAS (Co-ordination Action for innovation in Life-Cycle Analysis for Sustainability) is introducing a truly integrated approach for sustainability studies. However it needs to be further conceptually refined and to be made operational. In particular one of the gaps still hindering the adoption of integrated analytic tools for sustainability studies is the lack of a clear link between the goal and scope definition and the modeling phase. This paper presents an approach to structure the goal and scope phase of LCSA so as to identify the relevant mechanisms to be further detailed and analyzed in the modeling phase. The approach is illustrated with an on-going study on a new technology for the production of high purity hydrogen from biomass to be used in automotive fuel cells.
Why Ultrasonic Gas Leak Detection?
Sep 2021
Publication
Technologies that have traditionally been used in fixed installations to detect hydrogen gas leaks such as Catalytic and Electrochemical Point Sensors have one limitation: in order for a leak to be detected the gas itself must either be in close proximity to the detector or within a pre-defined area. Unfortunately outdoor environmental conditions such as changing wind directions and quick dispersion of the gas cloud from a leaking outdoor installation often cause that traditional gas detection systems may not alert to the presence of gas simply because the gas never reaches the detector. These traditional gas detection systems need to wait for the gas to form a vapor cloud which may or may not ignite and which may or may not allow loss prevention by enabling shutting down the gas facility in time. Ultrasonic Gas Leak Detectors (UGLD) respond at the speed of sound at gas leak initiation unaffected by changing wind directions and dilution of the gas. Ultrasonic Gas Leak Detectors are based on robust microphone technology; they detect outdoor leaks by sensing the distinct high frequency ultrasound emitted by all high pressure gas leaks. With the ultrasonic sensing technology leaking gas itself does not have to reach the sensor – just the sound of the gas leaking. By adding Ultrasonic Gas Leak Detectors for Hydrogen leak detection faster response times and lower operation costs can be obtained.
Performance Assessment of an Integrated Environmental Control System of Civil Hypersonic Vehicles
Apr 2022
Publication
This paper discloses the architecture and related performance of an environment control system designed to be integrated within a complex multi-functional thermal and energy management system that manages the heat loads and generation of electric power in a hypersonic vehicle by benefitting from the presence of cryogenic liquid hydrogen onboard. A bleed-less architecture implementing an open-loop cycle with a boot-strap sub-freezing air cycle machine is suggested. Hydrogen boil-off reveals to be a viable cold source for the heat exchangers of the system as well as for the convective insulation layer designed around the cabin walls. Including a 2 mm boil-off convective layer into the cabin cross-section proves to be far more effective than a more traditional air convective layer of approximately 60 mm. The application to STRATOFLY MR3 a Mach 8 waverider cruiser using liquid hydrogen as propellant confirmed that presence of cryogenic tanks provides up to a 70% reduction in heat fluxes entering the cabin generated outside of it but inside the vehicle by the propulsive system and other onboard systems. The effectiveness of the architecture was confirmed for all Mach numbers (from 0.3 to 8) and all flight altitudes (from sea level to 35 km).
Improved Hydrogen-Production-Based Power Management Control of a Wind Turbine Conversion System Coupled with Multistack Proton Exchange Membrane Electrolyzers
Mar 2020
Publication
This paper deals with two main issues regarding the specific energy consumption in an electrolyzer (i.e. the Faraday efficiency and the converter topology). The first aspect is addressed using a multistack configuration of proton exchange membrane (PEM) electrolyzers supplied by a wind turbine conversion system (WTCS). This approach is based on the modeling of the wind turbine and the electrolyzers. The WTCS and the electrolyzers are interfaced through a stacked interleaved DC–DC buck converter (SIBC) due to its benefits for this application in terms of the output current ripple and reliability. This converter is controlled so that it can offer dynamic behavior that is faster than the wind turbine avoiding overvoltage during transients which could damage the PEM electrolyzers. The SIBC is designed to be connected in array configuration (i.e. parallel architecture) so that each converter operates at its maximum efficiency. To assess the performance of the power management strategy experimental tests were carried out. The reported results demonstrate the correct behavior of the system during transient operation.
Experimental Characterization and Energy Performance Assessment of a Sorption-Enhanced Steam–Methane Reforming System
Aug 2021
Publication
The production of blue hydrogen through sorption-enhanced processes has emerged as a suitable option to reduce greenhouse gas emissions. Sorption-enhanced steam–methane reforming (SESMR) is a process intensification of highly endothermic steam–methane reforming (SMR) ensured by in situ carbon capture through a solid sorbent making hydrogen production efficient and more environmentally sustainable. In this study a comprehensive energy model of SESMR was developed to carry out a detailed energy characterization of the process with the aim of filling a current knowledge gap in the literature. The model was applied to a bench-scale multicycle SESMR/sorbent regeneration test to provide an energy insight into the process. Besides the experimental advantages of higher hydrogen concentration (90 mol% dry basis 70 mol% wet basis) and performance of CO2 capture the developed energy model demonstrated that SESMR allows for substantially complete energy self-sufficiency through the process. In comparison to SMR with the same process conditions (650 ◦C 1 atm) performed in the same experimental rig SESMR improved the energy efficiency by about 10% further reducing energy needs.
Electric Mobility in Portugal: Current Situation and Forecasts for Fuel Cell Vehicles
Nov 2021
Publication
In recent years the growing concern for air quality has led to the development of sustainable vehicles to replace conventional internal combustion engine (ICE) vehicles. Currently the most widespread technology in Europe and Portugal is that of Battery Electric Vehicles (BEV) or plug‐in HEV (PHEV) electric cars but hydrogen‐based transport has also shown significant growth in the commercialization of Fuel Cell Electric Vehicles (FCEV) and in the development of new infrastructural schemes. In the current panorama of EV particular attention should be paid to hydrogen technology i.e. FCEVs which is potentially a valid alternative to BEVs and can also be hybrid (FCHEV) and plug‐in hybrid (FCPHEV). Several sources cited show a positive trend of hydrogen in the transport sector identifying a growing trend in the expansion of hydrogen infrastructure although at this time it is still at an early stage of development. At the moment the cost of building the infrastructure is still high but on the basis of medium/long‐term scenarios it is clear that investments in hydrogen refueling stations will be profitable if the number of Fuel Cell vehicles increases. Conversely the Fuel Cell vehicle market is hampered if there is no adequate infrastructure for hydrogen development. The opportunity to use Fuel Cells to store electrical energy is quite fascinating and bypasses some obstacles encountered with BEVs. The advantages are clear since the charging times are reduced compared to charging from an electric charging post and the long‐distance voyage is made easier as the autonomy is much larger i.e. the psycho‐ sociological anxiety is avoided. Therefore the first part of the paper provides an overview of the current state of electric mobility in Portugal and the strategies adopted by the country. This is necessary to have a clear vision of how a new technology is accepted by the population and develops on the territory that is the propensity of citizens to technological change. Subsequently using current data on EV development and comparing information from recent years this work aims to investigate the future prospects of FCEVs in Portugal by adopting a dynamic model called SERA (Scenario Evaluation and Regionalization Analysis) with which it is possible to identify the Portuguese districts and cities where an FC charging infrastructure is expected to be most beneficial. From the results obtained the districts of Lisbon Porto and Aveiro seem to be the most interested in adopting FC technology. This analysis aims to ensure a measured view of the credible development of this market segment.
Control Strategy Assessment for Improving PEM Fuel Cell System Efficiency in Fuel Cell Hybrid Vehicles
Mar 2022
Publication
Concerns about climate change air pollution and the depletion of oil resources have prompted authorities to enforce increasingly strict rules in the automotive sector. There are several benefits to implementing fuel cell hybrid vehicles (FCHV) in the transportation sector including the ability to assist in reducing greenhouse gas emissions by replacing fossil fuels with hydrogen as energy carriers. This paper examines different control strategies for optimizing the power split between the battery and PEM fuel cell in order to maximize the PEM fuel cell system efficiency and reduce fuel consumption. First the vehicle and fuel cell system models are described. A forward approach is considered to model the vehicle dynamics while a semi-empirical and quasi-static model is used for the PEM fuel cell. Then different rule-based control strategies are analyzed with the aim of maximizing fuel cell system efficiency while ensuring a constant battery state of charge (SOC). The different methods are evaluated while the FCHV is performing both low-load and high-load drive cycles. The hydrogen consumption and the overall fuel cell system efficiency are considered for all testing conditions. The results highlight that in both low-load cycles and high-load cycles the best control strategies achieve a fuel cell system efficiency equal or greater to 33% while achieving a fuel consumption 30% less with respect to the baseline control strategy in low-load drive cycles.
Sector Coupling and Business Models Towards Sustainability: The Case of the Hydrogen Vehicle Industry
Mar 2022
Publication
The concept of sector coupling has been gaining increased momentum in political discourses during 18 the past few years but it has only recently received the attention of international academics. The 19 private sector is particularly relevant to foster sector coupling through entrepreneurial action – 20 specifically innovative business models for more sustainable technologies are needed to promote a 21 transition towards more sustainability. So far however the literature on business models from a 22 sector coupling perspective is scarce yet strongly emerging. To address the identified research gaps 23 and enhance the current knowledge on the emerging hydrogen vehicle industry and sector coupling 24 this study adopts a qualitative and exploratory research approach and builds on information gained 25 in 103 semi-structured interviews to discuss emerging business models in Germany. In particular 33 26 business cases have been analyzed. Anchoring business model theory to the concept of sector 27 coupling this study identifies 12 business model archetypes in the emerging hydrogen vehicle 28 industry and its value chain. It can be shown that while the market is still emerging and the market 29 players are not defined and are evolving companies are currently engaged in finding their position 30 along the value chain fostering vertical integration and promoting cooperation between the 31 different sectors. While this study is relevant for both the academia and the industry it is particularly 2 32 interesting for policy makers shaping the future of sustainable development specifically considering 33 integrated energy systems.
A Statistical Assessment of Blending Hydrogen into Gas Networks
Aug 2021
Publication
The deployment of low-carbon hydrogen in gas grids comes with strategic benefits in terms of energy system integration and decarbonization. However hydrogen thermophysical properties substantially differ from natural gas and pose concerns of technical and regulatory nature. The present study investigates the blending of hydrogen into distribution gas networks focusing on the steady-state fluid dynamic response of the grids and gas quality compliance issues at increasing hydrogen admixture levels. Two blending strategies are analyzed the first of which involves the supply of NG–H2 blends at the city gate while the latter addresses the injection of pure hydrogen in internal grid locations. In contrast with traditional case-specific analyses results are derived from simulations executed over a large number (i.e. one thousand) of synthetic models of gas networks. The responses of the grids are therefore analyzed in a statistical fashion. The results highlight that lower probabilities of violating fluid dynamic and quality restrictions are obtained when hydrogen injection occurs close to or in correspondence with the system city gate. When pure hydrogen is injected in internal grid locations even very low volumes (1% vol of the total) may determine gas quality violations while fluid dynamic issues arise only in rare cases of significant hydrogen injection volumes (30% vol of the total).
Risk Assessment of the Large-Scale Hydrogen Storage in Salt Caverns
May 2021
Publication
Salt caverns are accepted as an ideal solution for high-pressure hydrogen storage. As well as considering the numerous benefits of the realization of underground hydrogen storage (UHS) such as high energy densities low leakage rates and big storage volumes risk analysis of UHS is a required step for assessing the suitability of this technology. In this work a preliminary quantitative risk assessment (QRA) was performed by starting from the worst-case scenario: rupture at the ground of the riser pipe from the salt cavern to the ground. The influence of hydrogen contamination by bacterial metabolism was studied considering the composition of the gas contained in the salt caverns as time variable. A bow-tie analysis was used to highlight all the possible causes (basic events) as well as the outcomes (jet fire unconfined vapor cloud explosion (UVCE) toxic chemical release) and then consequence and risk analyses were performed. The results showed that a UVCE is the most frequent outcome but its effect zone decreases with time due to the hydrogen contamination and the higher contents of methane and hydrogen sulfide.
Green Hydrogen Production from Raw Biogas: A Techno-Economic Investigation of Conventional Processes Using Pressure Swing Adsorption Unit
Feb 2018
Publication
This paper discusses the techno-economic assessment of hydrogen production from biogas with conventional systems. The work is part of the European project BIONICO whose purpose is to develop and test a membrane reactor (MR) for hydrogen production from biogas. Within the BIONICO project steam reforming (SR) and autothermal reforming (ATR) have been identified as well-known technologies for hydrogen production from biogas. Two biogases were examined: one produced by landfill and the other one by anaerobic digester. The purification unit required in the conventional plants has been studied and modeled in detail using Aspen Adsorption. A pressure swing adsorption system (PSA) with two and four beds and a vacuum PSA (VPSA) made of four beds are compared. VPSA operates at sub-atmospheric pressure thus increasing the recovery: results of the simulations show that the performances strongly depend on the design choices and on the gas feeding the purification unit. The best purity and recovery values were obtained with the VPSA system which achieves a recovery between 50% and 60% at a vacuum pressure of 0.1 bar and a hydrogen purity of 99.999%. The SR and ATR plants were designed in Aspen Plus integrating the studied VPSA model and analyzing the behavior of the systems at the variation of the pressure and the type of input biogas. The SR system achieves a maximum efficiency calculated on the LHV of 52% at 12 bar while the ATR of 28% at 18 bar. The economic analysis determined a hydrogen production cost of around 5 €/kg of hydrogen for the SR case.
Flexible Power & Biomass-to-Methanol Plants: Design Optimization and Economic Viability of the Electrolysis Integration
Nov 2021
Publication
This paper assesses the optimal design criteria of a flexible power and biomass to methanol (PBtM) plant conceived to operate both without green hydrogen addition (baseline mode) and with hydrogen addition (enhanced mode) following an intermittent use of the electrolysis system which is turned on when the electricity price allows an economically viable hydrogen production. The assessed plant includes a gasification section syngas cleaning and compression methanol synthesis and purification and heat recovery steam cycle to be flexibly operated. A sorption-enhanced gasification technology allows to produce a tailored syngas for the downstream synthesis in both the baseline and enhanced operating conditions by controlling the in-situ CO2 separation rate. Two designs are assessed for the methanol synthesis unit with two different reactor sizes: (i) a larger reactor designed on the enhanced operation mode (enhanced reactor design – ERD) and (ii) a smaller reactor designed on the baseline operation mode (baseline reactor design – BRD). The ERD design resulted to be preferable from the techno economic perspectives resulting in 20% lower cost of the e-MeOH (30.80 vs. 37.76 €/ GJLHV) with the baseline assumptions (i.e. 80% of electrolyzer capacity factor and 2019 Denmark day-ahead market electricity price). Other important outcomes are: (i) high electrolysis capacity factor is needed to obtain competitive cost of e-MeOH and (ii) advantages of flexibly operated PBtM plants with respect to inflexible PBtM plants are significant in scenarios with high penetration of intermittent renewables leading to low average prices of electricity but also longer periods of high peak prices.
No more items...